Linear Algebra 2: Direct sums of vector spaces
Thursday 3 November 2005
Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Direct sums of vector spaces
- Projection operators
- Idempotent transformations
- Two theorems
- Direct sums and partitions of the identity

Important note: Throughout this lecture F is a field and V is a vector space over F.
Direct sum decompositions, I

Definition: Let U, W be subspaces of V. Then V is said to be the direct sum of U and W, and we write $V = U \oplus W$, if $V = U + W$ and $U \cap W = \{0\}$.

Lemma: Let U, W be subspaces of V. Then $V = U \oplus W$ if and only if for every $v \in V$ there exist unique vectors $u \in U$ and $w \in W$ such that $v = u + w$.

Proof.
Projection operators

Suppose that $V = U \oplus W$. Define $P : V \to V$ as follows. For $v \in V$ write $v = u + w$ where $u \in U$ and $w \in W$: then define $P(v) := u$.

Observations:

1. P is well-defined;
2. P is linear;
3. $\text{Im} P = U$, $\text{Ker} P = W$;
4. $P^2 = P$.

Proofs.

Terminology: P is called the projection of V onto U along W.
Notes on projection operators

Note 1. Suppose that V is finite-dimensional. Choose a basis u_1, \ldots, u_r for U and a basis w_1, \ldots, w_m for U. Then the matrix of P with respect to the basis $u_1, \ldots, u_r, w_1, \ldots, w_m$ of V is

$$
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}.
$$

Note 2. If P is the projection onto U along W then $I - P$ is the projection onto W along U.
Idempotent operators: a theorem

Terminology: An operator T such that $T^2 = T$ is said to be idempotent.

Theorem. Every idempotent operator is a projection operator.

Proof.
A theorem about projections

Theorem. Let $P : V \to V$ be the projection onto U along W. Let $T : V \to V$ be a linear transformation. Then $PT = TP$ if and only if U and W are T-invariant (that is $TU \subseteq U$ and $TW \subseteq W$).

Proof.
Direct sum decompositions, II

Definition: \(V \) is said to be **direct sum** of subspaces \(U_1, \ldots, U_k \), and we write \(V = U_1 \oplus \cdots \oplus U_k \), if for every \(v \in V \) there exist unique vectors \(u_i \in U_i \) for \(1 \leq i \leq k \) such that \(v = u_1 + \cdots + u_k \).

Note: \(U_1 \oplus U_2 \oplus \cdots \oplus U_k = (\cdots ((U_1 \oplus U_2) \oplus U_3) \oplus \cdots \oplus U_k) \).

Note: If \(U_i \subseteq V \) for \(1 \leq i \leq k \) then \(V = U_1 \oplus \cdots \oplus U_k \) if and only if \(V = U_1 + U_2 + \cdots + U_k \) and \(U_r \cap \sum_{i \neq r} U_i = \{0\} \) for \(1 \leq r \leq k \).

It is **NOT** sufficient that \(U_i \cap U_j = \{0\} \) whenever \(i \neq j \).

Note: If \(V = U_1 \oplus U_2 \oplus \cdots \oplus U_k \) and \(B_i \) is a basis of \(U_i \) then \(B_1 \cup B_2 \cup \cdots \cup B_k \) is a basis of \(V \). In particular, \(\dim V = \sum_{i=1}^{k} \dim U_i \).
Partitions of the identity

Let P_1, \ldots, P_k be linear mappings $V \to V$ such that $P_i^2 = P_i$ for all i and $P_i P_j = 0$ whenever $i \neq j$. If $P_1 + \cdots + P_k = I$ then \{P_1, \ldots, P_k\} is known as a partition of the identity on V.

Example: If P is a projection then \{$P, I - P$\} is a partition of the identity.

Theorem. Suppose that $V = U_1 \oplus \cdots \oplus U_k$. Let P_i be the projection of V onto U_i along $\bigoplus_{j \neq i} U_j$. Then \{P_1, \ldots, P_k\} is a partition of the identity on V. Conversely, if \{P_1, \ldots, P_k\} is a partition of the identity on V and $U_i := \text{Im} \ P_i$ then $V = U_1 \oplus \cdots \oplus U_k$.

Proof.