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Preface

These notes accompany the 011 course, An introduction to mathematical modelling,
and date originally from October 2002. T have given them a version number in order
that different web-released versions can be identified. The release number indicates
edition.version, thus 1.0 means edition 1, version 0.

Version 2 applies to the year 2003-2004, and subsequent versions will be released
whenever any one chapter is updated or revised: which chapter will be indicated here,
so that only that updated chapter need be printed.

ACF
October 14, 2003
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Chapter 1

Introduction

Mathematical modelling is that abstruse subject which forms the connecting tissue
between the problems of the real world which we wish to solve, and the quantitative
analysis which we undertake to do so. Almost any problem which requires a quanti-
tative answer, whether it be in industry, medicine, economics, biology or geophysics
(for example) involves the formulation of the problem as a mathematical model, and
it is this formulation, and the techniques which one uses to solve the model, which
form the subject of these notes.

There are, perhaps, three kinds of model: statistical, discrete and continuous.
We can illustrate their difference with a simple (and topical) example. Suppose fox
hunting in England were to be banned. One of the arguments against this is that
hunting provides a control on the number of foxes. As with many such assertions,
this is one which might be true, or might not. It is a quantitative assertion, and the
only way to find out whether it is true is to examine it scientifically. We do this by
proposing a model, and examining its validity!. The statistical method examines the
probability that one of two alternative hypotheses is true, by using actual measured
data. For example, if hunting were to be banned, one might examine fox population
numbers during the five years preceding and following such a ban. As with all models,
it is in the interpretation of the results that the skill lies. This is particularly true of
statistics, where the aim is to eliminate possibilities, rather than propose constituent
mechanisms.

Statistical models have to deal with the issue of predictability. Suppose fox num-
bers double following a ban; then it would seem likely that there is a connection. But
there are other factors which are involved in determining fox populations, and it is
always arguable whether one particular factor has a deciding control.

Statistical models are diagnostic: they try to intepret process from measured data.
Discrete and continuous models are examples of prognostic models: they propose a
descriptive model of a phenomenon, and then predict what will happen in the future.
Such models require validation. This consists initially of matching observation to
theory, and often will suggest experiments which can be done to confirm the theory.

A discrete model will propose a difference equation for the variables of interest.

I This is in fact the scientific method: the models that we propose are no more than hypotheses,
and science should never present itself as purveying absolute truth.



In the case of foxes, this might be an estimate for the fox population density u, at a
particular time during the n-th year, and a simple such discrete model is the logistic
model with harvesting:

Ups1 = TUp (1 — %) — huy,, (1.1)

where 7 is the specific reproductive rate, and the term hu,, represents harvesting (via
hunting); the coefficient h represents the effort involved, which one might suppose
would be proportional to the number of hunts. This model contains the simple idea
that excess populations become limited by competition for resources (the nonlinear
term involving K implies decreasing growth rate at larger values of u,). A discrete
model such as (1.1) might be appropriate for fox populations, which have an annual
rut, so that the reproductive cycle is repeated annually.

Suppose, for the sake of argument, that (1.1) is a reasonable model. Note that
r > 1 is a pure number, and so also is h, while K has the same units as u,. In the
absence of hunting, there is a steady population K(r — 1)/r, and this is reduced if

h # 0 by a factor ll —

h
1l So the efficacy of hunting in this model depends on
7" J—

this particular quantity; hunting is effective if h/(r — 1) is significant. This provides
a predicted outcome, provided the parameters A and r can be reasonably assessed.
Continuous models are used in the same way, but describe processes using dif-
ferential equations. It is this kind of model which forms the focus of these notes.
The rationale for continuous models is the continuum hypothesis, which states that
the actual behaviour of a discrete variable, such as a population, can be accurately
represented by the evolution of a continuous (and usually differentiable) variable.
The basis for this assumption is the ‘fine-grained’ nature of the variable: in a large
population, a change by one individual is a small relative change, and can be viewed
as being a finite difference approximation to the infinitesimal changes of the calculus.
A continuous version of (1.1) might be the ordinary differential equation

du u
— = 1——)— 1.2
= pu( C) p, (1.2)

whose behaviour can be analysed in a similar way to its discrete counterpart.

There are two particular points of view which we can bring to bear on the math-
ematical models which describe the phenomena which concern us: these are the dy-
namical systems approach, or equivalently the bifurcation theory approach; and the
perturbation theory approach. Each has its place in different contexts, and sometimes
they overlap.

The bifurcation theory approach most usually (but not always) is brought to bear
on problems which have some kind of complicated time-dependent behaviour. The
idea is that we seek to understand the observations through the understanding of
a number of simpler problems, which arise successively through bifurcations in the
mathematical model, as some critical parameter is changed. A classic example of this
approach is in the study of the origin of chaos in the Lorenz equations, or the onset
of complicated forms of thermal convection in fluids.



In its simplest form (e.g., in weakly nonlinear stability theory) the perturbative
approach is similar in method to the bifurcational one; however, the ethos is rather
different. Rather than try and approach the desired solution behaviour through a se-
quence of simpler behaviours, we try and break down the solution by making approxi-
mations, which (with luck) are in fact realistic. In real problems, such approximations
are readily available, and part of the art of the applied mathematician is having the
facility of being able to judge how to make the right approximations. In these notes,
we follow the perturbative approach. It has the disadvantage of being harder, but it
is able to get closer to a description of how realistic systems may actually behave.

1.1 Conservation and constitutive laws

The basic building blocks of continuous mathematical models are conservation laws.
The continuum assumption adopts the view that the physical medium of concern
may be considered continuous, whether it be a porous medium (for example, sand
on a beach) or a fluid flow. The continuum hypothesis works whenever the length
or time scales of interest are (much) larger than the corresponding microscale. For
example, the formation of dunes in a desert (length scale hundreds of metres) can
be modelled as a continuous process, since the microscale (sand grain size) is much
smaller. Equally, the modelling of large animal populations or of snow avalanches
treats the corresponding media as continuous.

Conservation laws arise as mathematical equations which represent the idea that
certain quantities are conserved — for example, mass, momentum (via Newton’s law)
and energy. More generally, a conservation law refers to an equation which relates
the increase or decrease of a quantity to terms representing supply or destruction.

In a continuous medium, the typical form of a conservation law is as follows:

99

ot +VfE=2_S. (1.3)
In this equation, ¢ is the quantity being ‘conserved’ (expressed as amount per unit
volume of medium, i.e. as a density; f is the ‘flux’, representing transport of ¢ within
the medium, and S represents source (S > 0) or sink (S < 0) terms. Derivation of
the point form (1.3) follows from the integral statement

d
ad dV:—/ fndS /de, 1.4
dt/v¢ v nas o+ 1% (14)

after application of the divergence theorem (which requires f to be continuously dif-
ferentiable), and by then equating integrands, on the basis that they are continuous
and V is arbitrary. Derivation of (1.3) thus requires ¢ and f to be continuously
differentiable, and S to be continuous.

Two basic types of transport are advection (the medium moves at velocity u, so
there is an advective flux ¢u) and diffusion, or other gradient-driven transport (such
as chemotaxis). One can thus write

f=o¢u+J, (1.5)

3



where J might represent diffusive transport, for example. The very simplest conser-
vation law is that of conservation of mass, where the conserved quantity is the density
p, and the mass flux is entirely due to advection:

@ + V.(pu) = 0. (1.6)
ot

Invariably, conservation laws give more terms than equations. In (1.5), for exam-
ple, we have one scalar equation for ¢, but other quantities J and S are present as
well, and equations for these must be provided. Typically, these take the form of con-
stitutive laws, and are based squarely on experimental measurement. For example,
diffusive transport is represented by the assumption

J=-DVg, (1.7)

where D is a diffusion coefficient. In the heat equation, this is known as Fourier’s
law, and the heat equation itself takes the familiar form

%(pcpT) + V.[pc,Tu] = V.[kVT] + Q, (1.8)

where () represents any internal heat source or sink.

Exercises

1.1 Consider the discrete population model (1.1):

Upt1 = TUy (1 - %) — hu,,.

By writing u,, = Lw, for some suitable choice of L, show that the model takes
the form
Wpy1 = Awy (1 — wy,),

and determine A. What is the effect of increasing A on the behaviour of the
population? What happens if h > r — 17

1.2 Consider the continuous population model (1.2):

d_u = pu (1 — E) — pu
a ~° c) M
By writing u = Mw for some suitable choice of M, show that the model takes

the form J
w
— =oaow(l —w
dt ( ) )
and determine . What is the effective of increasing © on the population? What

happens if p < pu?

1.3 Starting from an integral conservation law, derive the heat equation in the form
(1.8) and the mass conservation equation in the form (1.6).



Chapter 2

Non-dimensionalisation and
approximation

Once we have a model, we have to try and solve it. There are two kinds of solutions:
exact, analytical solutions, and approximate solutions. Exact solutions are explicit
formulae; for example we can exactly solve quadratic equations, and certain differen-
tial equations, such as that describing simple harmonic motion. We also consider that
solutions such as Taylor series constitute analytic solutions: they can be computed
to arbitrary accuracy. The same applies to quadratures, such as the solution of

du
pri flu), u(0) = uo, (2.1)

which has an implicitly defined solution

o=t (2.2)

Approximate solutions are those where one solves an approximate equation, or an
approximating sequence of equations. Approximate methods are best applied when
the approximation is based on the size of certain terms. In this chapter we will
illustrate the use of such methods, firstly on simple algebraic equations, and then on
some differential equations. The whole subject of perturbation theory is extensive,
and a thorough discussion is beyond the scope of these notes.

2.1 Non-dimensionalisation

In order to approximate a solution, we need to be able to neglect terms which are
small. This raises a concept of fundamental importance, which is that ‘small’ and
‘large’ are adjectives which can only apply quantitatively when a comparison is made
between quantities of the same dimension. An equivalent assertion is that we can
only make approximations based on the small size of parameters if these parameters
are dimensionless. It makes no intrinsic sense to say a quantity is small if it still has
dimensions. A speed of 1 cm s~! is small if you are a rocket, but large if you are a
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giant African land snail. An ice sheet is thick if you are a human being, but thin if
you are a planet. So we always associate large or small quantities with dimensionless
numbers, that is, parameters which measure quantities with respect to some reference
value. The process of isolating these parameters is called non-dimensionalisation.

2.1.1 The wave equation

Putting a mathematical model into non-dimensional form is fundamental. Although
technically trivial, there is a certain art to the process of non-dimensionalisation, and
the associated concept of scaling, and the only real way to learn how to do it is by
example. Let us begin with a simple model, the wave equation, which one learns how
to derive in first year applied mathematics courses. We suppose a string, for example
a guitar string, is wound between two points a distance [ apart. If the tension in the
string is T and its density (per unit length) is p, then an application of Newton’s
second law to an infinitesimal segment of the string leads to the equation

0%y
P o

0%y

=T =
0z?’

y=0 on z=0,1, (2.3)
where x is distance along the string, and y is its transverse displacement.

The main assumption that is usually stated in deriving this equation is that the
displacement y is small. However, there are at least two other implicit assumptions
which are made. One is that gravity is unimportant; the other is that there is no
longitudinal displacement.

For a guitar string, these seem to be reasonable assumptions, but why? We expect
the effect of gravity to be a deviation of the displacement from the vertical, and this
is evidently valid for the guitar string. It is not valid for the hanging chain, or for
the wire between telegraph poles. Why? I would say, for the chain, the density is
too large; for the telegraph wire, the distance [ is too large; while the guitar string
is straight because it is tight: 7" is large. These facts suggest that the ‘size’ of the
gravitational acceleration g may in fact be measured by the dimensionless parameter
pgl/T, which appears to be the only independent dimensionless parameter which can
be formed from those in the model if we include gravity.

How can this suspicion be confirmed? From first principles, we derive the wave
equation, including gravity, in the form

2 2
p%:T%—pg, y=0 on z=0,1 (2.4)

Next we write the model in dimensionless form. We do this by non-dimensionalising
the variables so that they are numerically of order one (written O(1)). Specifically,
we write

r=1Iz", y=uyy", t=(/c)t, (2.5)
where

(2.6)

T
c=4/—
P



is the wave speed, and yg is a measure of the displacement: for example, it could be
the maximum initial displacement. The dimensionless model is then obtained in the
form

82y* 82:(/*
at*Q = am*Q - Ba (27)

where 2
B = %, (2.8)

with y* = O(1) initially, and y* = 0 on z = 0,1. All of the terms in the equations
and in the initial and boundary conditions are dimensionless, and all the coefficients
which appear (such as ) are dimensionless.

