PROBLEM SHEET 1.

1. Consider the discrete population model

$$u_{n+1} = ru_n \left(1 - \frac{u_n}{K} \right) - hu_n.$$

By writing $u_n = Lw_n$ for some suitable choice of L, show that the model takes the form

$$w_{n+1} = \lambda w_n (1 - w_n),$$

and determine λ . What is the effect of increasing h on the behaviour of the population? What happens if h > r - 1?

2. Consider the continuous population model

$$\frac{du}{dt} = \rho u \left(1 - \frac{u}{C} \right) - \mu u.$$

By writing u = Mw for some suitable choice of M, show that the model takes the form

$$\frac{dw}{dt} = \alpha w (1 - w),$$

and determine α . What is the effective of increasing μ on the population? What happens if $\rho < \mu$?

- 3. Starting from an integral conservation law, derive the heat equation and the mass conservation equation in the forms given in chapter 1 of the notes.
- 4. Suppose

$$Pe\left[\frac{\partial T}{\partial t} + \mathbf{u} \cdot \mathbf{\nabla} T\right] = \nabla^2 T + 1 \text{ in } D,$$

with

$$T = 0 \text{ on } \partial D,$$

 $T = \theta_0 \Theta(\mathbf{x}) \text{ in } D \text{ at } t = 0,$

and $\Theta = O(1)$, $\theta_0 \gg 1$, $Pe \ll 1$. Discuss appropriate scales for the various phases of the solution.

5. A population of size N is subject to immigration at rate I, and mutual pair destruction at a rate kN^2 , so that $\dot{N} = I - kN^2$. By appropriate scaling of the variables, show that the model can be written in the form $\dot{x} = 1 - x^2$.

PROBLEM SHEET 2.

1. Explain why the iterative method

$$x_{n+1} = (1 + \varepsilon x_n)^{1/3}$$

will converge to the real solution of $x^3 - \varepsilon x - 1 = 0$. Does this depend on the value of ε ?

2. (i) Find approximations to the solution of

$$\varepsilon x^3 - x - 1 = 0, \quad \varepsilon \ll 1,$$

which is close to x = -1. Compare with the numerical solution when $\varepsilon = 0.1$; $\varepsilon = 0.01$.

(ii) Use perturbation methods to find approximate roots to the equation

$$xe^{-x} = \varepsilon, \quad 0 < \varepsilon \ll 1.$$

(Use graphical methods to find the location of the roots. For the larger root, take logs and note that if $x \gg 1$, then $x \gg \ln x$.)

3. Each of the equations

$$z^5 - \varepsilon z - 1 = 0.$$

$$\varepsilon z^5 - z - 1 = 0.$$

has five (possibly complex) roots. Find approximations to these if $\varepsilon \ll 1$. Can you refine the approximations?

- 4. (a) Sketch the function $y = x^3 e^{-x}$, x > 0.
 - (b) Sketch $y = x \ln x$, x > 0. (Note $\ln x \ll \frac{1}{x}$ when $x \ll 1$; why?)
 - (c) If $y = x^x$, x > 0, and y(0) = 1, sketch y(x).
 - (d) Sketch y defined by $y = x + (x + y)^3$.
 - (e) Sketch y defined by $\tan x = \tanh y$.
 - (f) Sketch $T(\mu)$ defined by $T = \mu \exp\left(\frac{T}{1+\varepsilon T}\right)$, where $\varepsilon > 0$, for $\mu > 0$.
- 5. The differential equation

$$\dot{x} = a - xe^{-x}, \quad x > 0, \quad a > 0,$$

may have 0, 1 or 2 steady states. Determine how these depend on a, and describe how solutions behave for $a > e^{-1}$ and $a < e^{-1}$, depending on the value of x(0).

PROBLEM SHEET 3.

1. u and v satisfy the ordinary differential equations

$$\dot{u} = k_1 - k_2 u + k_3 u^2 v,
\dot{v} = k_4 - k_3 u^2 v,$$

where $k_i > 0$. By suitably scaling the equations, show that these can be written in the dimensionless form

$$\dot{u} = a - u + u^2 v,$$

$$\dot{v} = b - u^2 v,$$

where a and b should be defined. Show that if u, v are initially positive, they remain so. Draw the nullclines in the positive quadrant, show that there is a unique steady state and examine its stability. Are periodic solutions likely to exist?

