Linear Algebra 6: The Primary Decomposition Theorem
Friday 11 November 2005
Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- The Primary Decomposition Theorem, Mark 1
- The Primary Decomposition Theorem, Mark 2
- The Primary Decomposition Theorem, Mark 3
- An application: diagonalisability

Note: Throughout this lecture F is a field, V is a finite-dimensional vector space over F, and $T: V \rightarrow V$ is a linear transformation.
The Primary Decomposition Theorem, Mark 1

Theorem: Suppose that \(f(T) = 0 \), where \(f \in F[x] \). Suppose also that \(f(x) = g(x)h(x) \), where \(g, h \in F[x] \) and \(g, h \) are co-prime. Then there are \(T \)-invariant subspaces \(U, W \) of \(V \) such that \(V = U \oplus W \) and \(g(T|_U) = 0 \), \(h(T|_W) = 0 \).

Proof.

Challenge. Let \(P \) be the projection of \(V \) onto \(U \) along \(W \). Express \(P \) as \(p(T) \) for some \(p \in F[x] \). (Worth a Marsbar.)
The Primary Decomposition Theorem, Mark 2

Theorem. If \(m_T(x) = g(x)h(x) \) where \(g, h \in F[x] \) are monic and co-prime, then \(g \) is the minimal polynomial of \(T|_U \) and \(h \) is the minimal polynomial of \(T|_W \).

Proof.

Example. If \(m_T(x) = x^2 - x \) then (as we already know) there exist \(U, W \leq V \) such that \(V = U \oplus W \), \(T|_U = I_U \) and \(T|_W = 0_W \).
The Primary Decomposition Theorem, Mark 3

The Primary Decomposition Theorem. Suppose that

\[m_T(x) = f_1(x)^{m_1} f_2(x)^{m_2} \cdots f_k(x)^{m_k}, \]

where \(f_1, f_2, \ldots, f_k \) are distinct monic irreducible polynomials over \(F \). Then

\[V = V_1 \oplus V_2 \oplus \cdots \oplus V_k, \]

where \(V_1, V_2, \ldots, V_k \) are \(T \)-invariant subspaces and the minimal polynomial of \(T|_{V_i} \) is \(f_i^{m_i} \) for \(1 \leq i \leq k \).

Proof.
An application: diagonalisability

Definition: The linear transformation T is said to be diagonalisable if there is a basis of V consisting of eigenvectors of T.

Note: Matrix $A \in M_{n \times n}(F)$ is said to be diagonalisable if there exists an invertible $n \times n$ matrix P over F such that $P^{-1}AP$ is diagonal. And T is diagonalisable if and only if there is a basis of V with respect to which its matrix is diagonal.

Theorem. Our transformation T is diagonalisable if and only if $m_T(x)$ may be factorised as a product of distinct linear factors in $F[x]$.

Proof.