It is conventional at this dimensionless stage to dispense with the asterisks in
writing the variables, and this we now do. The process of choosing particular scales
for the variables, or scaling, is motivated by the following ideas. Firstly, there is a
natural length scale to the problem, [, which is the dimension of the geometric domain
on which the problem is to be solved. Further, there is a natural length scale for the
displacement, gy, which is present in the initial conditions. Next, of the three terms
in (2.4), we anticipate (at least for the guitar string) that the gravity term will be
‘small’. It follows that the other two should be the same size, and we choose the
time scale so that these two terms ‘balance’, that is their dimensionless scales (here
Ty2/1?) are the same. When the model is written in the dimensionless form (2.7), we
then have equal dimensionless coefficients multiplying these two terms: here they are
both equal to one.

The final, essential idea is that, in general, a dimensionless function u(z,t) which
varies by O(1) over an z range of O(1) will have derivatives of O(1). This is true,
for example, for sinz, e %, and z2: it is not true for the function e 1%, which varies
rapidly over a distance of order x ~ 0.1 near x = 0. With this assumption, the
derivative terms 9%y/0t*> and §%y/0x? are O(1), and it follows that the relative size
of the gravity term is given by 8. Thus gravity is negligible if 8 < 1, and indeed this
means large tension, small density or short length, as we surmised.

2.1.2 The heat equation

Next we consider a form of the heat equation, (1.8). We write it in the form (assuming
density p and specific heat ¢, are constant)

%—f +u.VT = kV*T + H, (2.9)

where H = Q/pc,. We have assumed V.u = 0, which follows from the conservation
of mass in the form

dp B
n + V.(pu) =0, (2.10)

together with p = constant.
Suppose we are to solve (2.9) in a domain D of linear dimension /, on the boundary
of which we prescribe
T=Ts on 8D, (2.11)

7



where T’g is constant. We also have an initial condition
T =Ty(x) in D, t=0, (2.12)

and we suppose u is given, of order U.
We can make the variables dimensionless in the following way:

x = Ix", t=[t}t", T =Ts+ (AT)T". (2.13)

Again, we do this in order that both dependent and independent variables be of
numerical order one, O(1). If we can do this, then we would suppose a priori that
derivatives such as V*T* (V = [71V*) will also be of numerical O(1), and the size
of various terms will be reflected in the dimensionless parameters which occur.

In writing (2.13), it is clear that [ is a suitable length scale, as it is the size of D.
For example, if D was a sphere we might take [ as its radius or diameter. We also
suppose that the origin is in D; if not, we could write x = xq + [x*, where xy € D:
evidently x* = O(1) in D.

A similar motivation underlies the choice of an ‘origin shift’ for 7. In the absence
of a heat source, the temperature will tend to the uniform state T'= Ty as t — oo.
If H # 0, the final state will be raised above T (if H > 0) by an amount dependent
on H. We take AT to represent this amount, but we do not know what it is in
advance — we will choose it by scaling. The subtraction of Tz from 7' before non-
dimensionalisation is because the model for 7' contains only derivatives of T, so that
it is really the variation of T" about T’ which we wish to scale.

In a similar way, the time scale [t] is not prescribed in advance, and we will choose
it also by scaling, in due course.

With the substitutions in (2.13), the heat equation (2.9) can be written in the

form 12\ oT* Ul Hi?
— — | u*.V*.T* = V*?2T* 2.1
() 2+ (0 )orwer = (7). 214

where we have written u = Uu*, so that u* = O(1). This equation is dimensionless,
and the bracketed parameters are dimensionless. They are somewhat arbitrary, since
[t] and AT have not yet been chosen: we now do so by scaling.

The solution of the equation can depend only on the dimensionless parameters. It
is thus convenient to choose [t] and AT so that two of these are set to some convenient
value. There is no unique way to do this.

The temperature scale AT appears only in the source term. Since it is this which
determines the temperature rise, it is natural to choose

HI?
AT = —. (2.15)
K
It is also customary to choose the time scale so that the two terms of the advective
derivative on the left of (2.14) are the same size, and this gives the convective time

scale
[t] = é (2.16)

8



Finally, we remove the asterisks. When this is done, the dimensionless equation takes
the form

oT
Pe lg + u.VT] = V°T +1, (2.17)
where the Péclet number is Ul
Pe=—, (2.18)
K

and the solution of the model depends only on this parameter (as well as the initial
condition). The boundary condition is

T=0 on 8D, (2.19)
and the initial condition is
T =06(x) at t=0, (2.20)
e 0(x) = To(ix) — T (2.21)
AT . .

2.2 Scaling

A well-scaled problem generally refers to a model in which the dimensionless param-
eters are O(1) or less. Evidently, this can be ensured simply by dividing through
by the largest parameter in any equation. More importantly, if parameters are nu-
merically small, then (as we discuss below) approximate solutions can be obtained
by neglecting them. The problem is well-scaled if the resulting approximation makes
sense. For example, (2.17) is well-scaled for any value of Pe. However, the problem
€T, = eV?T + 1, with € < 1, is not well scaled. One makes a problem well-scaled in
this situation by rescaling the variables, and we now consider the wave equation (2.7)
again in this light.

2.2.1 The wave equation, again

In the statement of the wave equation with gravity, there are in fact two dimensionless
parameters: l
P9 Yo
B = T €= T
The parameter ¢ is a measure of the amplitude of the motion, and it is on the basis
that € < 1 that we derive the linear wave equation in the first place. The parameter
B = B/g, so the assumption of negligble gravity is equaivalent to the assumption that
B<ex 1.

If B ~ ¢, then 8 = O(1). The problem is sensibly scaled, but gravity is no longer
negligible. There is a steady state y = 13z(l — z) (the hanging chain), and, because
the equation is linear, the string simply oscillates about this steady state.

Now suppose that § > 1. The model is now not correctly scaled (because the
limit 8 — oo gives no sensible approximation). In fact the model suggests that a

(2.22)

9



steady state will have y ~ (3, and that the string will oscillate about this steady state
with a similar amplitude. In order to obtain a sensibly scaled problem, we simply
have to rescale the displacement by writing y = 8Y, and the discussion can proceed
as before, except that the initial condition has Y < 1.

It seems that all is now well; we have discussed the cases f < 1, § = O(1),
and S > 1. However, ther is more concern when [ becomes as large as O(1/e).
In this case, the model suggest oscillations about a steady state of order  ~ 1/¢,
and dimensionally of order [. Because of this, the basis of the original derivation is
suspect, and the model must be re-derived: in fact this can be done (see question
2.1), so that the model equation (2.7) remains valid. However, the initial value scale
Yo is not now an appropriate scale for y; the appropriate (dimensional) scale is y ~ [,
and this a posteriori adjustment is the rescaling alluded to above. In dimensionless
terms, we rescale the model by writing y = (I/y9)Y = Y /e, and we find

Y 9V

g2 _%% B
ot2 ox?

, (2.23)
and this version of the model is appropriate if B = O(1). If B > 1, a further rescaling
simply takes Y ~ B.

2.3 Simple approximation methods
Suppose we wish to solve the equation
2 —er—1=0, (2.24)

where ¢ is relatively small: for example if ¢ = 0.1. Formulae do in fact exist for
writing solutions of cubic (and also quartic) equations, but they are fairly unpleasant
and are rarely used. A much better way is to use an approximation method, based
on the idea that the parameter ¢ in equation (2.24) is small.

Graphically, it is clear (see figure 2.1) that when e is small, (2.24) will have a
unique, positive real root, and in fact it will be close to z = 1 (since 1 + ez ~ 1).
(In passing, note that there will be exactly one root for € < ., where ¢, is the value
corresponding to tangency of the line with the curve; at this value 2® = 1 + ez and
322 = ¢, so that e, = 3/2%° ~ 1.89.)

A simple iterative method to solve (2.24) is

Tni1 = (1 +ex,)Y3. (2.25)
If we choose € = 0.1 and zg = 1, then successively

7, = 1.0322801,

zy = 1.0332889,
z3 = 1.0333204,
zs = 1.0333214, (2.26)

10



Figure 2.1: The graphs of 3 and 1 + ex, with ¢ = 0.1.

and this last value is the root. It is of course trivial to compute the positive root for a
range of ¢, but it would be convenient to have an analytic (as opposed to numerical)
approximation. We construct this by using a perturbation method.

We can use the binomial expansion to write (2.24) in the form

z=(1+ex)* =1+ lex — 12?4 Zeda®. .. (2.27)

Since € < 1, we see that z &~ 1 [+0(¢): that is, terms of order ¢, i.e. of size about €.
A better estimation is then
zal+ ez~ 1+ e, (2.28)
and we can see that this relatively crude approximation is in fact accurate to four
decimal places when € = 0.1! Repeating this idea, we would have
z ~ 1+ gex — jea?

~ 14+ze(l+3e) —52(1+...) 1+ 3¢ (2.29)
(there is no O(g?) term), but a more methodical procedure is to anticipate (by in-
spection) that the root can be written in the form of a series

T=x0+ex1+ T+ ... (2.30)

we substitute this into (2.24), expand in powers of ¢, and equate coefficients of powers
of e: a little thought indicates why this procedure is necessary. For (2.24), we thus
have

(zo+exy +e%z0+ ... —e(zo+ex +...)—1=0, (2.31)

whence

(5 —1) + e(3zpzy — x0) + ° (37522 + 32075 — 71)
+ &*(3xlzs + 3zoT1T2 + T3 — T2) + ... =0, (2.32)

11



so that, sequentially,

zh—1=0,
3x3x1 —x9 =0,
3.’1:(2).%'2 + 3x0x% -z =0,

32573 + 31T T2 + T3 — T3 = 0,

. (2.33)

from which we obtain
xo=1 z; = %, x9 =0, xgz—sil, (2.34)

and hence the root is
TR 1+ 3e — 58+ O(eh). (2.35)

With € = 0.1, we have x ~ 1.033321: practically, the exact result. Even, for ¢ = 1,
the approximate result is 1.321, while the exact root is 1.3247.

Singular approximations

The approximation above is called a reqular approximation, because the limit when
€ = 0 gives an approximation to the root. Now consider the cubic

exd—2z—-1=0, e< 1. (2.36)

Graphically (figure 2.2), there are clearly three real roots. One of these is near —1
and can be recovered by a regular approximation. The others are at large values of

|z|, and are determined by balancing ez® with z; that is, ex® ~ x when z ~ 712, 50
we first write
r=¢ V2X, (2.37)
and then
X3 X —¢l/2 =, (2.38)

with approximate roots X = 0,+1. The root X ~ 0 corresponds to z &~ —1 and is
determined by the regular approximation for z. The larger roots are determined by
a regular approximation of (2.38), as a power series in £'/2. Thus

X=Xo+e’Xy+eXo+ ..., (2.39)

and substituting this into (2.38) and equating powers of /2 leads to the approximate
solutions (written in terms of z)

1 1 3 7
xmﬂ:$+§$g\/§+§€+.... (2.40)

The upper sign gives the positive root, the lower the negative root. For example if
¢ = 0.1, the approximate positive root from (2.40) is 3.565567, while the exact root is

12



Figure 2.2: The graph of ez® —z — 1, for € = 0.1.

3.5770894. For ¢ = 1, the approximate root is 1.1468753, while as we have seen, the
exact root is 1.3247. This is less good, but can be improved by taking further terms
in the series (2.40). We see that approximation methods can provide a very useful
way of solving algebraic equations.

