Rings & Arithmetic 9: The Gaussian integers

Friday, 28 October 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- The ring of Gaussian integers
- Division with remainder
- Gaussian units
- Gaussian primes
- Sums of two squares
- Concluding remarks
The Gaussian integers

Definition. A Gaussian integer is a complex number of the form $a + bi$ where $a, b \in \mathbb{Z}$. We define
\[
\mathbb{Z}[i] := \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}.
\]

Observe that $\mathbb{Z}[i] \subseteq \mathbb{C}$ and therefore $\mathbb{Z}[i]$ is an integral domain.
The norm of a Gaussian integer

Define $N : \mathbb{Z}[i] \rightarrow \{0\} \cup \mathbb{N}$ by $N(x) := |x|^2$ for all $x \in \mathbb{Z}[i]$. Thus if $x = a + bi$ then $N(x) = a^2 + b^2$.

Note: $N(x)$ is often called the norm of x; and N the norm function. Note that it is defined on all of $\mathbb{Z}[i]$, even on 0.

Note: The norm is multiplicative: $N(xy) = N(x)N(y)$ for all $x, y \in \mathbb{Z}[i]$.
Division in the ring of Gaussian integers

Theorem. If $x, y \in \mathbb{Z}[i]$ and $y \neq 0$ then

(1) $N(xy) \geq N(x),$

(2) there exist $q, r \in \mathbb{Z}[i]$ such that $x = qy + r$ and $N(r) < N(y).$

Thus the ring of Gaussian integers is euclidean.

Proof.
The Gaussian units

Theorem. \[U(\mathbb{Z}[i]) = \{1, -1, i, -i\} \]

Proof.
Gaussian primes, I

Lemma. Let x be a prime in $\mathbb{Z}[i]$. Then there is a prime p in \mathbb{N} such that $x | p$ in $\mathbb{Z}[i]$. Moreover, either $N(x) = p$ or $x = up$ for some $u \in U(\mathbb{Z}[i])$.

Proof.

Lemma. Let p be an ordinary prime number in \mathbb{N}. Then p is reducible (prime) in $\mathbb{Z}[i]$ if and only if $\exists a, b \in \mathbb{Z} : p = a^2 + b^2$.

Proof.
Lemma. Let p be an ordinary prime number in \mathbb{N}.

- If $p = 2$ then $p = (-i)(1 + i)^2$.
- If $p \equiv 3 \pmod{4}$ then p remains prime in $\mathbb{Z}[i]$.
- If $p \equiv 1 \pmod{4}$ then p becomes reducible in $\mathbb{Z}[i]$—in fact p factorises as a product of two distinct primes in $\mathbb{Z}[i]$.

Proof.
Gaussian primes, III

Corollary of these lemmas:

Theorem. *The primes in \(\mathbb{Z}[i] \) are (associates of):*

- \(1 + i \);
- *primes* \(p \) of \(\mathbb{N} \) of the form \(4m + 3 \); and
- *numbers* \(a + bi \) where \(a, b \in \mathbb{N} \) and \(a^2 + b^2 \) is prime.

Examples: \(1 + i, 3, 2 + i, 2 - i, 7, 11, 3 + 2i, 3 - 2i, 4 + i, 4 - i, 19, 23, \ldots \) are primes in \(\mathbb{Z}[i] \).
Application to sums of two squares

Theorem. Every ordinary prime of the form $4m + 1$ is a sum of two squares. [Fermat’s Two Squares Theorem.]

Theorem. Let $n \in \mathbb{N}$. Factorise n as $p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$ where p_1, \ldots, p_k are distinct prime numbers. There exist $a, b \in \mathbb{N} \cup \{0\}$ such that $n = a^2 + b^2$ if and only if $p_i \equiv 3 \pmod{4} \Rightarrow m_i$ is even.
Summary of the Rings & Arithmetic course

• Definitions: commutative rings with 1, integral domains, fields, etc.;

• Ideals, quotient rings (e.g: \(\mathbb{Z}_n \); quotient by maximal ideal is a field), homomorphisms, Isomorphism Theorems;

• Arithmetic—units, irreducibles, primes, etc.;

• Euclidean rings:
 – ideals are principal;
 – hcf exists;
 – irreducibles are prime:
 – unique factorisation theorem holds.

• Rings \(\mathbb{Z}, F[x], \mathbb{Z}[i], \ldots \) are euclidean so the theory applies.
The end

Farewell: we start with Linear Algebra on Monday.