Introduction to Mathematical Modelling

PROBLEM SHEET 1.

1. Consider the discrete population model
Un
Upt1 = TUy (1 - f) — hu,,.

By writing u,, = Lw, for some suitable choice of L, show that the model takes
the form
Wp41 = )\wn(l - wn)a

and determine A. What is the effect of increasing h on the behaviour of the
population? What happens if h > r — 17

2. Consider the continuous population model

du ( ;] >
—=pull— =) —pu.
it " c)*
By writing © = Mw for some suitable choice of M, show that the model takes

the form p
di; = aw(l —w),
and determine . What is the effective of increasing p on the population? What

happens if p < p?

3. Starting from an integral conservation law, derive the heat equation and the
mass conservation equation in the forms given in chapter 1 of the notes.

4. Suppose

T
Pe lgt + u.VT] =V?T+1 in D,

with

T = 0 on 0D,
T = 6p0(x) in D at t=0,

and © = O(1), 6y > 1, Pe < 1. Discuss appropriate scales for the various
phases of the solution.

5. A population of size N is subject to immigration at rate I, and mutual pair

destruction at a rate kN2, so that N = I — kN2. By appropriate scaling of the

variables, show that the model can be written in the form & = 1 — z2.
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PROBLEM SHEET 2.

1. Explain why the iterative method
Tpr1 = (14 69:n)1/3

will converge to the real solution of 3 — ez — 1 = 0. Does this depend on the
value of €7

2. (i) Find approximations to the solution of
exd—2x—-1=0, <1,
which is close to x = —1. Compare with the numerical solution when ¢ = 0.1;

e = 0.01.

(ii) Use perturbation methods to find approximate roots to the equation
ze =g, O0<exl1.

(Use graphical methods to find the location of the roots. For the larger root,
take logs and note that if > 1, then z > Inz.)

3. Each of the equations

z5—€z—1:O,

e —2—-1=0,

has five (possibly complex) roots. Find approximations to these if ¢ < 1. Can
you refine the approximations?

4. (a) Sketch the function y = z%¢*, = > 0.

(b) Sketch y = zlnz, z > 0. (Note Inz < 1 when z < 1; why?)

(c) fy=2" x>0, and y(0) = 1, sketch y(z).

(d) Sketch y defined by y = = + (z + y)3.
)
)

(e) Sketch y defined by tanz = tanhy.

T
(f) Sketch T'(u) defined by T = pexp (m), where € > 0, for p > 0.

5. The differential equation

t=a—zxze *, x>0, a>0,

may have 0, 1 or 2 steady states. Determine how these depend on a, and describe
how solutions behave for a > e™! and a < e™!, depending on the value of z(0).
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PROBLEM SHEET 3.

1. uw and v satisfy the ordinary differential equations

U = kl — kg’u + kguzv,
v o= k4 — k3u2v,

where k; > 0. By suitably scaling the equations, show that these can be written
in the dimensionless form

o = a—u+uv,

v = b—u’v,
where a and b should be defined. Show that if w,v are initially positive, they
remain so. Draw the nullclines in the positive quadrant, show that there is a

unique steady state and examine its stability. Are periodic solutions likely to
exist?

2. The relaxational form of the van der Pol oscillator is
ei+ (2 —1)i+z=0, e<1.

A suitable phase plane is spanned by (z,y), where y = ez + %x?’—x. Describe the
motion in this phase plane, and find, approximately, the period of the relaxation
oscillation. What happens if € < 07

3. The Belousov-Zhabotinskii chemical reaction can be approximately described
by the two component pair of ordinary differential equations

eX=X(1-X)- (%) Z,

Z=~X -7,

where X and Z are positive reactant concentrations, € and ¢ are very small,
and 7 is O(1). Show that relaxation oscillations will occur for v within a certain
range (7_,7+), and give approximations for the values of ..
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PROBLEM SHEET 4.

1. Find a scaling of the combustion equation

dT
so that it can be written in the form

é - 90 - g(e)a
where 0y = RTy/FE and g = 0 — ae 19, Give the definition of a. Hence show
that the steady state 6 is a multiple-valued function of 6 if o > 4—162.

2. Suppose that 6 satisfies § = §y—g(0), where g(8) is as in question 1 and o > 1e?,
and 6 varies slowly according to

0o = (6* — 0),

where ¢ < 1. Show that there are three possible outcomes, depending on the
value of #*, and describe them.

3. A forced pendulum is modelled by the (dimensional) equation
10 + k6 + gsin @ = asin At.
By scaling the equation, show how to obtain the dimensionless model
i + Bu + QFsinu = e sinwt,

and show that the time scale can be chosen so that 25 = 1. In this case, identify
the parameters ¢, § and w.