Now suppose we wish to solve

tanz = tanhz. (2.41)

Each function is odd, so z = 0 is a solution, and graphically (figure 2.3) it is clear
that there is a sequence of positive roots z3,x3,... (and thus also negative roots
—z%,—x3,...), and that as n — oo,

T, ~ (n+ §)m. (2.42)
Suppose we put
) = (n+ 1)+ 6; (2.43)
then
: (=1)" :
sinz; = cosf + sin6),
n 7 ( )
cosz, = (=D" (cosf — sin h), (2.44)
V2
so (2.41) is
cosf +sinf 1 —e 2
t * — = . 2.45
MIn = s _sing 1 + e 2% (245)
We expect 0 < 1, and also z;, > 1, and thus, since
cosf =~ 1-— %02,
sinf =~ 0, (2.46)

13



Figure 2.3: The graphs of tanz and tanh z.

we have, with use of the binomial expansion for (1 +y)~!,

1_192..—’_9. * *
= =(1—e?)(1—e 2 +..)
1—36%...—90...
= (1+0-10>..)1+{60+10>+.. }+{0>+...}..)=1—2e%n ..
= 1420420 +...=1—2¢ @rta)m=20
= 04607+, =—e Ctam(1-20. ), (2.47)
so that, finally, .
g ~ —e (nta)m (2.48)
and )
zh ~ (n+ Hr— e Crta)m, (2.49)

Numerical approximation

Iterative numerical methods are discussed further in the next chapter. A general
iterative method to find a root of f(z) = 0 is to define a sequence z = xzg, 1, ...,
satisfying x,.1 = g(z,), where the function g is chosen so that x = g(z) if f(z) = 0:
for example, g(z) = f(x) + . A simple iterative method to solve

L(z) = R(z) (2.50)

is as follows: define
L(z,11) = R(z,), (2.51)

i.e. z,.1 = L7' o R(x,). The sequence will converge if |(L™' o R)'| < 1 at a root, and
using the chain rule (via f = L ' o R if L[f(z)] = R(z), so L'f' = R', and at a root

14



f(z) =z, f' = R'/L') we find that this is |L'| > |R'|. Consulting figure 2.3, we see
that the iteration
T,41 = tan ![tanh z,] + n7 (2.52)

will converge to z* (since tan ! is defined to be less than 7/2 on a calculator).
The lowest root (n = 1) is approximated by

T} ~ S — e75/2 = 3.9266026 (2.53)

compared with the exact value 3.9266024. Here an approximation based on the limit
n — oo is accurate even when n = 1.

2.4 Perturbation methods

Let us consider (2.17) with (2.19) and (2.20), and suppose that 6y < O(1). If Pe < 1,
we obtain an approximation by putting Pe = 0: V2T + 1 ~ 0. Evidently, we cannot
satisfy the initial condition, and this suggests that we rescale ¢: put ¢t = Pe T, so that

(approximately)
oT

ar
now we can satisfy the initial condition (at 7 = 0) too. Often one abbreviates the
rescaling by simply saying, ‘rescale t ~ Pe, so that T; ~ V2T + 1°.

= VT + 1; (2.54)

boundary
< layer

sub-characteristics

Figure 2.4: Sub-characteristics and boundary layer for the equation (2.17). The sub-
characteristics are the flow lines dx/dt = u, and the boundary layer (of thickness
O(1/Pe)) is on the part of the boundary where the flow lines terminate.

On the other hand, if Pe > 1, then T; + u.VT = 0, and we can satisfy the initial
condition but not the boundary condition on all of 0D, since the approximating
equation is hyperbolic (its characteristics are called ‘sub-characteristics’). To remedy
this, one has to rescale x near the part of the boundary where the boundary condition
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is not satisfied. This gives a spatially thin region, called (evidently) a boundary layer,
of thickness 1/Pe (see figure 2.4).

The other possibility is if § > 1, say 6§ ~ 6 > 1. We discuss only the case Pe > 1
(see also exercise 1.2). Since T' ~ @y initially, we need to rescale T, say T = 6,T.
then Pe[T, + u.VT] = V2T + 6,!, and with T = O(1), we have T; + u.VT ~
0 for Pe > 1. The initial function is simply advected along the flow lines (sub-
characteristics), and the boundary condition T = 0 is advected across D. In a
time of O(1), the initial condition is ‘washed out’ of the domain. Following this,
we revert to T, thus Ty + u.VT = Pe ' (V?T + 1). Evidently T will remain =~ 0
in most of D, with a boundary layer near the boundary as shown in figure 2.4. If
n is the coordinate normal to 9D in this layer, then u.VT ~ u,0T/0n ~ PeT,
Pe 'V2T ~ Pe™'0*T/0n® ~ PeT, and in the steady state, these must balance the
source term Pe !: thus in fact, the final state has the rescaled T' ~ Pe 2, and this
applies also for 6y < O(1).

These ideas of perturbation methods are very powerful, but a full exposition is
beyond the scope of these notes. Nevertheless, they will relentlessly inform our dis-
cussion. While it is possible to use formal perturbation expansions, it is sufficient in
many cases to give more heuristic forms of argument, and this will typically be the
style we choose.

2.4.1 Regular perturbation theory
v —u=-ceu?, u(0)=0, u(l)=1, (2.55)
where ¢ < 1.

2.4.2 Singular perturbation theory: boundary layers
e —u=1u? wu(0)=0, u(l)=1, (2.56)
where ¢ < 1.

2.4.3 Multiple scales and averaging
u" +u=-ceu?, wu(0)=1u(0)=0, (2.57)
where € < 1.

Exercises

2.1 Derive the wave equation describing oscillations of a string of length [ from first
principles, when gravity is included, assuming displacements are small and of
order gyy. Show how to non-dimensionalise the equation to obtain the form

oy _ Py
o2 Ox?
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2.2

2.3

24

and define S.

Now suppose that yo ~ [. Suppose that in the unstretched state where the
displacement y = 0, the density py is constant. By careful consideration of
the application of Newton’s second law to an infinitesimal segment of length
ds (stretched from its original length dx), show that the (dimensional) wave
equation can be derived in the form

Py _ 0%

assuming only that displacements are purely vertical, where T} is the horizontal
component of the tension exerted at the fixed end points at =0, x = [.

Non-dimensionalise the model in this case and describe the form of the resulting
oscillation.

Explain why the iterative method
Tnp1 = (1 +ex,)Y3

used to solve (2.24) will converge to its solution. Does this depend on the value
of €7

(i) Find approximations to the solution of
e —r—1=0, e<1,

which is close to x = —1. Compare with the numerical solution when ¢ = 0.1;
e = 0.01.

(ii) Use perturbation methods to find approximate roots to the equation
re " =¢, O0<exl.

(Use graphical methods to find the location of the roots. For the larger root,
take logs and note that if z > 1, then z > Inz.)

Suppose

T
Pe l%—t + u.VT] =V?T+1 in D,

with

T = 0 on 0D,
T = 6©(x) in D at t=0,

and © = O(1), 6y > 1, Pe < 1. Discuss appropriate scales for the various
phases of the solution.
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2.5 A population of size N is subject to immigration at rate I, and mutual pair
destruction at a rate kN2, so that N = I — kN2. By appropriate scaling of the
variables, show that the model can be written in the form & = 1 — z2.

2.6 Each of the equations
22—ez2—1=0,

e —2—-1=0,

has five (possibly complex) roots. Find approximations to these if ¢ < 1. Can
you refine the approximations?

18



Chapter 3

Graphical methods

A component of the bag of tricks of the applied mathematician is the facility of gaining
a qualitative understanding of solutions to equations without actually solving them.
The simplest version of this skill lies in the ability to draw graphs of functions without
exact information. Just as calculators have led to the demise of basic arithmetic skills,
so the use of graphical programs has led to an inability to follow this most basic of
geometric skills. This is a facility which should not be lost.

3.1 Curve sketching

The simplest curves to sketch are polynomials. The function y = z? has the well-
known paraboloidal shape shown in figure 1. How do we know this? Well, y = z? is
positive, and clearly y — oo as ¢ — Fo00. Furthermore, ¢y’ = 2z, and this is negative
(so y decreases) for z < 0, and positive (so y increases) for z > 0. Particularly, y has
a minimum at x = 0. These few simple facts are sufficient to provide the sketch in
figure 3.1.

Figure 3.1: y = 22
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Figure 3.2: y = (z — 1)(z — 3)

More generally, other quadratics have a similar shape; the polynomial y = az? +
bz + c can be written

b, 1 ,
— (b -4 1
y=a(z+ 2a) a (b ac), (3.1)

and we see that the graph of y can be obtained from that in figure 3.1 by translation
to a new origin (—b/2a, —(b* — 4ac)/4a), and magnification of the z-axis by a factor
of \/a; see figure 3.2. This assumes a > 0: if a < 0, the parabola is upside down, as
may be seen by considering the graph of —y versus .

Figure 3.3: y = 23

Cubic polynomials have an extra twist. If we consider y = x3, then y — 400, also
y' = 322 > 0, so y is monotonically increasing, though ¢ = 0 at £ = 0 — the origin
is an inflection point. The graph is shown in figure 3.3. For more general cubics, the
general shape is monotonic as in figure 3.3, or non-monotonic as in figure 3.4, with
two turning points. Apart from the fact that cubics generally have three roots, this
can be most easily seen by realising that, since 3’ is a quadratic, there are generally
two zeroes of y', so that y has two turning points. This tells us the general shape
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Figure 3.4: y = 2% — z

of cubics, and in fact by extension we see that n-th order polynomials will generally
have n — 1 turning points (though just as for the cubic, some may be absent). Most
generally, n-th order polynomials have n zeroes; again, some may be absent.

Exponentials and logarithms

The exponential function e® can be defined in various ways. For example, it is the
solution of the differential equation

y =y, y(0)=1, (3.2)
and it has the Taylor series expansion

$2 n

y:1+x+§+---+%—|—.... (3.3)

It is clear from the definition in (3.3) that for positive z, y is positive (and thus
increasing, since ¥’ = y > 0), and in fact y grows faster than any polynomial, since
y > z"/n! for all n. The graph of e* is thus convex upwards, as shown in figure 3.5.
For z < 0, the above reasoning is not useful in (3.3). However, since e® = e x e**M
we see that the graph is self-similar, since e** simply represents a shift of the origin
to £ = —M, and the premultiplicative factor e ™ is simply a scaling of the y-axis.
By such reasoning, we see that e” is positive and convexly increasing for all x.

The function y = In z is the natural logarithm of x, and can be graphed using the
fact that if y = Inz, then (by definition) z = e¥: we obtain figure 3.6 by inverting
and rotating figure 3.5. Note that Inx is not defined for z < 0. Nor does it have a
series representation akin to (3.3); this is in fact evident because as x — 0, y — —o0.
Also In z grows more slowly than any power of x as £ — oo (for the same reason that
e” grows faster than any power of z). In fact (Inz)’ = 1/z, so that the slope of Inz
tends to zero, although Inz — oo.
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Figure 3.5: y = €*

Figure 3.6: y =1lnx

When we wish to write statements such as ‘In x is much smaller than z when z is
large’, we use the notation Inz < z, or z > Inz (for z > 1). In this vein, we have

e* > " as xr — oo, for any n,

Inz < z¢ as x — oo, forany a >0, (3.4)
and other more exotic examples, such as
l<Inlnz < Inz as =z — oo. (3.5)

Often one want to approximate functions f(z) when z is large or small, and these
notions of relative size can be very useful, but beware: although e” is certainly large
when z is (e® ~ 2.2 x 10* when z = 10), a function like Inln z is appallingly slow to
increase (Inlnz ~ 3 if z = 10'9).

Inverses

The graph of the hyperbola y = 1/z is shown in figure 3.7. It is simply obtained
through reciprocation, or inversion, of the graph of y = z: z is monotone decreasing,
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so 1/ is decreasing; 1/z < 0 if £ < 0, and > 0 if z > 0 (we write 1/z S 0 if 2 S 0);
1/x — 0 as ¢ — £o00; 1/ — +o0 as x — 0+ (i.e., as z tends to zero from above or
below).

Figure 3.7: y = 1/x

\

Figure 3.8: y =¢e7"

More generally, inversion can be applied to other graphs via a kind of ‘nonlinear
reflection’ about the line y = 1. For example, the graph of e™® is shown in figure 3.8.
It is the inversion of e* (or: it is the reflection of e* about the y-axis). Figure 3.9
shows a slightly more complicated example, the graph of y = 1/(z® — z). The cubic
denominator has roots at +£1 and 0, so that y — +o00 at these points, and y — 0 as
T — too.