2. The relaxational form of the van der Pol oscillator is

$$\varepsilon \ddot{x} + (x^2 - 1)\dot{x} + x = 0, \quad \varepsilon \ll 1.$$

A suitable phase plane is spanned by (x, y), where $y = \varepsilon \dot{x} + \frac{1}{3}x^3 - x$. Describe the motion in this phase plane, and find, approximately, the period of the relaxation oscillation. What happens if $\varepsilon < 0$?

3. The Belousov-Zhabotinskii chemical reaction can be approximately described by the two component pair of ordinary differential equations

$$\varepsilon \dot{X} = X(1 - X) - \left(\frac{X - \delta}{X + \delta}\right) Z,$$
$$\dot{Z} = \gamma X - Z,$$

where X and Z are positive reactant concentrations, ε and δ are very small, and γ is O(1). Show that relaxation oscillations will occur for γ within a certain range (γ_-, γ_+) , and give approximations for the values of γ_{\pm} .

PROBLEM SHEET 4.

1. Find a scaling of the combustion equation

$$c\frac{dT}{dt} = -k(T - T_0) + A\exp(-E/RT)$$

so that it can be written in the form

$$\dot{\theta} = \theta_0 - g(\theta),$$

where $\theta_0 = RT_0/E$ and $g = \theta - \alpha e^{-1/\theta}$. Give the definition of α . Hence show that the steady state θ is a multiple-valued function of θ_0 if $\alpha > \frac{1}{4}e^2$.

2. Suppose that θ satisfies $\dot{\theta} = \theta_0 - g(\theta)$, where $g(\theta)$ is as in question 1 and $\alpha > \frac{1}{4}e^2$, and θ_0 varies slowly according to

$$\dot{\theta}_0 = \varepsilon(\theta^* - \theta),$$

where $\varepsilon \ll 1$. Show that there are three possible outcomes, depending on the value of θ^* , and describe them.

3. A forced pendulum is modelled by the (dimensional) equation

$$l\ddot{\theta} + k\dot{\theta} + q\sin\theta = \alpha\sin\lambda t.$$

By scaling the equation, show how to obtain the dimensionless model

$$\ddot{u} + \beta \dot{u} + \Omega_0^2 \sin u = \varepsilon \sin \omega t,$$

and show that the time scale can be chosen so that $\Omega_0 = 1$. In this case, identify the parameters ε , β and ω .

4. It is asserted in the notes that the oscillator frequency $\Omega(A)$ is a decreasing function of A for $0 < A < \pi$, or equivalently, that the function

$$p(A) = \frac{1}{\sqrt{2}} \int_0^A \frac{du}{[\cos u - \cos A]^{1/2}}$$

is increasing. Show that this is true by writing p in the form

$$p = \int_0^1 \left(\frac{\theta}{\sin \theta}\right)^{1/2} \left(\frac{\phi}{\sin \phi}\right)^{1/2} \frac{dw}{(1 - w^2)^{1/2}}$$

for some functions $\theta(w, A)$ and $\phi(w, A)$, and using the fact that $\theta/\sin\theta$ is an increasing function of θ in $(0, \pi)$.

[Hint:
$$\cos u - \cos A = 2 \sin \left(\frac{A-u}{2}\right) \sin \left(\frac{A+u}{2}\right)$$
.]

Show also that, if $\Omega = \frac{\pi\Omega_0}{2p}$, then

$$\Omega pprox \Omega_0 \left[1 - rac{A^2}{16} \dots
ight]$$

for small A.

PROBLEM SHEET 5.

1. The function u(x,t) satisfies

$$u_t + uu_x = \alpha(1 - u^2)$$

for $-\infty < x < \infty$, where $\alpha > 0$, and with $u = u_0(x)$ at t = 0, and $0 < u_0 < 1$ everywhere.

Write down the characteristic differential equations satisfied by x and u in terms of the variable t along the characteristics, and write down the corresponding initial conditions at t = 0 in parametric form.

Show that the solution for u is

$$u = \frac{(1+u_0)e^{2\alpha t} - (1-u_0)}{(1+u_0)e^{2\alpha t} + (1-u_0)},$$

and deduce that

$$u = \frac{u_0(s) + \tanh \alpha t}{1 + u_0(s) \tanh \alpha t}.$$
 (1)

Hence show that

$$\exp[\alpha(x-s)] = \cosh \alpha t + u_0(s) \sinh \alpha t, \tag{2}$$

and, by using (1) to eliminate u_0 , deduce that

$$\exp[\alpha(x-s)] = \frac{\operatorname{sech} \alpha t}{1 - u \tanh \alpha t}.$$
 (3)

Sketch the form of the characteristics for an initial function such as $u_0(s) = a/(1+s^2)$. [Don't use (2) unless you have to; simply use the characteristic differential equations to infer the graphical behaviour of u with t on a characteristic, and therefore also that of x.]

