Introduction to Mathematical Modelling

SPECIMEN FHS QUESTIONS.

Warning: these are rather longer than actual fhs questions would be. In parts they
are also somewhat harder. They are also unchecked, so be wary of algebraic errors.

1. Explain what is meant by a conservation law and a constitutive law in a mathe-
matical model. A certain substance has a density ¢ of a certain quantity, which
moves with a flux f. Write down an integral conservation law for the quantity
of the substance in an arbitrary volume V', and hence deduce carefully that ¢
satisfies the partial differential equation
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The density of cars on a certain one lane highway is p (with units of cars per
unit length), and the speed v of the cars is measured as a function of the density,

2
v:v()(l—ﬁ) .
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Give a physical interpretation of the quantities vy and pg, and explain why this
relation is intuitively sensible.

Write down an equation governing the traffic density, using the above expression
for car speed, and by choosing suitable non-dimensional variables, show that
the model can be written in the dimensionless form

dp  0q

ot Tar Y

where ¢ = p(1 — p)?, and x represents dimensionless distance along the road.

A line of cars of initial (dimensionless) density po(z) moves along a road —oo <
x < 00, and is governed by the preceding equation. Consider the three situations
in which po(z) is monotonic, with p — p_ as £ — —oo and p — p, as x — o0,
Where(i)p,<%<p+<§,(ii)§>p,>%>p+, (iii)%<p,<§<p+.
Explain qualitatively, using diagrams, what happens in each case. In particular,
describe in which situation(s) a shock forms, and give an expression for the
resulting shock speed(s). [An ezact solution is not required.



2. Explain what is meant by a reqular perturbation and by a singular perturbation
for an algebraic equation and for an ordinary differential equation. [It may be
useful to give illustrative examples.]

The quantity x satisfies the algebraic equation
zt—ex—1=0.
Suppose that ¢ < 1. Find approximate expressions, correct to terms of O(e),

for each of the four solutions of the equation.

Now suppose € > 1. Show that an approximate solution cannot immediately
be found, but that by a suitable rescaling of the equation (which you should
find), it can be written in the form

X'—X-4§=0,

where § = e %/3 <« 1.
Hence find leading order (non-zero) approximations for all four of the solutions.

Find a more accurate approximation to the smallest root in this case.



3. A nonlinear damped pendulum satisfies the equation
10 + k6 + gsind = 0.

Explain the meaning of the terms in this equation, and how it is derived.
Suppose that § = 0, 0 =wyatt=0. By suitably non-dimensionalising the
equation, show that the model can be written in the form

é+9+5sin9:0,

0(0) =0, 6=up,
and give the definitions of € and .

The pendulum is suspended in a bath of liquid (e.g., water). Why might this
be consistent with a value of ¢ < 17

Assume now that ¢ < 1 and that 4 = O(1). Find an approximate solution in
this case, and show that § — p for large .

By rescaling t = 7/e, find an approximate equation satisfied by 6 over this
longer time scale, and explain why a suitable initial condition for 6 as 7 — 0 is
0~ p.

Hence show that for 7 > O(1),

0~ 2tan"! [e_T tan g] }

Do these results accord with your expectation?



4. The temperature T' of a fluid satisfies the equation

oT H

— +uVT =rV?T 4+ —.

ot PCp
Explain the meaning of the terms in this equation, and describe briefly how it
is derived.
The quantity H is given by

H = Aexp (—%) .

Give an example of a situation where this form of term might arise.

The fluid is contained in a vessel D of linear size [, and the fluid velocity is of
order of magnitude U. The boundary condition for 7T is

T:TB on (9D,

where Ty is constant. Show how to non-dimensionalise the equation to obtain
the dimensionless form

96 o, 0

with
=0 on 0D,
and show that
Ul RT
Pe = — €= TB, A = —exp(—1/e),
where
B Al?
/"L - kTB,

and k is the thermal conductivity, k = pcyk.

Suppose that D is one-dimensional, and of length 2/, so that the dimensionless
range of the space variable x is [—1,1]. Suppose also that Pe < 1, ¢ < 1,
and A = O(1). Write down an approximate equation and boundary conditions
satisfied by 6, and show that the solution in x > 0 can be written in the integral

form
6o du

M Vg,
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where 6y = 0] ,—o.
Evaluate the integral to find 6(z), and deduce that 6, satisfies

A
\/; = zsechz,
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where
Aefo
5

Draw a sketch graph of 6, in terms of A, explaining the behaviour of 6, for small
A

Show that no solution exists for A > \., where
A = 2¢%sech?¢, 1=( tanh(.

[It may help to consider the graph of zsechz.]