Combinations

Figure 3.10 shows the graph of y = ze ™ for > 0. For x — 0, y ~ x, since
2 . . .

y=z(1—2+%...), whileas z — oo, y — 0 (since z < €%, ie. ze™® < 1). In

fact, since z is an increasing function and e~ is decreasing, it is clear that y must
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Figure 3.9: The cubic z® — z and its inverse y = (23 — z)™!

have a single maximum, and this is confirmed by simple differentiation. The graphs
of z"e™®, x > 0, n > 1, are similar, but with a flat minimum at x = 0. Alternatively,
one can graph ze ® by visual multiplication of z and e™*.

Figure 3.10: y = ze™®

The graph of tanh x is shown in figure 3.11, and can be realised in several ways.
For example,
2

tanhzx =1 — ———;
anh z g

(3.6)

since €?® is an increasing function, so also is tanh z, and since e* — oo (0) as z —
00 (—00), we have tanhz — +1 as £ — +oo. In fact, tanhz is an odd function
(y(—z) = —y(x); an even function is one for which y(—z) = y(x)), so that its graph
displays a rotational (by 7) symmetry about the origin. In particular, tanh 0 = 0;
further, for small z, we have

2

tanhz ~ 1 — = )
— T+(t2z..) "7

. (3.7)
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Figure 3.11: y = tanhz

so that its slope is one at the origin.

Figure 3.12: y = z 'tanhzx

Further combinations with other algebraic functions are easily sketched. For ex-

tanh x
. Clearly, y is even (since tanhx

ample, figure 3.12 shows the graph of y =
z
and z are both odd), y — 0 as z — oo, and y(0) = 1.

Implicitly defined functions
If y(x) is defined by

y' -y =z, (3.8)
we can easily draw the graph of y(z) simply by swapping the axes on figure 3.4. Note
that such implicitly defined functions are no longer necessarily single-valued (a better

known example is that of the inverse trigonometric function y = sin™! ).
A more complicated example is afforded by y(x) defined by

r—y=K(z+y)? (3.9)
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Figure 3.13: ¢ —y =1z

Figure 3.14: The graphs of 1 — u and 1/(1 + u)3.

where for example K > 0. The easiest way to sketch this is to realise that (z —y)/v/2
and (z + y)/v/2 represent orthogonal coordinates in a set of axes inclined at 7/4 to
the (z,y) axes. But we can also deduce the shape of the graph by more elementary
considerations. First put y = zu, so that u satisfies

1 —
: H:; = K% (3.10)

we find the graph of u, and then that of y by multiplication with x. Figure 3.14 shows
the graphs of 1 — u and 1/(1 + u)? as functions of u; multiplication of these yields
(1 —u)/(1 + u)® in figure 3.15. With K > 0, x is then defined as either square root
(but only where (1 —u)/(1+ u)3 > 0):

r=+ lﬁ] 1/2, (3.11)

shown also in figure 3.15. Note the infinite slope of z(u) at u = 1, due to the fact
that © ~ £(1 — u)/2 there. (The symbol “~” is less precise than “x”; we say f ~ g
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1/2
1—
Figure 3.15: The graphs of (1 —u)/(1+ u)® and + [K(l—}—zfu)?’] (K =1).

1—u

1/2

Figure 3.17: y = zu(xz); also shown on the right is the approximation in (3.13).
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as ¢ — xo if f/g tends to a finite limit; thus 2> + 1 ~ lasz — 0, 22 + 1 ~ 22 as

x — o0, and so on.) Inversion of u now yields figure 3.16, having the same shape

2 tanh 2
as M 1, or 1322 1. Multiplication by z finally yields figure 3.17. The
x

functioaljl y(x) is defined (for K > 0) as a single-valued odd function of z. We see
that y — Foo as £ — 400. Since z < z3 and y < y3, we infer that in these limits,
r —y < K(z +y)® (which is impossible since they are equal) unless z ~ —y. Note
the correct use of the asymptotic equivalence notation “~” here; we cannot correctly
say © — —y as neither tends to a finite limit: nor can we say x +y — 0, which is not
true (in fact z +y — £00). We can use the asymptotic relation x ~ —y as z — o0,
to refine the approximation for large z. If y &~ —z, then we have from (3.9)

, (3.12)

2z — (y+ ) 1/3
K

y+x:l

and this forms the basis of a regular perturbative method to approximate y, as dis-
cussed in chapter 2. Here we simply give the result, which is also shown in figure
3.17 (and we see that the approximation at large positive z is quite accurate for
z > 2/3+v/3K, roughly (where ¢’ = 0):

21\ /3 1 2x\ V3 1
~—x+ | — — = + . A
4 o (K) 3K? <K> O(l‘) (3 3)

The notation O(1/z) means terms of the same size as 1/x (as, here, x — 00). It
is an alternative to the ‘~’ notation: we say f = O(g) if f ~ g (as z — z).

The final example we use is an algebraic equation which arises in combustion
theory: it has to do with striking a match! Let the function 7'(u) be defined by

T
— 3.14
eXp[l-l—sT] ’ (3.14)

T
1
where ¢ is a positive parameter (i.e., we take it to be fixed as we vary u). In ap-
plications ¢ is usually small (¢ < 1), and it is convenient (though not necessary) to
suppose this is the case. Equality in (3.14) can only occur for 7" > 0, and we there-
fore limit our attention to positive 7. The logistic function 7'/(1 4 €T') is monotone
increasing with T and saturates (i.e., tends to a positive limit) as T — oo. Since
the exponential function is also increasing, exp[T/(1 + €T')] increases and also satu-
rates: it is a sigmoidal curve with an inflection point, which is most easily seen when
e < 1, for then exp[T/(1 + eT)] =~ €” for T = O(1) (numerically, ‘about’ one), but
the function must turn round when 7T is large (specifically, when T'= O(1/¢)).
When g is small, it is clear (see figure 3.18) that there is one value of T satisfying
(3.14), and T — 0 as pu — 0; similarly for large T, there is one intersection, and
T - occasp — oo. Infact T ~ pu, p < 1, while T ~ pe'/s, p > 1. But
for intermediate values of yu, these two branches (‘cold’ and ‘hot’) are joined by an
intermediate ‘warm’ branch, so that, as shown in figure 3.19, three different values
are possible.
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Figure 3.18: Two views of the graphs of T/u (for p = 0.3, 0.4 and 0.55) and

exp |7 n 5T] (with ¢ = 0.2), indicating the possibility of one, two or three inter-

sections; note the disparity in 7" and pu scales in the two figures.
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Figure 3.19: T versus p given by equation (3.14), with € = 0.2.
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3.2 Root-finding

Suppose we want to solve the algebraic (as opposed to differential, or integral) equa-
tion

flz)=0. (3.15)
In general, exact analytic techniques are not available, and the problem must be solved
by an approximate method, and often this means using numerical methods. A general
class of numerical technique to solve (3.15) is by the use of iterative methods, and we
begin by reviewing some of these. In general, one defines a sequence xg, 1, ..., ZTp,- - -,
where usually z,, is determined in terms of x,_;, and the methods differ in the choice
of iterative procedure.

Interval bisection

Interval bisection is slow (thus bad) but guaranteed to work. We assume only that f
is continuous, and that two initial values z_, z are known, for which (say) f(z_) <0,
f(zy) > 0. We then define the bisection value w = (z, + z_)/2, and calculate f(w).
We then reassign z. as follows:

zy =w if f(w) >0,

z_=w if f(w)<D0. (3.16)

The iterative step defines two sequences z_ and z, (or 2™ and ng)), with the
property that x; —z_ — 0 and f(z,) >0, f(z_) < 0. The root z* where f(z*) =0
is thus sandwiched between the upper and lower estimates.

The error goes down by at least a factor of 2 each iteration, so that the error ¢,

after n iterations is .
0

in particular, the number of steps /N, which is required to calculate the root with an
error of ¢ is

€n (3.17)

_In(1/¢)
N~ =t (3.18)
Interval bisection is plodding but effective; however, it is no use in more than two
variables (imagine trying to find a zero of f(z,y) = #*> + y* — }, with f evaluated at
the four points of the unit square (0,0), (1,0),(0,1), (1,1)).

Secant method

If f is relatively smooth, then the arc between two successive points (z,_1, f(Zn_1))
and (z,, f(x,)) provides a better and more rapid approximation, see figure 3.20. The
iterative method is defined by

_ Jul@n = n)
fn - fn—l
xn—lfn - xnfn—l

fn_fn—l ’
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Figure 3.20: Secant method

and is clearly better than interval bisection, and particularly if the function is smooth,
i.e., continuously differentiable, f € C'. A disadvantage is that two previous iterates
are used, and in fact since we expect x, to be closer to the root than z,_;, one might
hope that a better version of this method might exist.

Newton’s method

The better method is the Newton-Raphson iterative method. Unlike the secant
method, it requires f to be differentiable, but it does not need two preceeding it-
erates. It is defined (see figure 3.21) by

Ty = Tp_1 — F(@n) (3.20)

f’(xn—l).

Suppose that f(z*) = 0, and that the error at the n-th step is €,, so z, = z* + &,,
thus

- . f(.’L'* + 5n—1)
e T (3.21)
We have (via Taylor series)
fl(z* +¢e) =~ fl(z*) + ef'(z"), (3.22)
and )
fa +e) mef (@) + S (). (3.23)
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Figure 3.21: Newton’s method

If we substitute (3.22) and (3.23) into (3.21), we find

enalf'(2%) + =51 1" (z7)]
f’(.’L'*) + gn—lf”(x*)

€ (3.24)

En N Ep—1—

(assuming, of course, that f can be differentiated twice). Writing ¢ = f"(z*)/2f'(z*),
the solution of this is (by induction)

1 n
en = — {ceo}” (3.25)
c

and the convergence is super-exponential. The number of steps required to reduce the
error to a tolerance ¢ is given by

Inln(1/¢)
n2

Newton iteration is therefore much faster than interval bisection.

N, ~ (3.26)

Convergence

Equation (3.24) indicates that (as is obvious) Newton iteration will be bad if f'(z*) ~
0. More generally, large excursions occur if f'(z,_1) ~ 0; this raises the issue not
only of when Newton iteration will work, but also as to what solution it will converge
to. For example, consider Newton iteration for the solution of

flx) =2~z =0. (3.27)
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Figure 3.22: The critical values z¢.

There are three roots: 0, 1 and —1, and the graph has two turning points at £1/+/3. It
is pretty clear (see figure 3.22) that if o > 1/4/3, then x5 — 1 as n — oo (similarly if
ro < —1/4/3, z, — —1). Also if z, is sufficiently close to zero, it is clear that z,, — 0.
The values +1/+/3 are critical, for if zq is just less than 1/4/3, then z; < —1/4/3,
and z, — —1. This will be the case for zy in a range () < 2o < 1/v/3 = z(®), where
z(1) is the pre-image under iteration of —1/+/3. If we denote the Newton iteration
method as

zn = G(zy 1) (3.28)

(for (3.27), G(z) = 223/(3x% — 1)), then z(1) (> 0) is defined (evidently uniquely) as
that value such that
G(zV) = -z, (3.29)

So far we thus have the following:

zo > 0, T, — 1;
) <29 <20, z, = —1.

c

(3.30)

Now if z¢ is just less than (1), then z; will be just larger than —1/v/3 = —z(® | so that
xe > 1/ V3, and z, — +1. Again there will be a range where this occurs, bounded
by the value z?) such that

G(z?) = =z, (3.31)

Thus for
e < zp <2, z, — +1. (3.32)

c

Evidently one can carry on in this way, and this suggests the existence of a denu-
merable set of intervals (z(™, z(™*") on which z, — (—=1)™ as n — oo, where the
end-points are defined by the iterative scheme

G(zl™) = —g{m=Y, (3.33)

[
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with 2(®) = 1/1/3. Figure 3.22 suggests that the values (™ converge to a limit, say
., defined by G(z.) = —., so that z. = 1/4/5, and that z, — 0 for all |z¢| < z..
At each value zo = 2(™, Newton’s method fails using exact arithmetic, although
practical numerical calculations will always allow convergence to either 1 or —1.