Use (1) to show that (note s = s(x, t))

$$u_x = \frac{\operatorname{sech}^2 \alpha t \, u_0' s_x}{(1 + u_0 \tanh \alpha t)^2},$$

and use (2) to show that

$$s_x \left[u_0' \tanh \alpha t + \alpha (1 + u_0 \tanh \alpha t) \right] = \alpha \left[1 + u_0 \tanh \alpha t \right].$$

Deduce that, in terms of s and t, u_x is given by

$$u_x = \frac{\left[\alpha \operatorname{sech}^2 \alpha t\right] u_0'(s)}{\left[1 + u_0(s) \tanh \alpha t\right] \left[\alpha + \left\{u_0'(s) + \alpha u_0(s)\right\} \tanh \alpha t\right]},$$

and deduce that a shock will form if $u'_0 + \alpha(1 + u_0)$ becomes negative for some s.

Now suppose that $u_0 = a/(1+s^2)$ and that a is small.

Show that

$$u_0' + \alpha(1 + u_0) = \frac{\alpha(1 + s^2)^2 + \alpha a(1 + s^2) - 2as}{(1 + s^2)^2},$$

and deduce that a shock will form if

$$p(s, \alpha) = \alpha(1 + s^2)^2 + \alpha a(1 + s^2) - 2as$$

is negative for some value of s.

Observe that p is a continuous function of s and α .

Show that $p(s, \alpha)$ increases with α .

Show that p < 0 for s > 0 when $\alpha = 0$.

Show that $p > a(1-s)^2 \ge 0$ when $\alpha > 1$, and that in fact p > 0 for $\alpha = O(1)$ when a is small. Deduce that there is a positive small value $\alpha = \alpha_c$ such that min p = 0, and that a shock will form if $\alpha < \alpha_c$.

Show that for small α and a,

$$p \approx \alpha (1 + s^2)^2 - 2as,$$

and that at $\alpha = \alpha_c$, the value of s where p = p' = 0 satisfies

$$\alpha((1+s^2)^2 \approx 2as,$$

 $4\alpha s((1+s^2) \approx 2a,$

and thus

$$s \approx \left(\frac{a}{8\alpha}\right)^{1/3}$$
.

Deduce that α_c is approximately given by

$$\alpha_c \approx \frac{3a\sqrt{3}}{8}$$
.

2. The function u(x,t) satisfies the first order equation

$$u_t + u^{\alpha} u_x = \varepsilon [u^{\beta} u_x]_x$$

for $-\infty < x < \infty$, with $u = u_0(s) > 0$ on the initial curve x = s, t = 0. The parameters α and β are positive, and $0 \le \varepsilon \ll 1$. Assume that $u_0 > 0$, and that $u_0(s) \to 0$ as $s \to \pm \infty$.

Write down the solution in the case $\varepsilon = 0$, and show that a shock will form at

$$t = t_c = \min_{s: u_0' < 0} -\frac{1}{(u_0^{\alpha})'}.$$

For $t > t_c$ show that the shock at $x = x_s(t)$ will travel at a speed

$$\dot{x}_s = \frac{[u^{\alpha+1}]_{-}^+}{(\alpha+1)[u]_{-}^+},\tag{1}$$

defining what you mean by u_{\pm} .

Now suppose that $0 < \varepsilon \ll 1$. By writing $x = x_s + \varepsilon X$, derive an approximate equation describing the *shock structure* of the solution for u within the shock. Write down suitable boundary conditions for this equation. By integrating the equation, show that

$$u_X = \frac{u^{\alpha+1}}{\alpha+1} + K - cu, \qquad (2)$$

where $c = \dot{x}_s$ is the (constant) shock speed and K is a constant, and by applying the boundary conditions, confirm that the shock speed c is indeed given by (1).

By using the definitions of K and c needed to satisfy the boundary conditions, show that the numerator N(u) of the fraction in (2) can be written as

$$N(u) = \frac{(u_{+} - u)(u_{-}^{\alpha+1} - u_{+}^{\alpha+1})}{(\alpha+1)(u_{-} - u_{+})} + \frac{u^{\alpha+1} - u_{+}^{\alpha+1}}{\alpha+1},$$

and deduce that the derivative of N is

$$N'(u) = u^{\alpha} - \left\{ \frac{u_{-}^{\alpha+1} - u_{+}^{\alpha+1}}{(\alpha+1)(u_{-} - u_{+})} \right\},\,$$

and that $N(u_{+}) = N(u_{-}) = 0$.