5. Draw a graph of the function

zt  z?

V(z) = VR

The function z(t) satisfies the ordinary differential equation
i+ Ad+V'(z) = 0.

Show that the equation has fixed points at x = —1, 0 and 1.
(i) Suppose that A = 0. Show that the quantity

E=1i*+V(x)

is constant. Deduce the form of the trajectories in the (z, ) phase plane.

Hence or otherwise show that the solutions are oscillatory, and sketch the form
of the solutions as graphs of = against ¢, distinguishing clearly between solutions
in which £ < 0 and those in which £ > 0.

Now suppose that A < 1. Show that E = —A42, and deduce that for almost all
trajectories, £ — —i. Hence, or otherwise, show that the fixed points at +1 are
stable, and that at 0 is unstable. Sketch (roughly) the form of the trajectories
in the phase plane.

(ii) Suppose now that A > 1. Find a suitable rescaling of ¢ so that the equation
for x can be approximated by a first order differential equation. Hence show
that if (0) # 0, x — +1 as t — oo. How does the limiting state depend on
z(0)?

Describe briefly how you could reconcile the prescription of two initial conditions
for x with this approximate first order equation.



6. The function z(t) satisfies the equation
i+ (z* — i+ w?z = 0.
Show that the steady state £ = 0 is an unstable spiral, or an unstable node,

depending on the size of w.

Suppose that w? < 1. Find a suitable rescaling of ¢ so that the equation can
be written in the form

ei+ (z* = 1)z +x =0, (%)

and give the definition of €. Hence show that ¢ < 1.

Draw a graph of the function f(z) = $z°—z. Show that the equation z° — 5z —

4 = 0 has real roots of —1, —1 and z (and no others), where z; is the unique
positive root of 28 — 222 + 3z — 4 = 0. (You should explain why this root is
indeed unique.)

Show that, by defining y suitably, the differential equation (x) for z can be
written as the pair

er = Yy — f(x)a
y = —z.
Deduce that for small w, a relaxation oscillation occurs, and indicate its form
in the (z,y) phase plane.
Show that the period of oscillation P is approximately given by

z !
g [ @i
1 xz

and hence find an approximation for P in terms of xz,.



7. A forced pendulum satisfies the equation
160 + k6 + gsinf = asinat.

By scaling the equation suitably, show that this can be written in the dimen-
sionless form ) '

0 + 36 + sin @ = e sin wt,
and give the definitions of 3, € and w.

Suppose that ¢ < 1. Find an approximate linear equation for 6 and obtain its
(particular) solution if 5 = 0. Plot the amplitude A = max || as a function of
the driving frequency w.

Now suppose 5 # 0 (but is still small). Find the solution (ignoring the transient)
and show that its amplitude A is given by
€
11— w?+ifw|

Next consider the oscillator when 5 = 0 and ¢ = 0. Find a first integral of the
motion, plot the trajectories in the (6,6) phase plane, and hence deduce that
the period of oscillation P is given by

A du
P= 4/0 V2[E — (1 — cosu)|/?’

where A is the amplitude of the oscillation, and

E(A) =1-cos A.

Hence show that the frequency of the undamped, unforced pendulum is given

by
Q(A) = d

du
2
\/_/0 [cos u — cos A]1/2
Show that 2 —+1as A — 0.

Suppose that when 8 # 0 and ¢ # 0, the amplitude of oscillation is related to
the forcing frequency by

A = R[Q(A)],
where .
RO =l = vipu

Assume that Q(A) = 1— 3 A?%; write down an expression for the inverse function
A=1(Q).

By consideration of the intersection of the graphs of I(2) and R(2), show that,
for sufficiently small € and 3, there can be one, three, or exceptionally two
values of 2 (and thus A) for given w. Draw a graph of the amplitude A in
terms of w.

Explain what is meant by hysteresis, and indicate how it occurs as w varies.



8. The size of courgette plants in my garden is measured by the leaf area L. The
rate of growth of the plants is proportional to leaf area, and also to received
sunlight, which is itself proportional to leaf area. Additionally, the plants grow
to a maximum size. Explain why a growth rate for L of gL? (1 — L_) represents

0
these assumptions.

Slugs consume courgette leaves at a rate rS, where S is slug density, and I
plant out seedlings at a rate p (leaf area per unit time). Explain why a model
equation for leaf area can be assumed to be

: L
L=p—rS+gL? (1——),
Lo
where L = dL/dt.

Assume to begin with that the slug density S is constant. Non-dimensionalise
the equation to obtain the dimensionless model

[=1—p+y2(1-1),
and define the parameters p and ~.