Other iterative methods

There are plenty of ways to define iterative methods to solve f(z) = 0. For example,
we can write the equation in the form z = G(z) = =z + f(z), and then define a
sequence

Tni1 = G(zy,); (3.34)

or if x = h(y), then an iterative method for y could be

Ynr1 = h7[G{h(ya)}] (3.35)

(where h~! denotes the inverse function of h; that is y = h~!(x) if (and only if)
x = h(y).) Such methods are not generally very fast, but lack the requirement (some-
times non-trivial) of differentiability, and have the advantage over interval bisection
of explicitness; however, they do not always converge.

Suppose (3.34) has a root z*, and the (small) error at the n-th step is &,; then

Ens1 = G'(2%)e,, (3.36)

and thus
en & [G'(z*)]"eo. (3.37)

Normally the error is like that of interval bisection; it is only super-exponential if
G'(z*) = 0 (because then, in fact, e,41 ~ [G"(z*)/2]¢%: Newton iteration satisfies this
criterion precisely). Equation (3.37) implies that ¢, — 0, or z,, — z*, if |G'(z*)| < 1,
and this is the criterion for convergence of the iteration scheme.

As an illustration, we reconsider equation (3.14),

T ] | (3.38)

T:“eXp[HeT

For intermediate values of u, this can have three equilibria, and a stable method to
calculate the lowest and highest of these two is

T, ]

3.39
L5 e, (3.39)

Thy1 = pexp [

It is clear from figure 3.23 that this iterative scheme does converge as indicated. If, on
the other hand, we want to calculate the middle root, another strategy is necessary.
Most simply, we can iterate the inverse function, thus 7,1 = G~(T,,), or for (3.38),

this is
In(T,,/p)
1—eln(T,/p)
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Tn+1

Figure 3.23: Convergence where the slope is less than one.
3.3 Difference equations

3.4 Ordinary differential equations

Graphical methods have their uses also in differential equations. In chapter 4, we will
consider graphical methods for two-dimensional ordinary differential equation systems
(phase plane analysis). Here we briefly discuss the simplest ordinary differential
equation (or ODE): the first order autonomous equation

i = f(x), (3.41)

where the notation & indicates the first derivative, and the use of an overdot is nor-
mally associated with the use of time ¢ as the independent variable, i.e., & = dx/dt.
The solution of (3.41) can be written as the quadrature

" de
w0 f(£)’

and, depending on the function f, this may be inverted to find = explicitly. So, for
example, the solution of # = 1 — z? is z = tanh(t + ¢) (if |z(¢o)| < 1).

Going on with this latter example, we see that © — 1 as t — oo (and z — —1 as
t — —o0, and in practice, this may be all we want to know. If a population is subject
to constant immigration and removal by mutual pair destruction, so that # = 1 — z2,
then after a transient (a period of time dependence), the population will equilibrate
stably to x = 1. But to ascertain this, all we need to know is the shape of the curve
f(xz) = 1 — 22 Simply by finding the zeros of 1 — z? and the slope of the graph there,
we can immediately infer that for all initial values z(0) > —1, x — 1 as t — oo, while
if z(0) < —1, then x — —o0 as t — —oo: see figure 3.24. And this can be done for
any function f(z) in the equation z = f(z).

t=to+ (3.42)
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x = f(X)

Figure 3.24: The evolution of the solutions of & = f(z) depends only on the sign of
x.

This simple example carries an important message. Approximate or qualitative
methods may be just as useful, or more useful, than the ability to obtain exact results.
An extension of this insight suggests that it may often be the case that approximate
analytic insights can provide more information than precise, computational results.

3.5 Chemical reactions

Exercises

3.1 (a) Sketch the function y = z3¢™%, = > 0.
(b) Sketch y = zInz, z > 0. (Note Inz < 1 when z < 1; why?)
(c) If y =2", z > 0, and y(0) = 1, sketch y(z).
(d) Sketch y defined by y = z + (z + y)3.
(e) Sketch y defined by tanz = tanhy.
)

(f) Sketch T'(u) defined by T' = pexp ( ), where € > 0, for u > 0.

T
1+ €T
3.2 (a) Newton’s method to solve 23 — z = 0 yields the difference equation

Tpt1 = G($n),

where
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3.3

Sketch G(z), and explain why convergence to the solution z = 1 (for example)
is very rapid. Solve the equation

G(z.) = —x., x>0,

and test (numerically) the conjecture that for |zo| < z., Newton iterates z,
tend to the solution z = 0, but that for z. < zg < 1/ V/3, there is a sequence of
intervals in which alternatively z, —+ +1 or —1.

(b) Consider the equation

where 0 < a < e7!, a is constant.

(i) Devise iterative methods which you can guarantee will converge to the
lower root; to the higher root.

(ii) By consideration of Newton’s method applied to this equation, estimate
the range of initial values zy which will converge to the lower root; to the
higher root.

(iii) Test your results numerically, e.g., with a = 0.1.

The differential equation
t=a—zxze * x>0, a>0,

may have 0, 1 or 2 steady states. Determine how these depend on a, and describe
how solutions behave for a > e and a < ¢!, depending on the value of z(0).
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Chapter 4

Stability and oscillations

If we move from first order systems to second order systems of the form

fz,y),
9(z,y), (4.1)

more interesting phenomena can occur. There is indeed a hierarchy of complexity
which one ascends as the order of the equation increases. As we saw in the preceding
chapter, first order equations have steady state solutions which are alternately stable
and unstable, and the instability is direct, in the sense that loss of stability as a
parameter changes leads to a transient migration towards another fixed point.

In second order systems, a different kind of instability can occur. As well as the
direct instability, or exchange of stability, between different fixed points, oscillatory
instability can occur, and the consequence of such instabilities is that permanent oscil-
latory (periodic) solutions can occur: in two dimensions there is dynamic behaviour.

4.1 Linear stability

We illustrate the technique of linear stability analysis for (4.1). The analysis applies
(and is easy) in two dimensions, but evidently the method applies in n dimensions,
although the classification of behaviour takes its essence from the two-dimensional
example.

A steady state of (4.1) is a constant pair (xg,yo) which satisfies the equations,
i.e., f(zo,y0) = g(zo,yo) = 0. For small perturbations about this state, we write

.’13:.’L'0+X, y:y0+Y7 (42)
and linearise the system (4.1) to obtain the approximate equations
X o B\ (X
_ , 43
(Y) (gz 9y><Y> 3

'When one proceeds to third or higher order systems, more exotic behaviour can occur: period-
doubling, quasi-periodic oscillations, and chaos, for example.
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where the partial derivatives are evaluated at (zo,¥o). The matrix
M= ( o Jy ) (4.4)
9z Gy

is sometimes called the community matrix (particularly in applications in population
biology), and its trace and determinant will be denoted

T=trM, D =detM. (4.5)

Because M is a constant matrix, solutions of (4.3) are of the form

( 2 ) —uet, (4.6)

where u is an eigenvector of M and A is the corresponding eigenvalue; thus A is a
root of the quadratic equation

M —TA+D=0. (4.7)

Classification of the different kinds of behaviour follows from the different combina-
tions of pairs of values of \. For D > T?/4, the roots are complex, and the consequent
phase portrait is a spiral; unstable if 7" > 0, and stable if 7" < 0. Examples are shown
in figure 4.1.

\

Figure 4.1: Unstable (left) and stable (right) spirals solving (4.3) with

M= ( Y ) (left) and M = ( o ) (right).

If 0 < D < T?/4, the fixed point is a node, with two real eigenvalues of M having
the same sign. The node is unstable if 7" > 0 and stable if 7' < 0. An example is
shown in figure 4.2.

Finally, a saddle point is shown in figure 4.3. This occurs if D < 0. The eigenvalues
are real and opposite in sign. There is one stable direction and one unstable, and
the fixed point is thus unstable. Putting these results together, we see that stability
occurs if and only if D > 0 and T < 0, and the classification of fixed points as spiral,
node or saddle can be represented in (D, T) space as shown in figure 4.4.
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Figure 4.2: Unstable node with M = <

\

B

Figure 4.3: Saddle point: M = ( g _11 )



S.Sp. u.Sp.
s.n. u.n.

saddle

Figure 4.4: T—D parameter space indicating location of stable and unstable spirals
and nodes, and saddles.

4.2 Nonlinear stability

4.3 Phase plane analysis

To go beyond linear stability analysis and complete the phase portrait of solution
trajectories is the subject of phase plane analysis, and the most interesting feature
of the phase plane is that periodic oscillations can occur. An illuminating example is
illustrated in figure 4.5, and is typified by (but is not restricted to) the equations

& = g(z)—uy,

where the functions g and h are as shown in the figure: ¢ is unimodal (e.g., like
g = ze~®) and h is monotonic decreasing (e.g., like h = 1/(z — ¢)). The graphs of
g(z) and h(z) (and more generally, the curves where £ = 0 and § = 0) are called
the nullclines of x and y, and it is simple to see that where they intersect, there is
a steady state solution, and also that in the four regions separated by the nullclines,
the trajectories wind round the fixed point in an anti-clockwise manner.

The next issue is whether the fixed point is unstable. If we denote it as (z*,y*),
write zx = z* + X, y = y* + Y, and linearise for small X and Y, then

($)=(4 ) (%) "

where the derivatives are evaluated at the fixed point. The stability of this two by
g -1

YR ) is governed by the trace and

two system with community matrix A = <
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Figure 4.5: Nullclines for (4.8).

determinant of A, as indicated in figure 4.4. In the present case, trA = ¢ + 1,
det A = ¢’ — A/, so that for the situation shown in figure 4.5, where A’ < ¢’ < 0,
det A > 0, and the fixed point is an unstable spiral (or node) if ¢' > —1. When
g’ = —1, there is a Hopf bifurcation, and if the system has bounded trajectories (as is
normal for a model of a physical process) then one expects a stable periodic solution
to exist. Figure 4.6 illustrates an example.

4.4 Relaxation oscillations

It is a general precept of the applied mathematician that there are three kinds of
numbers: small, large, and of order one. And the chances of a number being O(1) are
not great. Thus for systems of the form (4.1), it is often the case in practice that the
time scales for each equation are different, so that in suitable dimensionless units, a
second order system might take the form

EL = y_g(w)a
§ = h) -y, (4.10)

where the parameter ¢ is small. The system (4.10) is essentially the same as (4.8) with
time reversed, but now suppose that the nullclines are as shown in figure 4.7, i.e. g has
a cubic shape. Trajectories now rotate clockwise, and linearisation about the fixed
point yields a community matrix A with tr A = —(¢'/e) —1, det A = (¢’ — I') /¢, thus
with ¢’ > A/, the fixed point is a spiral or node, and with ¢ € 1, trA &~ —¢'/e > 0,
so it is unstable. Thus we expect a limit cycle, and because ¢ < 1, this takes the
form of a relaration oscillation in which the trajectory jumps rapidly backwards and
forwards between branches of the z nullcline. For ¢ <« 1, x rapidly jumps to its
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Figure 4.6: Typical form of limit cycle for a system with nullclines as in figure 4.5.

quasi-equilibrium y ~ g¢(z), and then y migrates slowly (¢ ~ [h(z) — g(z)]/d'(z))
until ¢’ = 0 and z jumps rapidly to the other branch of g. Figure 4.8 shows the time
series of the resulting oscillation. The motion is called ‘relaxational’ because the fast
variable = ‘relaxes’ rapidly to a quasi-stationary state after each transient excursion.

4.5 Belousov-Zhabotinskii reaction

Exercises

4.1 w and v satisfy the ordinary differential equations
u = kl — kzu + k3U2U,
= ]{?4 - ]{?3U2U,

where k; > 0. By suitably scaling the equations, show that these can be written
in the dimensionless form

o = a—u+uv,
v = b—ulv,

where a and b should be defined. Show that if u,v are initially positive, they
remain so. Draw the nullclines in the positive quadrant, show that there is a
unique steady state and examine its stability. Are periodic solutions likely to
exist?

4.2 The relaxational form of the van der Pol oscillator is

ei+ (- 1)i+r=0, e<x 1.
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Figure 4.7: Typical form of relaxation oscillation in phase plane for (4.10).