Use the mean value theorem for derivatives to show that

$$N'(u) = u^{\alpha} - u_{\star}^{\alpha}$$

for some u_* between u_- and u_+ .

Deduce that N < 0 for u between u_- and u_+ , and hence show that a solution of (2) exists only if $u_- > u_+$.

3. Show that the equation

$$u_t + uu_x = \varepsilon u u_{xx}$$

admits a shock structure joining u_{-} to a lower value u_{+} , in which the wave speed is

$$c = \frac{[u]_{-}^{+}}{[\ln u]^{+}}.$$

Naïvely, one might have expected the wave speed to be $c = \left[\frac{1}{2}u^2\right]_-^+/[u]_-^+$. Why? And why is it not?

PROBLEM SHEET 6.

1. Suppose that we wish to find positive travelling wave solutions (if they exist) to the equation

$$u_t = u^p (1 - u^q) + [u^r u_x]_x,$$

where $p, q, r \geq 0$, with boundary conditions

$$u \to 1$$
 as $x \to -\infty$ and $u \to 0$ as $x \to \infty$.

Show that travelling wave solutions exist of the form $u = f(\xi)$, $\xi = x - ct$, if f satisfies the equation

$$(f^r f')' + f^p((1 - f^q) + cf' = 0,$$

with $f(-\infty) = 1$, $f(\infty) = 0$. Deduce that the quantity

$$E = \frac{1}{2}f^{2r}f'^{2} + \frac{f^{p+r+1}}{p+r+1} - \frac{f^{p+q+r+1}}{p+q+r+1}$$

decreases as ξ increases along a trajectory, if f > 0 and c > 0.

Show that such a travelling wave solution can be found providing a connecting trajectory from (1,0) to (0,0) with f>0 exists of the system

$$f^r f' = -g,$$

$$g' = f^p (1 - f^q) - \frac{cg}{f^r}.$$
 (1)

Now consider the specific case p = 1, q = 2, r = 0, and assume that c > 0. Find and draw the nullclines of (1). Show that (1,0) is a saddle, and that (0,0) is a stable spiral or node.

Show in this case that

$$E = \frac{1}{2}g^2 + \frac{1}{2}f^2 - \frac{1}{4}f^4$$

and thus that E decreases along trajectories even when f < 0, and deduce that the trajectory which leaves (1,0) in the direction of increasing g and decreasing f always terminates at (0,0). Show that this approach is oscillatory if c < 2, and deduce that a travelling wave in which f is positive can only exist if c > 2.

2. In a model of snow melting, it is assumed that the permeability is $k = k_0 S^{\alpha}$, and the capillary suction is $p_c(S) = p_0(S^{-\beta} - S)$, where $\alpha, \beta > 0$, and S is the saturation. The saturation for one-dimensional flow is described by

$$\phi \frac{\partial S}{\partial t} + \frac{\partial K}{\partial z} = \frac{\partial}{\partial z} \left[D \frac{\partial S}{\partial z} \right],$$

where ϕ is porosity, $K = k\rho g/\mu$ is the hydraulic conductivity, and $D = -kp'_c(S)/\mu$ is the hydraulic diffusivity; z is the vertical coordinate pointing downwards from the surface z = 0.

If a suitable depth scale is h, show how to non-dimensionalise the equation to obtain the form

$$\frac{\partial S}{\partial t} + \frac{\partial S^{\alpha}}{\partial z} = \kappa \frac{\partial}{\partial z} \left[S^{\alpha} \left(1 + \frac{\beta}{S^{\beta+1}} \right) \frac{\partial S}{\partial z} \right],$$

where

$$\kappa = \frac{p_0}{\rho q h}.$$

Suppose that an initially dry snowpack $(S=0 \text{ at } t=0 \text{ and } S \to 0 \text{ as } z \to \infty)$ is inundated at the surface (i. e., S=1 at z=0 for t>0). Assume also that $\kappa=0$. Write down the characteristic equations for the model, and show, by drawing the characteristic diagram, that if $\alpha>1$, then a shock must form, but that if $\alpha<1$, a solution can be found with an expansion fan emanating from z=t=0 (note that S is indeterminate at this point on the initial boundary curve, and can take any value between 0 and 1). For this latter case, show that the solution is

$$S = 1, \quad z < \alpha t,$$

$$S = \left(\frac{\alpha t}{z}\right)^{1/(1-\alpha)}, \quad z > \alpha t.$$

For the case $\alpha > 1$, write down a suitable jump condition across a shock, and hence show that the wetting front (i.e., a shock) $z = z_w(t)$ moves downwards at a speed $\dot{z}_w = 1$.