Show that if p < 1, the plants grow to a healthy size.

4
Show that if p > 1+ 2—;, I cannot grow courgettes.

4
Show that if 1 < p <1+ 2—?, there is a threshold value [, such that if [ > [,
plants will thrive, but if [ < [., plants will die out.
Draw a graph of the steady state [ versus p, and show that this response diagram

indicates hysteresis as p varies. Indicate where [>0and[<0on the diagram,
and thus determine the stability of the steady state(s).

In reality, the slug consumption rate depends on leaf area. Suppose now that
- ’f’oL
L+L,
Write down the corresponding form of the dimensionless model in this case.
Suppose that lop = L./Lg is small. Draw a response diagram of steady state

[ versus pg = 19S/p in this case, indicating carefully how this diagram differs
from the previous one.

Show that the diagram again displays hysteresis, and that there are two values
p— and p, such that for p. < py < p,, there are three possible steady state
4

values of [, only two of which are stable. Show that p_ — 1 and p, — 1+ %
as lp — 0, and that the corresponding values | — 0 and [, — 2/3.

Slugs are attracted towards foliage at a rate proportional to leaf area, and I
kill them at a rate proportional to their number. Explain why a suitable model
equation for slug density is

S =al — bS,

9



and show that by suitable choice of the slug density scale, the dimensionless
slug model can be written in the form

$=1— ps,

and give the definition of u.

Hence show that for small killing rate or high planting rate, a stable state occurs
in which slugs win, but for high killing rate or low planting rate, the plants win.
Show also that for intermediary rates, oscillations are possible.

10



9. The variables z and y satisfy the ordinary differential equations
&= f(z,y),

v =g(z,y),

where & = dz/dt, y = dy/dt, and t denotes time. Suppose (g, yo) is a fixed point
of these equations. Describe how the stability of the fixed point is determined
by the trace T" and determinant D of the community matrix

(£ 4)
9z Gy

and indicate on a diagram in which regions of (7', D) space the fixed point is a
saddle, a node, or a spiral. Give a necessary and sufficient condition on 7" and
D for (zg,yo) to be stable.

The functions G(z) and H(z) are defined for positive z by
G(z) = 2%, H(zx)=pBe %,

where 5 > 0. Show that the equation G(z) = H(z) has a unique positive
root. If this root is denoted by zo(3), show (for example, graphically) that zg
increases with 3, and that xg -+ 0 as 8 — 0 and g — o0 as 8 — oo.

Now suppose that in the differential equations for z and y,

f(@y)=y—-G(), g(z,y)=H(z) -y,
and suppose that z and y are initially non-negative. Show that x and y remain
positive for ¢ > 0.

Show that there is a unique fixed point P at (zq, H(x¢)) in the positive quadrant.
Draw the nullclines in the phase plane, indicating on your diagram the direction
of trajectories in the four regions of the positive quadrant delineated by the
nullclines.

Show that the trace T' and the determinant D of the community matrix at the
fixed point P are given by
T=-G(z)—-1, D=G —-H,

and deduce that D > 0 for all positive values of .

Derive an expression for —G’(z), and show that it has a maximum at x = z; =
24++/2. Assuming that —G’(z) < 1, deduce (explaining why) that P is stable
for all positive values of .

11



10. The Fisher equation is given by
=r [1 v ] + {Du,}
U = TU % Uy -

Describe the basic principles underlying this equation, supposing it represents
a spatially distributed population.

If r, K and D are constant, show how to non-dimensionalise the equation to
the form
wp = u[l — u| + Upy.

If, initially, v = 0 except on a finite interval where it is small and positive,
explain using diagrams how you would expect the solution to evolve. Verify your
description by seeking travelling wave solutions of the form u = f(§), £ = z—ct,
and write down the resulting equation and boundary conditions which f must
satisfy, assuming that ¢ > 0. How should the boundary conditions be modified
if c<0?

By examining the solutions in a suitable phase plane, show that a travelling
wave in which u > 0 is positive is possible if ¢ > 2. What happens if ¢ < 27

Sketch the form of the wave as a function of £. If, instead, D = Dyu, what form
would you expect a travelling wave to take, assuming such a wave exists?

12



11. The function u(z,t) satisfies the equation
Uy + U, = —fu,

with initial conditions

and ug > 0, u — 0 as ¢ — Fo0.

Use the method of characteristics to derive the solution in the parametric form

u = ug(s)e P,

uo(s) (1 - e’ﬁt)
5 :

Assume that 8 > 0 and that t > 0. By first writing u = F(x,t,u), or otherwise,
find an expression for u,, and hence show that a shock will develop if max |up| >
B.