4. It is asserted in the notes that the oscillator frequency 2(A) is a decreasing
function of A for 0 < A < 7, or equivalently, that the function

1 rA du
A) = —
p(4) \/ﬁ/o [cos u — cos A]1/2

is increasing. Show that this is true by writing p in the form

. 1200 N2 g,
p_/o (sin@) (sin¢> (1 —w?)1/?

for some functions f(w, A) and ¢(w, A), and using the fact that 6/sin6 is an
increasing function of # in (0, 7).

[Hint: cosu — cos A = 2sin (A g u) sin (A;u)]

)
Show also that, if Q = ”2—;, then

2
16

for small A.
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PROBLEM SHEET 5.
1. The function u(z,t) satisfies
uy + utgy = ol — u?)
for —oo < x < 00, where a > 0, and with u = ug(z) at t =0, and 0 < up < 1

everywhere.

Write down the characteristic differential equations satisfied by x and u in terms
of the variable ¢ along the characteristics, and write down the correponding
initial conditions at ¢t = 0 in parametric form.

Show that the solution for u is

(1 + ug)e® — (1 — uo)
(14 up)e® + (1 — )’

and deduce that
uo(s) + tanh ot

Y71 + ug(s) tanh at’

(1)

Hence show that
expla(z — s)] = cosh at + ug(s) sinh at, (2)
and, by using (1) to eliminate ug, deduce that

expla(z — 5)] = — 2R3

~ 1—wutanhat’
Sketch the form of the characteristics for an initial function such as wy(s) =
a/(1 + s?). [Don’t use (2) unless you have to; simply use the characteristic

differential equations to infer the graphical behaviour of u with t on a charac-
teristic, and therefore also that of x.]

Use (1) to show that (note s = s(z,t))

sech 2ot u) s,
(1 + ug tanh at)?’

Uy =

and use (2) to show that

Sz [ug tanh at + a(1 + up tanh at)] = a[1 + ug tanh at] .

Deduce that, in terms of s and ¢, u, is given by

[asech 2at]uf(s)
[1+ uo(s) tanh at][a + {ug(s) + aug(s)} tanh at]’

Uy =

5



and deduce that a shock will form if uy + (1 + ug) becomes negative for some
s.

Now suppose that ug = a/(1 + s*) and that a is small.

Show that
a(l+ s?)? + aa(l + s*) — 2as

(1+ 2)2 ’

ug + a(l+ug) =
and deduce that a shock will form if
p(s,a) = a(l + %)%+ aa(l + s?) — 2as

is negative for some value of s.

Observe that p is a continuous function of s and a.
Show that p(s, a) increases with a.

Show that p < 0 for s > 0 when a = 0.

Show that p > a(1 — s)2 > 0 when a > 1, and that in fact p > 0 for a = O(1)
when a is small. Deduce that there is a positive small value a = a, such that
min p = 0, and that a shock will form if o < «..

Show that for small o and a,
p~a(l+s*)? - 2as,
and that at a = a,, the value of s where p = p’ = 0 satisfies

a((1+s*)? ~ 2as,
4as((1+5%) =~ 2a,

a \1/3
o (8)"
8a

Deduce that . is approximately given by

3av/3
e ~ g

and thus

. The function u(z,t) satisfies the first order equation
uy + uuy = e[uPug),

for —oo < x < 00, with u = ug(s) > 0 on the initial curve z = s, t = 0. The
parameters a and 3 are positive, and 0 < ¢ < 1. Assume that ug > 0, and that
up(s) = 0 as s — £ o0.

Write down the solution in the case € = 0, and show that a shock will form at



For t > t. show that the shock at x = z4(t) will travel at a speed
[ua+1]+

(o + 1)[u]t’

(1)

Ty =

defining what you mean by ..

Now suppose that 0 < ¢ < 1. By writing z = z, + €X, derive an approximate
equation describing the shock structure of the solution for u within the shock.
Write down suitable boundary conditions for this equation. By integrating the
equation, show that

ua—|—1

+ K —cu

where ¢ = z, is the (constant) shock speed and K is a constant, and by applying
the boundary conditions, confirm that the shock speed c is indeed given by (1).

By using the definitions of K and c needed to satisfy the boundary conditions,
show that the numerator N(u) of the fraction in (2) can be written as

N() (uy —uw)(utt — gty wot!t — gttt
(a+1)(u- —uy) a+1l

and deduce that the derivative of N is

V= -

ug—l-l _ ung—l
a+1)(u_ —u+)} ’
and that N(us) = N(u_) = 0.

Use the mean value theorem for derivatives to show that
N'(u) = u® —ug

for some u, between u_ and u,.