Now suppose that $0 < \kappa \ll 1$ and $\alpha > 1$. Write $z = z_w + \kappa \zeta$, $\dot{z}_w = c$, and show that to leading order S satisfies the equation

$$-cS' + (S^{\alpha})' = \left[S^{\alpha} \left(1 + \frac{\beta}{S^{\beta+1}} \right) S' \right]',$$

with appropriate boundary conditions being $S \to 1$ as $\zeta \to -\infty$, $S \to 0$ as $\zeta \to \infty$. By integrating this equation, show that c = 1 and that

$$S' = -\frac{(S^{1-\alpha} - 1)}{\left(1 + \frac{\beta}{S^{\beta+1}}\right)}.$$

Deduce that a shock structure connecting S=1 to S=0 only exists if $\alpha>1$.

By considering a suitable approximation to this equation for small S, show that S reaches zero at a finite value of ζ if $\alpha > \beta + 1$. Sketch the consequent solution structure. What happens if $\alpha < \beta + 1$?

PROBLEM SHEET 7.

1. Write down the equation satisfied by a similarity solution of the form $u = t^{\beta} f(\eta)$, $\eta = x/t^{\alpha}$, for the equation

$$u_t = (u^m u_x)_x$$
 in $0 < x < \infty$,

where m > 0, with boundary conditions $u^m u_x = -1$ at x = 0, $u \to 0$ as $x \to \infty$, and the initial condition u = 0 at t = 0. Show that an ordinary differential equation for f with time independent boundary conditions is obtained providing

$$\alpha = \frac{m+1}{m+2}, \quad \beta = \frac{1}{m+2}.$$

Integrate the equation to show that f satisfies

$$f^m f' = -1 - \left(\frac{m+1}{m+2}\right) \eta f + \int_0^{\eta} f \, d\eta,$$

and deduce that $\int_0^\infty f \, d\eta = 1$. Hence show that

$$f^{m-1}f' < -\left(\frac{m+1}{m+2}\right)\eta,$$

and deduce that f reaches zero at a finite value η_0 .

2. u satisfies the equation

$$u_t = [D(u)u_x]_x$$
 in $0 < x < \infty$,

with u = 0 at $x \to \infty$ and t = 0, and $u = u_0$ (constant) at x = 0, where the function D is non-negative (do not assume it is a power of u). Show that a similarity solution of the form $u = f(\eta)$ exists, where you should determine a suitable form for the function $\eta(x,t)$. Write down the resulting equation and boundary conditions for the similarity function f.

Now suppose that $D = D(u_x)$, and that the boundary and initial conditions are as before, except that $-Du_x = 1$ at x = 0. Show that a similarity solution can be found in this case, in the form $u = t^{\alpha} f(x/ct^{\beta})$ for suitable values of α , β and c, and write down the equation and boundary conditions for the similarity function f in this case.

3. A small droplet satisfies the surface-tension controlled equation

$$h_t = -\frac{\gamma}{3\mu} \nabla \cdot [h^3 \nabla \nabla^2 h]$$

in \mathbf{R}^n (n=1 or 2), where γ is the surface tension and μ is the viscosity. A small quantity $\int h \, dS = V$ is released at time zero at the origin. Show that the equation can be written in the dimensionless form

$$h_t = -\nabla \cdot [h^3 \nabla \nabla^2 h],$$

where the scales are chosen so that

$$\int_{\mathbf{R}^n} h \, dS = 1.$$

Show that a similarity solution can be found in the form $h = t^{-\beta} f(r/t^{\alpha})$ in both one and two spatial dimensions (i. e., n = 1 and n = 2). Show that for n = 1,

$$f^2 f''' = \frac{1}{7} \eta,$$

while for n=2,

$$f^2 \left[f'' + \frac{1}{\eta} f' \right]' = \frac{1}{10} \eta.$$

What might suitable boundary conditions for these equations be?