Suppose that ug(s) = a(l — |s|) for s € (—1,1), and ug = 0 otherwise. If
0 < a < (3, show that characteristics do not intersect, and deduce that u = 0
for |z| > 1. By considering the characteristics from 0 < s < 1, show also that

r=s-+

aB(l — xz)e P
u =
B —a(l —eht)

a((1—e P . . . :
for ———— < x < 1. Write down a corresponding expression for u in
a((1 —eP) e .

0 < x < ———=. Draw the characteristic diagram for the solution.

B
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12. The function u(z,t) satisfies the equation
2, —
Ut + U Uy = EUgy

on (—o00,00), where ¢ < 1. At t = 0, u = up(z), where ug is positive and

ug(£00) = 0. Show that / udz is conserved in time.

If the diffusion term is neglected, use the method of characteristics to solve the
equation, and hence derive an expression for u, as a function of x, t and w.
Use this to show that a shock will form for ¢ > 0 if uj < 0, and this occurs at

t =min ——.
uh<0 2ug|ug|

Suppose ug(z) = V(1 — |z|) for |z| < 1, up = 0 otherwise, where V' > 0. Show

that a shock first forms when ¢t = at the point z = % Draw the shape of

. .. 2V’
u as a function of z at this time.

1
For time t > Sk a shock propagates forwards at a position z = X(¢). If the
value of u behind the front is U(t), show that, for large enough ¢,

U
tU*+ - —-1-X =0,

v
and that (also for large enough t)
- 1772
X =3U%
Deduce that for large ¢ and X,
X 1/2
U~ (—) ,
t
and hence that
X ~ at'/?,

and use the value of the conserved integral / udzx to show that

3V 2/3
a=|— .
(%)
If € is small but non-zero, show that a shock structure consistent with this
description is possible, by writing x = X + &£, and solving the resulting approx-

imate equation for v with the boundary conditions u — U as £ — —o0, u — 0
as £ — oo.

14



13. A model of snow melt run off from a snow pack is described by the equations

@4_%—0
ot 9z
k(S) [8}) ]
U=——""1373_"°P9]|,
W |0z
pa_p:pc(s)a

where z measures distance downwards from the surface of the snowpack.

Explain the meaning of the terms in these equations, and of the equations
themselves.

Show that the equations can be reduced to a single equation for S of the form

5= P85 - K(5)

and give the definitions of the hydraulic diffusivity D(S) and hydraulic conduc-
tivity K(.S).

If k(S) = kok,(S) and p.(S) = pof(S), where k, and f are dimensionless and
of O(1), show that a dimensionless model can be written in the form

0S ou 0 0S
g TR vl lD(S)a - é‘kr(S)] ,

where now
D(S) = —k.(S)f'(5),
u is the dimensionless flux, and

_ pgd
g = —
Do

)

d being a suitable length scale.

Assume now that k,.(S) = S? and f(S) = In(1/5). Find the form of the equation
for S in this case.

An initially dry snowpack of depth d begins to melt, so that the dimensional
surface flux for ¢ > 0 is u|,—o = ¢. Show that the corresponding dimensionless
hdg

kopo

Supposing that ¢ < 1, show that a similarity solution in the form S = t*g(n),
n = z/t?, which describes the advance of the wetting front into the snowpack
can be found, if

surface flux is ¢* =

(99') = 39 — 2ndg,

and
!

g9 =—q¢ on n=0.

15



Explain briefly why for this model there is a finite wetting front, i.e., g = 0 at
= To-

70
Show that / gdn=gq".

0

Show that

and deduce that g’ < —2n.

If g = go at n = 0, show that g < go — %172, and deduce that gy > %173. Show
also that the integral constraint on g implies gy > %ng + T
o

By graphical means, show that these two inequalities together imply that gy >
(324"
Show that the dimensionless breakthrough time (when the wetting front reaches

the base of the snow pack) is tg =1/ ne/?, and the dimensionless ponding time
(when the surface saturation reaches S = 1) is ts = 1/g5. By means of the
above inequalities, show that (tz/ts)/® > (g3/3)'/4, and hence deduce that
tg > tg if ¢* > 2.

16



14. The function u(z,t) satisfies the nonlinear diffusion equation
u = [(D+uuy], on 0<z<oo,

where D is a non-negative constant, together with the boundary conditions
u=1latz =0,u— 0asz — 0o, and the initial condition v = 0 at t = 0.
Show that a similarity solution in the form u = f(n), n = z/ct?, can be found,
where for suitable constants ¢ and 3, f satisfies

[(D+ £)f] +2nf =0. (1)

Write down the boundary conditions satisfied by f.