~t

Figure 4.8: Time series for z corresponding to figure 4.7.
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4.3

A suitable phase plane is spanned by (z,y), where y = ei+3a®—z. Describe the
motion in this phase plane, and find, approximately, the period of the relaxation
oscillation. What happens if ¢ < 07

The Belousov-Zhabotinskii chemical reaction can be approximately described
by the two component pair of ordinary differential equations

eX=X(1-X)- (%) Z,

Z=vX -2,

where ¢ and ¢ are very small, and « is O(1). Show that relaxation oscillations
will occur for  within a certain range (y_, 7, ), and give approximations for the
values of ..
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Chapter 5

Hysteresis and resonance

5.1 Hysteresis

5.1.1 Fluid in tubes
[taryn’s stuff]

5.1.2 Combustion

Lighting a match is an everyday experience, but an understanding of why it occurs is
less obvious. As the match is lit, a reaction starts to occur, which is exothermic, i.e.,
it releases heat. The amount of heat released is proportional to the rate of reaction,
and this itself increases with temperature (coal burns when hot, but not at room
temperature). The heat released is given by the Arrhenius expression A exp(—FE/RT),
where F is the activation, R is the gas constant, T' is the absolute temperature, and
we take A as constant (it actually depends on reactant concentration). A simple
model for the match temperature is then

CZ = —k(T —To) + Aexp(—E/RT), (5.1)
where € is a suitable specific heat capacity, k£ is a cooling rate coefficient, and Tj
is ambient (e.g., room) temperature. The terms on the right represent the source
term due to the reactive heat release, and a Newtonian cooling term (cooling rate
proportional to temperature excess over the surroundings).

We can solve (5.1) as a quadrature, but it is much simpler to look at the problem
graphically. Bearing in mind that 7' is absolute temperature, the source and sink
terms typically have the form shown in figure 5.1, and we can see that there are three
equilibria, and the lowest and highest ones are stable. Of course, one could have only
the low equilibrium (for example, if & is large or T} is low) or the high equilibrium
(if k is small or T} is high). The low equilibrium corresponds to the quiescent state
— the match in the matchbox; the high one is the match alight. If we vary Tg, then
the equilibrium excess temperature A (= T — Tp) varies as shown in figure 5.2: the
upper and lower branches are stable.
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Figure 5.1: Plots of the functions A exp[—E/R(T + T,,)] and k(T — Tp) using values
T, = 273 (so T is measured in centigrade), with values A =1, E = 20,000, R = 8.3,
k=104 T, = 15° C.
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Figure 5.2: Equlibrium curve for Ag as a function of T, parameters as for figure
5.1, but £ = 35,000. An initial condition above the unstable middle branch leads to
combustion.
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We can model lighting a match as a local perturbation to A; the heat of friction
in striking a match raises the temperature excess from near zero to a value above the
unstable equilibrium on the middle branch, and A then migrates to the stable upper
branch, where the reaction (like that of a coal fire) is self-perpetuating. Figure 5.2
also explains why it is difficult to light a wet match, but a match will spontaneously
light if held at some distance above a lighted candle.

Figure 5.2 exhibits a form of hysteresis, meaning non-reversibility. Suppose we
place a (very large, so it will not burn out) match in an oven, and we slowly raise
the ambient temperature from a very low value to a very high value, and then lower
it once again. Because the variation is slow, the excess temperature will follow the
equilibrium curve in figure 5.2. At the value T, A suddenly jumps (spontaneous
combusion) to the hot branch, and remains on this if T is increased further. Now if
Tp is decreased, A remains on the hot branch until 75 = 7', below which it suddenly
drops to the cool branch again (extinction).! The path traced out in the (Tp, AT)
plane is not reversible (it is not an arc but a closed curve).

The reason the multiple equilibria exist (at least for matches) is that for many
reactions, E//R is very large and also A is very large. This just says that it is possible
that Ae /BT is very small near Ty but jumps rapidly at higher T to a large asymptote.
To be more specific, we non-dimensionalise (5.1) by putting

T =Ty+ (AT)9, t=[t)t", (5.2)

and in fact we choose the cooling time scale [t] = ¢/k. Then we have, dropping the
asterisk, and after some simplification,

. A E EAT
0=—0+ exp (— ) exp [ 6 ] : (5.3)

kAT RT, RT2 1+¢6

where ¢ = AT/Ty. The temperature rise scale AT has to be chosen, and there are
two natural choices: to set the exponent coefficient FAT/RTZ to one, or the pre-
multiplicative constant to one. In one way, the latter seems the better choice: it
seems to balance the source with the sink. But because E/R is large, we might then
find EAT/RT? to be large, which would ruin the intention. So we choose (but it
does not really matter)

RT?
AT = —0 .
so that g
0 =—0+ lexp ll-l—e@]’ (5.5)
where EA B RT
)\ — - = —O_ .
kRTZ <P ( RT0> TR (56)

1We can understand why T follows the equilibrium curve as follows. We can write (5.1) in terms
of suitable dimensionless variables as A = Ty — g(A), where g(A) is a cubic-like curve similar to the
function Tp(A) depicted in figure 5.2. if Tp is slowly varying, then To = Tp(et) where € < 1, and
putting T = et, we have edA/dr = To(7) — g(A); thus on the slow time scale 7, A will tend rapidly
to a (quasi-equilibrium) zero of the right hand side.
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If typical values are Ty = 300 K, E/R = 10,000 K, we see that ¢ < 1, and also, since

Ao 1 A
= 20 (_) . o= —, 5.7
2 P 7 " kE (5.7)

A is extremely sensitive to € and thus Tj.
So long as § = O(1), or at least § < 1/e (i.e. T — Ty < Tp), we can neglect the

€6 term, so that .
0~ —0+ X\ (5.8)

This gives the lower part of the S-shaped curve in figure 5.2, and the equilibria are
given by fe=? = ), and these coalesce and disappear if A > e~!. This corresponds to
the value of Ty = T, in figure 5.2, and implies

E

E
—— ~ 1+In)X+ 2In(

R ar) (5.9)

There are two roots to this, but only one has E/RT, > 1. Further, since z > 2Inz
if z > 1, we have, approximately,

E
R[1+1InXg+2In{l +1nX}]

(5.10)

+%

If E/R > T, then the fact that one can light matches at room temperature suggests
that Ao is large, and specifically In\g ~ E/RT,. (Note that this does not imply
A=0(1).)

Carrying on in this vein, let us suppose that we define a temperature T, by
E
Xo=exp | —|, 5.11
o= | (5.11)
and we suppose T, ~ Tj. It follows that T\ ~ T}, or more precisely,

T
T, ~ 2 5.12
+ 1+e{1+2In(1+¢;)} (5.12)

where ¢, = RT,/E. The stable cool branch and unstable middle branch are then the

roots of -
1 1
-0 _ - _ _O
fe "’ =~ A © expl . (1 Tq)] , (5.13)
and in general A < 1 (if Ty < T,), so that we find the stable cool branch (when
6 < 1)
E \’ E({1 1
RAR | = — = — = 14
o2 (RTO> P lR (T+ Toﬂ ! (5.14)
and the unstable middle branch (where 6 > 1),
1 T E(1 1
- (1-20) 22— =), (5.15)
e T,) "R\T, T,



Evidently § becomes O(1/¢) on the middle branch, and to allow for this, we put
0 =0/, (5.16)

é:—@-i-iexp E{lf@)_(l_g)}]' (5.17)

Equating the right hand side to zero gives the approximate equilibria

and (5.5) becomes

To

Tp — ey In (10)

) e T —To+ T, In (B52)

(5.18)

and © tends to infinity as 7o — 0. The hot branch is recovered for even higher values
of ©, so that © > 1, in which case equilibria of (5.16) are given by

1 T
Or~ Sexp| 2|, 5.19
exp [T] (5.19)

and increase again with Tj.

The critical value of T' is that on the unstable middle branch, as this gives the
necessary temperature which must be generated in order for combustion to occur.
From (5.17) (ignoring terms in ¢), this can be written dimensionally in the simple
approximate form

T~T,, (5.20)

where T, is the critical temperature at the nose of the curve in figure 5.2. The fact
that T is approximately constant on the unstable branch is due to the steepness of
the exponential curve in figure 5.1, which is in turn due to the large value of E/R.
In terms of the parameters of the problem, the critical (ignition) temperature is

E

T+%Rln—(k%)'

(5.21)

Hysteresis and multiplicity of solutions is a theme which will recur again and again
in this book.

5.2 Resonance

5.2.1 Forced pendulums

Swinging a pendulum is an everyday experience, and one which one learns about
in a first year mechanics course. If one holds a pendulum, and waves one’s hand
backand forth, one has a forced pendulum, and an interesting phenomenon occurs.
At low forcing frequencies, the pendulum oscillates in phase with the oscillating point
of support. At high forcing frequencies, it oscillates out of phase with the support.
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Moreover, this change in phase appears to occur abruptly, at a particular value of the
forcing frequency. At the same time, there is also a sudden rise in amplitude of the
motion, although it is less easy to see this in a casual experiment. These observations
are associated with the phenomenon of resonance, jumping in a springboard, or in the
surging of telegraph wires in the wind. One illustrates the phenomenon of resonance
mathematically by solving the equation of a forced (linear) oscillator, and we can find
the same phenomenon in the forced pendulum.
To be specific, we will take as a model equation

il + Bu + Q3sinu = esinwt. (5.22)

This represents the motion of a damped, non-linear pendulum, with a forcing on
the right hand side which mimics (it is not a precise model) the pendulum with an
oscillating support. We suppose that the model is dimensionless, and that ¢ is small,
so that the response amplitude of u will be also. We also suppose that the damping
term [ is small.

The simplest approximation of (5.22) neglects 3 altogether, and linearises sin u,
so that

i + Q2u =~ esinwt, (5.23)
to which the forced solution is
u = Asinwt, (5.24)
where the response amplitude A is given by
€
A= ——. 5.25
02 — w2 (5.25)

Plotting |A| versus w gives the familiar resonant response diagram of figure 5.3, in
which the amplitude tends to infinity as w — €. (If one actually solves (5.23) at
w = g, one obtains a solution whose amplitude grows linearly in time.)

The two effects we have neglected, damping and non-linearity, have two separate
effects on this diagram. If we include only damping, so that

il + B + Q2u = elm e™*, (5.26)

then the forced solution is again

u = Im [Ae™1), (5.27)

where now c
A= 5.28
0% + ifw — w?’ (5.28)

and the presence of the damping term causes a phase shift, and caps the response
amplitude, as shown in figure 5.4, since

3

Al = .
A= = p+ i

(5.29)
the peak amplitude at resonance is |A| = ¢/fw.
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Figure 5.3: Resonant amplitude response.
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Figure 5.4: Resonant amplitude response with damping.
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Figure 5.5: Phase plane for the simple pendulum.

The other effect is nonlinearity, which is less easy to deal with. In fact, one can
use perturbation methods to assess its effect in a formal manner, but our present
purpose is more rough and ready. Our idea is this: resonance occurs when the forcing
frequency w equals the frequency of the underlying oscillator. The difference with a
nonlinear pendulum is that this frequency (call it ) now depends on the amplitude
of the oscillation A, = Q(A).

To be specific, we again put 8 = 0, and consider simply the unforced pendulum:

i+ Q2sinu = 0. (5.30)
A first (energy) integral is
1+ Q3(1 — cosu) = E, (5.31)

where F is constant (and depends on amplitude, with F(A) increasing with A). The
phase plane is shown in figure 5.5 and is symmetric about both u and % axes. Thus
a quadrature of (5.30) implies the period P is given by

2v/2 A du
p=22 32
Qo Jo [cosu — cos A]V/?’ (5:32)
where we have used the fact that the amplitude A is given by
E =03(1—cos A). (5.33)
Substituting this in to (5.32), we find the frequency © = 27/P in the form
Q
QA) = ULkl . (5.34)

2/A du
0 [cosu — cos A]1/2
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Figure 5.6: Nonlinearity bends the resonant response curve, producing hysteresis.

(2 is a monotonically decreasing function of A in (0, 7), with 2(0) = Qg and Q(7) =0,
and this is represented as the dotted curve in figure 5.6.