Deduce that N < 0 for v between u_ and u,, and hence show that a solution
of (2) exists only if u_ > u,.

. Show that the equation
U + YUy = EUUL,

admits a shock structure joining u_ to a lower value uy, in which the wave
speed is
[u]©
c= T
[lnu]™

Naively, one might have expected the wave speed to be ¢ = [%uQ]t /[u]t. Why?
And why is it not?
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PROBLEM SHEET 6.

1. Suppose that we wish to find positive travelling wave solutions (if they exist)
to the equation
up = uP(1 — u?) + [u"ugl,

where p, g, > 0, with boundary conditions

u—1 as z—>—00 and u—0 as z — 0.

Show that travelling wave solutions exist of the form u = f(§), { =z — ct, if f
satisfies the equation

(fTf) + (A= f9) +ef =0,
with f(—o0) =1, f(oco) = 0. Deduce that the quantity

fp-i—r-i—l fP+Q+'r+1

p+r+1 pHgt+r+1

_ 1 r2r
E—§f2 fl2+

decreases as £ increases along a trajectory, if f > 0 and ¢ > 0.

Show that such a travelling wave solution can be found providing a connecting
trajectory from (1,0) to (0,0) with f > 0 exists of the system

ff = —g,
g = ra-m-<2

Now consider the specific case p = 1, ¢ = 2, » = 0, and assume that ¢ > 0. Find
and draw the nullclines of (1). Show that (1,0) is a saddle, and that (0,0) is a
stable spiral or node.

Show in this case that

=1+ 32— i
and thus that E decreases along trajectories even when f < 0, and deduce that
the trajectory which leaves (1, 0) in the direction of increasing g and decreasing

f always terminates at (0,0). Show that this approach is oscillatory if ¢ < 2,
and deduce that a travelling wave in which f is positive can only exist if ¢ > 2.

2. In a model of snow melting, it is assumed that the permeability is &k = kqS°,
and the capillary suction is p.(S) = po(S— — S), where a, 8 > 0, and S is the
saturation. The saturation for one-dimensional flow is described by

05 0K _ 0 [,05
ot 08z 0z| 0z|’



where ¢ is porosity, K = kpg/ is the hydraulic conductivity, and D = —kp.(S)/u
is the hydraulic diftfusivity; z is the vertical coordinate pointing downwards from
the surface z = 0.

If a suitable depth scale is h, show how to non-dimensionalise the equation to

obtain the form
05  95* 0 |.a 15} oS
a e e [S <1+Sﬂ+1)&]’

where
Po
K= —

 pgh’

Suppose that an initially dry snowpack (S =0at¢t=0and S — 0 as z — o0)
is inundated at the surface (i.e., S =1 at z = 0 for ¢ > 0). Assume also that
k = 0. Write down the characteristic equations for the model, and show, by
drawing the characteristic diagram, that if & > 1, then a shock must form, but
that if @ < 1, a solution can be found with an expansion fan emanating from
z =t = 0 (note that S is indeterminate at this point on the initial boundary
curve, and can take any value between 0 and 1). For this latter case, show that
the solution is
S=1, z<at,

£ /(=)
S = <a_) , 2> at.
z

For the case a > 1, write down a suitable jump condition across a shock, and
hence show that the wetting front (i.e., a shock) z = z,(t) moves downwards
at a speed z, = 1.

Now suppose that 0 < k < 1 and a > 1. Write z = 2, + k(, 2, = ¢, and show
that to leading order S satisfies the equation

iy (ie 5 o],

SB+1

with appropriate boundary conditions being S — 1 as ( -+ —oo, S — 0 as
( — 0o. By integrating this equation, show that ¢ = 1 and that

(s -1)
(1 + S?H)

Deduce that a shock structure connecting S =1 to S = 0 only exists if a > 1.

§'=—

By considering a suitable approximation to this equation for small S, show that
S reaches zero at a finite value of ¢ if & > 8+ 1. Sketch the consequent solution
structure. What happens if o < 8 + 17
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PROBLEM SHEET 7.

1. Write down the equation satisfied by a similarity solution of the form u = ¢ f (n),
n = z/t*, for the equation

up = (u™ug), in 0< 2z <00,

where m > 0, with boundary conditions u™u, = —1 at x =0, u — 0 as x — o0,
and the initial condition u = 0 at ¢ = 0. Show that an ordinary differential
equation for f with time independent boundary conditions is obtained providing

_m—|—1 1

R L

Integrate the equation to show that f satisfies

m-+1

g = 1= (B s+ [ dn

and deduce that [;° fdn = 1. Hence show that

m—1 g/ ”L+1)
< - —-
f f (m+2 n’

and deduce that f reaches zero at a finite value 7.