Suppose that f(n) is any analytic function satisfying an equation of the form

f” = ¢2,1(777 f’ fl)f,a

where ¢21(7, f, g) has derivatives of all orders with respect to f and g. Show
by induction that

™ =i, £, IV + oo+ Snna(n, £, )7,

and deduce that if f/ =0 at a point, then f' = 0.

Hence show that the solution of equation (1) satisfying the boundary conditions
you have prescribed must be monotonically decreasing.

Deduce from this that if D > 0, then f > 0 for all finite n. Why does this
conclusion not apply if D = 07

Show, contrarily, that if D = 0, then ff' < —2nf, and deduce that f must
reach 0 at a finite value of n = 7y, and that in fact ny < 1.

17



15. A small drop of fluid of depth h sits on a horizontal plane. If q denotes the
horizontal fluid flux (i. e., the integral over the depth of the horizontal velocity),
show that the equation of conservation of mass can be written in the form

Explain very briefly the two key approximations which allow the horizontal fluid
flux, q, to be approximated as

h3
q=-"""wp.

3p

Hence derive the evolution equation for the depth,
he = 29w [3wh),
3p
and show that it can be written in the dimensionless form

hy = V.[R*V ).

A lava dome is modelled by a shallow two-dimensional fluid flow of dimensionless
depth h(z,t) satisfying the above equation in one space variable z. The eruption
rate is modelled by a prescribed dimensionless flux ¢ = 1 at x = 0. Restricting
attention to the dome shape in z > 0, show that it may be modelled by the
equation
h; = [h:”hx]z in >0,
with
h¥h,=—-1 on z=0, h—0 as z— o0.

Look for a similarity solution of the form h = t®f(n), n = z/t* to the above
equations and boundary conditions for a suitable choice of o and 3, and show
that f satisfies

(£2F) +tmfy = f,
with ,
(£°f) =-1 at n=0,  f(oo)=0.

If f first reaches zero when n = 79 (which may be infinite) (thus f > 0 for
n < mo), show that

1 =—tnf— " fan
Deduce that f' < 0, and that
Ff<—gn
while n < 1m9. Hence show that 7, is in fact finite, and that
5/(0)

T<\—"%§

18



16. The functions u and v represent chemical concentrations of two reactants in a
mixture, and satisfy the equations

et = u[v — F(u)],

0 = v[G(u) —v];
the functions F' and G have the following properties, for u > 0. G(u) is positive
and monotone decreasing, with G(0) = oo, G(00) = 0. F(u) is positive, with
F0) =0,F 5 occasu — oo, and F/ =0 at v = u_ and u = uy, where
0<u_ <usg.
Show that if u and v are positive initially, then they remain so for all positive ¢.

Suppose that G' < F' for all u € (u_,u, ). Show that there is a unique positive
steady state (u*,v*),and that it is stable if u* < u_ or u* > u,. Show that
there is a Hopf (oscillatory) bifurcation when u € (u_,u, ) if € < |F'(u*)|/v*.

Suppose now that u* < u_ and ¢ < 1. Show that the system is excitable,
explaining also what this means using an illustration of a typical phase plane
trajectory.

With the same assumptions, suppose that u can diffuse in space, so that the
equations can be written

cuy = ulv — F(u)] + €Ugg,

vy = v[G(u) — ).

Show that a solitary travelling wave can exist in this case, by explaining briefly,
and without too much calculational detail how the wave is constructed using
suitable approximate phase plane analyses.
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17. A reaction-diffusion system for the positive reactant concentrations u and v is
given by the equations
Uy = 7)2 - ,B’LL + Dlumz‘a

vy = Y(v — u) + Dovyy,

where 8 > 0, 0 < v < 8, Dy and D, are positive. Explain what an activator-
inhibitor system is, and hence explain why the above system is of this type.

Describe what is meant by diffusively driven instability (DDI).

Show that there are two uniform (constant in space) steady states, and show
that one is stable and the other is unstable when D; = Dy = 0.

Now denote the stable one of these two states as P, and consider perturbations
to Pif D, > 0, Dy > 0. Show that small spatially varying solutions proportional
to exp(ot + ikz) exist if

02 —To+ D =0,

where

T =~—p3—k*Dy+ Dy),
D = By — (yDy — BD,)k* + D1 Dyk*.

Deduce that a necessary condition for DDI to occur is that Dy > Ds.

By completing the square in the expression for D(k?), or otherwise, show that

instability will occur if
vDy — 8Dy > 24/ By D1 Ds,

and show that this can be simplified to the simpler form

D1 > (3 + 2v/2)BD,.
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