Without actually now solving the forced damped, nonlinear equation, we can guess
intelligently what happens. For small amplitude oscillations, |A| starts to increase as
w approaches €)g; but as |A| increases, the natural frequency () decreases, and as it is
the approach of w to the natural frequency which is the instrument of resonance, so
the amplitude response curve bends round, as shown in figure 5.6, to try and approach
the dotted 2(A) curve. Finally, the effect of damping can be expected to be as in the
linear case, to put a cap on the two asymptotes to 2(A). Thus, we infer the response
diagram shown in figure 5.6, and this is in fact correct. Moreover, (5.25) suggests
AS 0 for w S Q, i.e., the solution is in phase with the forcing for w > o, and
out of phase for w > )y. Extending this to the nonlinear case, we infer that at low
frequencies, the response is in phase, but that it is out of phase at high frequencies.

The response also involves hysteresis (if damping is small enough). If w is increased
gradually, then at a value w, < (), there is a sudden jump to an out of phase
oscillation with higher amplitude. Equivalently as w is reduced for this high frequency
response, there is a sudden jump down in amplitude to an in phase oscillation at
a value w_ < w,;. This response diagram explains what one sees in the simple
experiment and illustrates the important effects of nonlinearity.
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Exercises

5.1

5.2

9.3

5.4

9.5

Find a scaling of the combustion equation (5.1) so that it can be written in the
form

é: 00 - g(e)a

where 6y = RTy/E and g = 6 — ae~ 1/, Give the definition of a. Hence show
that the steady state 6 is a multiple-valued function of 6 if o > ie?

T

Find approximations to the smaller and larger positive roots of z2e~* = ¢, where

¢ is small and positive.

Hence find the approximate range (6_, 6, ) of 6y in question 5.2.1 for which there
are three steady solutions.

Suppose that @ satisfies § = 6y — g(#), where g(0) is as in question 5.2.1 and
a > 1€?, and 6, varies slowly according to

b0 = (6" —0),

where ¢ < 1. Show that there are three possible outcomes, depending on the
value of 6*, and describe them.

A forced pendulum is modelled by the (dimensional) equation
16 + kO + gsinf = asin M.

By non-dimensionalising the equation, show how to obtain (5.22), and identify
the parameters ¢, 3,y and w.

It is asserted after (5.34) that 2(A) is a decreasing function of A for 0 < A < 7,
or equivalently, that the function

1 A du
A) = —/
P(4) V2 Jo [cosu — cos A]'/?

is increasing. Show that this is true by writing p in the form

6 12 05 \ 12 dw
p_/o (Sin9> (sin¢) (1 —w?)1/?

for some functions f(w, A) and ¢(w, A), and using the fact that 6/siné is an
increasing function of 4 in (0, 7).

A— A
[Hint: cosu—cosA=2sin( 2u>sin( —2i-u>]
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Chapter 6

Waves and shocks

Any introductory course on partial differential equations will provide the classifica-
tion of second order partial differential equations into the three categories: elliptic,
parabolic, hyperbolic; and one also finds the three simple representatives of these:
Laplace’s equation VZu = 0, governing steady state temperature distribution (for
example); the heat equation u; = V2u, which describes diffusion of heat (or solute);
and the wave equation u; = V2u, which describes the oscillations of a string or of a
drum. These equations are of fundamental importance, as they describe diffusion or
wave propagation in many other physical processes, but they are also linear equations;
however the way in which they behave carries across to nonlinear equations, but of
course nonlinear equations have other behaviours as well.

In the linear wave equation (in one dimension, describing waves on strings) u; =
U4, the general solution is u = f(z+ct)+g(x—ct), and represents the superposition
of two travelling waves of speed c. In more than one space dimension, the equivalent
model is uy = ¢*V?u, and the solutions are functions of (k.x + wt), where w is
frequency and k is wave vector; the wave speed is then ¢ = w/|k|.

Even simpler to discuss is the first order wave equation

U + cug = 0, (6.1)
which is trivially solved by characteristics to give
u=f(z—ct), (6.2)

representing a wave of speed c. The idea of finding characteristics generalises to

systems of the form
Au; + Bu, =0, (6.3)

where u € R" and A and B are constant n x n matrices. We can solve this system
as follows. The eigenvalue problem

AAw = Bw (6.4)

will in general have n solution pairs (w, A), where each value of \ is one of the roots
of the n-th order polynomial
det(AA — B) = 0. (6.5)
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Suppose the n values of A, );, are distinct (which is the general case); then the
corresponding w; are independent, and the matrix P formed by the eigenvectors as
columns (i.e., P = (wy, ..., w,,)) satisfies BP = APD, where D is the diagonal matrix
diag(\y, ..., A\p). P is invertible, and if we write v = P~'u, then APv; + BPv, = 0,
whence v, + Dv, = 0, and the general solution is

u="P lz fiz — )\it)] , (6.6)

representing the superposition of n travelling waves with speeds ;. This procedure
works providing A is invertible, and also if all the \; are real, in which case we say
the system is hyperbolic.

More precisely, we can use the above prescription to solve the nonlinear equation

Au; + Bu, = c¢(z,t,u), (6.7)

where we allow A and B to depend on z and ¢ also. The diagonalisation procedure
works exactly as before, leading to

0 0
AE(PV) + Ba(Pv) = c[z,t, Pv]; (6.8)

now, however, A, w and therefore also P will depend on z and ¢. Thus we find
vi+Dv,=P 'A'c— [P 'P,+ DP'P,v, (6.9)

and the components of v can be solved as a set of coupled ordinary differential
equations along the characteristics dz/dt = ;.

If A and B depend also on u, the procedure is less clear for systems. However,
the method of characteristics always works in one dimension, so we now return our
attention to this case. Consider as an example the nonlinear evolution equation

up + uu, = 0, (6.10)

to be solved on the whole real axis. The method of characteristics leads to the
implicitly defined general solution

u = f(x — ut), (6.11)

which is analogous to (6.2), and represents a wave whose speed depends on its am-
plitude. Thus higher orders of u propagate more rapidly, and this leads to the wave
steepening depicted in figure 6.1.

In fact, it can be seen that eventually u becomes multi-valued, and this signifies a
break down of the solution. The usual way in which this multi-valuedness is avoided
is to allow the formation of a shock, which is a point of discontinuity of u. the
characteristic solution applies in front of and behind the shock, and the characteristics
intersect at the shock, whose propagation forwards is described by an appropriate
Jump condition: see figure 6.2.
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Figure 6.1: Nonlinearity causes wave steepening.

>
X

Figure 6.2: Intersection of characteristics leads to shock formation.
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This seemingly arbitrary escape route is motivated by the fact that evolution
equations such as (6.10) are generally derived from a conservation law, here of the
form

8 B
= /A wdz = —[2u?B, (6.12)

where the square-bracketed term represents the jump in %uz between A and B. The
deduction of the point form (6.10) from (6.12) required the additional assumption
that u was continuously differentiable; however, it is possible to satisfy (6.12) at a
point of discontinuity of u. Suppose u is discontinuous at z = xz5(t), and denote the
jump in a quantity g across the shock is [q]* = g(zg+,t) — ¢(zs-,t). Then by letting
B — x5+, A — x5-, we find that (6.12) implies the jump condition

[
[ul*

N[ =

(uy +u_). (6.13)

Tg

An example

We illustrate how to solve a problem of this type by considering the initial value

1
u=up(z) = T2 at t=0. (6.14)

The implicitly defined solution is then

! (6.15)
u= .
14 (z —ut)?’
or, in characteristic form,
1
u=up(€) = T x =&+ ut. (6.16)

This defines a single-valued function so long as w, is finite. Differentiating (6.16)
leads to .
ug(§)

1
and this shows that u, — —oo as t = t, = min [————]. Since —uf = 2¢/(1 + £2)?,
eu<0 ug(§)

we find the relevant value of ¢ is 1/4/3, and thus ¢, = 8/3+/3 and the corresponding
value of z is z. = /3. Thus (6.15) applies while ¢ < t. = 8/31/3, and thereafter the
solution also applies in z < zg(t) and = > zg(t), where

i = 2u(zs+) + u(zs—)], (6.18)
with
zs=V3 at t= 5. (6.19)

As indicated in figure 6.3, the characteristics intersect at the shock, and it is geomet-
rically clear from figure 6.1, for example, that v, and u_ are the largest and smallest
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X

Figure 6.3: Characteristic diagram indicating shock formation.

roots of the cubic (6.15). An explicit solution for zg is not readily available, but it is
of interest to establish the long term behaviour, and for this we need approximations
to the roots of (6.14) when ¢ > 1.

We write the cubic in the form

—u\ 12
u:%:l:%<1uu> . (6.20)

We know that © < 1, and we expect the largest root, at least, to tend to infinity as
t — o0. In that case u &~ z/t if u = O(1), and the next corrective term gives

1 _ 1/2
uz%i; (t x) . (6.21)
I

This evidently gives the upper two roots for x < t (since they coalesce at v = 1 when
x =t). For large z, the other root must have u < 1, and in fact

u =~

= (6.22)
in order that (6.20) not imply (6.21). Alternatively, (6.22) follows from consideration
of (6.15) in the form
t*u® — 2ztu® + (2> + L)u — 1 = 0, (6.23)
providing z > t!/3.
(6.22) gives the right hand nose of the (rightmost) curve in figure 6.1. The left
nose can be determined from the observation that the approximation that u ~ x/t
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4/27

Figure 6.4: Determination of W (X).

breaks down (from (6.21)) when z ~ ¢'/3, which is also where (6.22) becomes invalid.
This suggests writing

x x
and then W (X) is given approximately, for large ¢, by
1
W(W —1)% = el (6.25)

and for X = O(1) there are three roots providing X > 3/2%3; at X = 3/22/3 the two
lower roots coalesce at W = %: this is the left nose of the curve.

As X becomes large, the upper two roots approach W = 1, i.e. u = z/t, while
the lower approaches zero, specifically W a 1/X3, ie. u ~ 1/z% see figure 6.4.
Thus these roots match to the approximations when z ~ t. As X becomes small, the
remaining root is given by W ~ 1/X, i.e. u ~ 1/t?/3, and (6.23) shows that this is
the correct approximation as long as |z| < t/3. The situation is shown in figure 6.5).

In order to determine the shock location zg, we make the ansatz that t'/3 < zg <
t, i.e., that the shock is far from both noses. In that case

N —, N, 6.26
Uy .T% u n ( )

and at leading order we have

. Ts
N — 6.27
zs 2 ) ( )
whence

T ~ at'/?, (6.28)

confirming our assumption that /3 <« g < t.

61



Figure 6.5: Large time solution of the characteristic solution.

To determine the coefficient a, we may use the equal area rule, which follows from
conservation of mass, and implies that the two shaded areas in figure 6.5 are equal.
We use (6.24) for the left hand area, and (6.21) for the right hand area. then

/:tm w (X) = w(X)]dz ~ /t 2 (t - x>1/2 dz, (6.29)

11/3/22/3 at/2 1 z

where W, and W_ are the middle and lowest roots of (6.25), as shown in figure 6.4.
We write = t'/2¢ in the left integral and x = ¢ in the right, and hence we deduce

that 12
1 [1—
o~ / 2 <—77> dn = . (6.30)
o "\ 7

6.1 Burgers’ equation

Although the presence of a shock for (6.10) is entirely consistent with the derivation
of the equation from an integral conservation law, nature appears generally to avoid
discontinuities and singularities, and it is usually the case that in writing (6.10), we
have neglected some term which acts to smooth the shock, so that the change of u is
rapid but not abrupt.