2. u satisfies the equation
up = [D(uw)ug), in 0 <z < oo,

with u = 0 at  — oo and ¢t = 0, and u = g (constant) at x = 0, where the
function D is non-negative (do not assume it is a power of u). Show that a
similarity solution of the form u = f(n) exists, where you should determine a
suitable form for the function 7(z,t). Write down the resulting equation and
boundary conditions for the similarity function f.

Now suppose that D = D(u,), and that the boundary and initial conditions
are as before, except that —Du, = 1 at £ = 0. Show that a similarity solution
can be found in this case, in the form u = t*f(x/ct?) for suitable values of a, 3
and ¢, and write down the equation and boundary conditions for the similarity
function f in this case.

3. A small droplet satisfies the surface-tension controlled equation

hy = — -V .[3VV2}]
3p

10



in R" (n = 1 or 2), where + is the surface tension and p is the viscosity. A
small quantity / hdS =V is released at time zero at the origin. Show that the

equation can be written in the dimensionless form
hy = —V.[R*VV?h],

where the scales are chosen so that

hdS = 1.
e

Show that a similarity solution can be found in the form h = ¢t=# f(r/t®) in both
one and two spatial dimensions (i.e., n = 1 and n = 2). Show that for n = 1,

£ =1,
while for n = 2,
1 !
2
f [f” + —f’] = &n.
n
What might suitable boundary conditions for these equations be?

[The dimensionless equation describing radially symmetric solutions takes the
form

_ 1 0|, 1,30 o
hy = = lr h aTV h] ,
where 92h L oh
9, 9 h n—10n
Vh = or? + r Or

in n dimensions.|
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VACATION PROBLEM SHEET.
1. By direct integration, show that the solution of

u + e =0

A sech {\/éAx}

and find a transcendental equation for A. Hence show that no solution exists
for A > A., and derive and solve (numerically) an algebraic equation for ..

satisfying v =0 on z = £1 is

u=2In ,

If the equation is to be solved in [0, 1], with &' = 0 on z = 0 and ' = —1 on
z = 1, find the solution, and plot u(0) as a function of A. Is there a critical
value \.? If so, find it; if not, why not?

2. (i) Find an exact solution of the Gel'fand equation
VH+X?=0 in 0<r<l,

where 7 is the cylindrical polar radius, and § = 0 on r = 1. [Assume cylindrical
symmetry, and a suitable condition of reqularity at r = 0.] Show that there is a
critical parameter A\, such that no solution exists for A > A., and find its value.

(ii) Write down the ordinary differential equation satisfied by a spherically sym-
metric solution of the Gel’fand equation in part (i). Suppose that =0onr =1
and 6, = 0 on r = 0 (why?). By putting

p=x2 q=2+10, r=e’t,
show that p(t) and q(t) satisfy the ordinary differential equations
—pq,
g = ptq—2.

By consideration of trajectories for p and g in the phase plane, show that mul-
tiple solutions exist for A ~ 2, and infinitely many at A = 2. Sketch the
corresponding response diagram of 8(0) versus A.

3. The complex reactant concentration c in R? satisfies the reaction diffusion sys-
tem

Ct = f(lCl)C + DVQC:

where f(|c|) = A(|¢]) +iw(|c|), and A and w are real-valued. Suppose that A(|c|)
is monotonically decreasing, A(0) > 0, and A — —o0 as |¢| — oo.

12



(i) Show that if D = 0, then |c| = |¢|A(|c|), and deduce that as t — o0, |¢| — ¢,
where ¢* is the unique positive value of |c| such that A(¢*) = 0. Hence show
that the eventual solution is the limit cycle ¢ = ¢* expliw(c*)¢].

(ii) Now suppose D # 0. Show that travelling waves exist provided kv/D <
{M0)}2.

Show also that if A(0) < 0, and the boundary condition for ¢ is that ¢ — 0
as |x| — oo, then ¢ — 0 as t — oo. [Hint: consider the time evolution of

/R2 |2 dS.]

. Finals 2001. An activator—inhibitor reaction—diffusion model takes the non-
dimensional form

@ — u_z_b _i_@
ot v T 82
v 5 v
o T W Tvtdgm

where u(z,t), v(z,t) are the concentrations of the chemicals at spatial coordi-
nate x and time ¢, and b, d are positive parameters.

Which is the activator and which is the inhibitor? Find the non-zero spatially
uniform steady state and, from first principles, determine the conditions for it
to be driven unstable by diffusion. Show that the parameter domain for which
diffusion-driven instability is given by 0 < b < 1, db > 3 + 2v/2, and sketch the
instability region in (b, d) parameter space. Show that the critical wave number
k. at the onset of instability is

2 1+V2
c d .
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