[The dimensionless equation describing radially symmetric solutions takes the form

$$h_t = -\frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left[r^{n-1} h^3 \frac{\partial}{\partial r} \nabla^2 h \right],$$

where

$$\nabla^2 h = \frac{\partial^2 h}{\partial r^2} + \frac{n-1}{r} \frac{\partial h}{\partial r}$$

in n dimensions.]

VACATION PROBLEM SHEET.

1. By direct integration, show that the solution of

$$u'' + \lambda e^u = 0$$

satisfying u = 0 on $x = \pm 1$ is

$$u = 2 \ln \left[A \operatorname{sech} \left\{ \sqrt{\frac{\lambda}{2}} Ax \right\} \right],$$

and find a transcendental equation for A. Hence show that no solution exists for $\lambda > \lambda_c$, and derive and solve (numerically) an algebraic equation for λ_c .

If the equation is to be solved in [0,1], with u'=0 on x=0 and u'=-1 on x=1, find the solution, and plot u(0) as a function of λ . Is there a critical value λ_c ? If so, find it; if not, why not?

2. (i) Find an exact solution of the Gel'fand equation

$$\nabla^2 \theta + \lambda e^{\theta} = 0 \quad \text{in} \quad 0 < r < 1,$$

where r is the cylindrical polar radius, and $\theta = 0$ on r = 1. [Assume cylindrical symmetry, and a suitable condition of regularity at r = 0.] Show that there is a critical parameter λ_c such that no solution exists for $\lambda > \lambda_c$, and find its value.

(ii) Write down the ordinary differential equation satisfied by a spherically symmetric solution of the Gel'fand equation in part (i). Suppose that $\theta = 0$ on r = 1 and $\theta_r = 0$ on r = 0 (why?). By putting

$$p = \lambda r^2 e^{\theta}, \quad q = 2 + r\theta_r, \quad r = e^{-t},$$

show that p(t) and q(t) satisfy the ordinary differential equations

$$\begin{array}{rcl} \dot{p} & = & -pq, \\ \dot{q} & = & p+q-2. \end{array}$$

By consideration of trajectories for p and q in the phase plane, show that multiple solutions exist for $\lambda \approx 2$, and infinitely many at $\lambda = 2$. Sketch the corresponding response diagram of $\theta(0)$ versus λ .

3. The complex reactant concentration c in ${f R}^2$ satisfies the reaction diffusion system

$$c_t = f(|c|)c + D\nabla^2 c,$$

where $f(|c|) = \lambda(|c|) + i\omega(|c|)$, and λ and ω are real-valued. Suppose that $\lambda(|c|)$ is monotonically decreasing, $\lambda(0) > 0$, and $\lambda \to -\infty$ as $|c| \to \infty$.

- (i) Show that if D=0, then $|\dot{c}|=|c|\lambda(|c|)$, and deduce that as $t\to\infty$, $|c|\to c^*$, where c^* is the unique positive value of |c| such that $\lambda(c^*)=0$. Hence show that the eventual solution is the limit cycle $c=c^*\exp[i\omega(c^*)t]$.
- (ii) Now suppose $D \neq 0$. Show that travelling waves exist provided $k\sqrt{D} < \{\lambda(0)\}^{1/2}$.

Show also that if $\lambda(0) < 0$, and the boundary condition for c is that $c \to 0$ as $|\mathbf{x}| \to \infty$, then $c \to 0$ as $t \to \infty$. [Hint: consider the time evolution of $\int_{\mathbf{R}^2} |c|^2 dS$.]

4. Finals 2001. An activator-inhibitor reaction-diffusion model takes the non-dimensional form

$$\begin{array}{rcl} \frac{\partial u}{\partial t} & = & \frac{u^2}{v} - bu + \frac{\partial^2 u}{\partial x^2}, \\ \frac{\partial v}{\partial t} & = & u^2 - v + d\frac{\partial^2 v}{\partial x^2}, \end{array}$$

where u(x,t), v(x,t) are the concentrations of the chemicals at spatial coordinate x and time t, and b, d are positive parameters.

Which is the activator and which is the inhibitor? Find the non-zero spatially uniform steady state and, from first principles, determine the conditions for it to be driven unstable by diffusion. Show that the parameter domain for which diffusion-driven instability is given by 0 < b < 1, $db > 3 + 2\sqrt{2}$, and sketch the instability region in (b, d) parameter space. Show that the critical wave number k_c at the onset of instability is

$$k_c^2 = \frac{1 + \sqrt{2}}{d}.$$