A simple example of this arises in the theory of traffic flow on a road. On a
one-lane carriageway, the density of cars is p(z,t) (number per unit length, idealised
as a continuum, which should be a reasonable assumption for road lengths of many
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cars);  is distance along the carriageway, and t is time. If v(x,t) is the local traffic
vehicular speed, then a conservation law for cars is

op 0O

— + —(pv) =0, 6.31

5 T 55 PV (6.31)
assuming no cars leave or join the carriageway. The car speed must be prescribed, and
a simple and sensible prescription is to take v = v(p): a driver drives at a speed which
depends on density. More specifically, we might suppose that there is a maximum
speed of vy when there is no traffic (p = 0), but the speed decreases as p increases,
reaching zero when the distance between cars is zero, corresponding to a maximum
density p,, say. A simple recipe which satisfies these constraints is

v:vo(p). (6.32)

Prm
By scaling the variables suitably, we may take vg = 1, p,, = 1, and then we have

pt+ c(p)pz =0, (6.33)

where
c(p)=1-—2p. (6.34)

This is equivalent to (6.10), with u = 1 — 2p, and therefore we can in general expect
shocks to form. Since 0 < p < 1, a difference here is that we can have ¢ < 0 for p > %

Suppose first that p < % A local reduction in p is like a bump for u = 1 — 2p,
and will form a forward propagating shock where p, > p_; cars driving through the
low density precursor will suddenly hit a traffic jam at high density. Equivalently, a
local rise in density leads to a forward-propagating shock with p, > p_.

On the other hand, suppose that p > % With w = 2p — 1, then w; — ww, = 0,
and a similar discussion arises, with the direction of x reversed. Thus a local rise in
p causes a shock to form in which, again, p, > p_, and the shock now propagates
backwards. In all cases, the individual driver experiences the shock as a sudden
reduction of speed (the car speed is 1 — p and is larger than the wave speed 1 — 2p:
thus cars approach and travel through the shock).

The occurrence of shocks is a common experience to anyone who has driven on a
motorway, and can be caused by lane closures, motorway junctions, or speed restric-
tions. In general, collisions do not occur, and one may ascribe this to a smoothing
mechanism; the question arises, what could this be?

Drivers arguably adjust their speed not only according to the inter-car distance
(the direct density effect), but also depending on how much traffic they see ahead. A
common exhibition of this is the tailgater. Driving at the speed limit on a motorway
in the outside lane will attract tailgaters if there is little traffic ahead, but not if the
road is full. That is, at a constant v, p may increase above its ideal value if p in front
is less, i.e. if 9p/0z < 0. A simple modification for v which describes this is (in scaled
units)

v=1-—p— Kp,, (6.35)
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where x is constant. From this we can deduce the advection-diffusion equation

% +(1— 2p)% = /4;% (p%) : (6.36)
and the non-local dependence of v on p, is represented as a (nonlinear) diffusion term.

What is the effect of this on the structure of the solutions? If  is small, we should
suppose that it is not much, so that shocks would start to form. However, the neglect
of the diffusion term becomes invalid when the derivatives of p become large. In fact,
the diffusion term is trying to do the opposite of the advective term. The latter is
trying to fold the initial profile together like an accordion, while the former is trying
to spread everything apart. We might guess that a balanced position is possible, in
which the nonlinear advective term keeps the profile steep, but the diffusion prevents
it actually folding over (and hence causing a discontinuity), and this will turn out to
be the case.

If we suppose instead of (6.35) that

v=1—p-— E,ogc, (6.37)
p

which might represent the fact that the strength of tailgating becomes more severe,
the emptier the road ahead, then the diffusion term becomes linear, and we have
Burgers’ equation for u =1 — 2p:

U + UUy = KUgy. (6.38)

Shock structure

We suppose k < 1, and that u; + uu, ~ 0, and a shock forms at z = zg(t). Our aim
is to show that (6.38) supports a shock structure, i.e. a region of radial change near
xg for u_ to u,.

To focus on the shock, we need to rescale x near zg, and we do this by writing

z =1xg(t) + kX. (6.39)
Burgers’ equation becomes
KUy — TgUx + UUx = Uxx- (6.40)

We expect the characteristic solution (with x = 0) to be approximately valid far from
x,, and so appropriate conditions (technically, these are matching conditions) are

u—uy as X — oo, (6.41)

and we take these values as prescribed from the outer solution (i.e., the solution of
up + uu, = 0).

Since k < 1, (6.40) suggests that u relaxes rapidly (on a time scale t ~ kK < 1)
to a quasi-steady state (quasi-steady, because v, and u_ will vary with ¢) in which

—Tux + uux X uxx, (6.42)
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whence

1
K — &u+ §u2 R Ux, (6.43)
and prescription of the boundary conditions implies
. 1, 1,
K =tuy — -ul = fu_ — -u”, (6.44)
2 2
whence 12+
SU
2 —
s = y 6.45
R (6.45)

which is precisely the jump condition we obtained in (6.13). The solution for u is
then
u=c— (u_ — c) tanh [%(u_ — c)X} , (6.46)

where ¢ = zg.

6.2 The Fisher equation

In Burgers’ equation, a wave arises as a balance between nonlinear advection and
diffusion. In Fisher’s equation,

up = u(l — u) + Ugg, (6.47)

a wave arises as a mechanism of transferring a variable from an unstable steady state
(u = 0) to a stable one (u = 1). Whereas Burgers’ equation balances two transport
terms, Fisher’s equation balances diffusive transport with an algebraic source term.
It originally arose as a model for the dispersal of an advantageous gene within a
population, and has taken a plenary réle as a pedagogical example in mathematical
biology of how reaction (source terms) and diffusion can combine to produce travelling
waves.
We pose (6.47) with boundary conditions

u—1, x— —o0,

u—0, z— +oo. (6.48)

It is found (and can be proved) that any initial condition leads to a solution which
evolves into a travelling wave of the form

u=f(§), =z —ct, (6.49)
where
f"+ef'+ f1—f)=0, (6.50)
and
f(oo) =0, f(—o0)=1. (6.51)
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Figure 6.6: Phase portrait of Fisher equation, (6.52), for ¢ = 2. Note how close
the connecting trajectory (thick line) is to the g nullcline. This is why the large ¢
approximation is accurate for this trajectory.

In the (f, g) phase plane, where g = — f’, we have

f, = -9,
g = f1—=f)—cy, (6.52)

and a travelling wave corresponds to a trajectory which moves from (1,0) to (0,0).
Linearisation of (6.52) near the fixed point (f*,0) via f = f* 4+ F leads to

(§>':(1_02f* Ii)(ﬁ,f) (6.53)

with solutions e*¢, where A2 + ¢\ + (1 — 2f*) = 0. We anticipate ¢ > 0; then (1,0)
is a saddle point, while (0,0) is a stable node if ¢ > 2 (and a spiral if ¢ < 2). For
¢ > 2, a connecting trajectory exists as shown in figure 6.6: in practice the minimum
wave speed ¢ = 2 is selected. (Connecting trajectories also exist if ¢ < 2, but because
(0,0) is a spiral, these have oscillating tails as u — 0, which are unstable and also (for
example, if u is a population) unphysical.)
Explicit solutions for (6.50) are not available, but an excellent approximation is
easily available. We put
¢ = cE, (6.54)

SO
vf"+ '+ f(1-f)=0, (6.55)
with v = 1/c? = 1/4 for ¢ = 2. Taking v < 1 and writing f = fo+vf; + ..., we have

fo+fo(l—fo) = 0,
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and thus

)

e

I (6.57)
Also, noting that 1 — 2fy = —f{'/ f} (differentiate (6.56)1),
fi=fo(1 = fo) In[fo(1 — fo)], (6.58)

and so on. Even the first term gives a good approximation, and even for ¢ = 2.

6.3 Solitons

The Fisher wave is an example of a solitary travelling wave. Another type of solitary
wave is the soliton, as exemplified by solutions of the Korteweg-de Vries equation

Uy + Uy + Upgy = 0. (6.59)

This has travelling wave solutions u = f(§), £ = x — ct, where

"+ ff —cf =0, (6.60)
and solitary waves with f — 0 at oo satisfy the first integral
"+ 32 —cf =0, (6.61)
and thus
P = tefr =0, (6.62)
with solution
f= %csech2§§. (6.63)

Thus there is a one parameter family of these solitary waves, and they are called
solitons, because they have the remarkable particle-like ability to ‘pass through’ each
other without damage, except for a change of relative phase. Despite the nonlinear-
ity, they obey a kind of superposition principle. Soliton equations (of which there
are many) have many other remarkable properties, beyond the scope of the present
discussion.

Some understanding of the solitary wave arises through an understanding of the
balance between nonlinearity (uu,) and dispersion (ugq;). The dispersive part of
the equation, u; + Uz, = 0, is so called because waves explik(z — ct)] have wave
speed ¢ = —k? which depends on wavenumber k; waves of different wavelengths
(2m/k) move at different speeds and thus disperse. On the other hand, the nonlinear
advection equation u;+uu, has a focussing effect, which (from a spectral point of view)
concentrates high wave numbers near shocks (rapid change means large derivatives
means high wavenumber). So the nonlinearity tries to move high wavenumber modes
in from the left, while the dispersion tries to move them to the left: again a balance
is struck, and a travelling wave is the result.
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6.4 Snow melting

An example of some of the ideas presented so far occurs in the study of melting
snow. In particular, it is found that pollutants which may be uniformly distributed
in snow (e.g. SO, from sulphur emissions via acid rain) can be concentrated in melt
water run-off, with a consequent enhanced detrimental effect on stream pollution.
The question then arises, why this should be so.

The model we use is based on precepts of groundwater flow, and will be more
fully explained in Chapter 7. Suppose we have a snow pack of depth A in 0 < 2z < h,
where z is a coordinate pointing downwards from the snow surface. Snow is a porous
aggregate of ice crystals, and meltwater formed at the surface can percolate through
the snow pack to the base, where run-off occurs. (We ignore effects of re-freezing of
meltwater). The flux of water u downwards is given by Darcy’s law

-+ pg] , (6.64)

where u is measured as a velocity, and represents volume per unit area per unit time;
p is the (pore) water pressure, p is density, g is gravity, u is viscosity, k is permeability.
The permeability £ is related to the saturation S, and we will assume

k= koS3, (6.65)

where the saturation S is the volume fraction of the pore space which is occupied by
water. For S = 1, the snow is fully saturated (no air), for S = 0 it is fully dry (no

water).
Conservation of the liquid water implies
0S Ou
5t + 5 0, (6.66)

where ¢ is the porosity (volume of pore space per unit volume of snow). Finally, the
water pressure is related to the air pressure (p,, taken as constant) by the capillary
pressure

pC :pa _p7 (667)

and this is a function of S: we take
1
pe(S) =po (- 5), (6.68)

based on typical experimental results.
Suitable boundary conditions in a melting event might be to prescribe the melt
flux at the surface:
u=ug at z=0. (6.69)

If the base is impermeable, then

u=0 at z=h. (6.70)
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This is certainly not realistic if S reaches 1 at the base, since then ponding must
occur and presumably melt drainage via a channelised flow, but we examine the
initial stages of the flow using (6.70). Finally, we suppose S = 0 at t = 0. Again, this
is not realistic in the model (it implies p, = oo0) but it is a feasible approximation to
make.

Simplification of this model now leads to the Darcy-Richards equation in the form
3kopg528_5 _ kopo 0 85]

— lS(l + SQ)E ,

0S

¢ ot + U 0z u 0z (6:71)
which, as we see, is a convective-diffusion equation of Burgers type. The quantity
K = kopg/p is known as the saturated hydraulic conductivity; it is a velocity, and
represents the highest rate at which water can flow through the snow steadily under
gravity.

To scale the equation, we note that S is dimensionless and of O(1) by definition.
We choose scales for z and t:

oh,
z~h, t d (6.72)
the model then becomes
oS 508 0 9\ OS5
— — =K 1 — )
8t+35 P nz[S( +S)82]’ (6.73)
where '
K= —. 6.74
oh (6.74)

if we choose py = 1kPa, p = 103kgm=3, ¢ = 10ms~2, h = 1m, then x = 0.1.
it follows that (6.73) has a propensity to form shocks, these being diffused by the
term in k over a distance O(k) (by analogy with the shock structure for the Burgers
equation).

We want to solve (6.73) with the initial condition

S=0 at t=0, (6.75)

and the boundary conditions

05 _u

3_ 2 Uo _
S°—kS(1+ S )82 7o on 2 0, (6.76)
and
3 9 08
S —/{S’(l-l-S)&:O at z=1. (6.77)

Roughly, for k < 1, these are

S:SO at ZZO,
S=0 at z=1, (6.78)

where Sy = (ug/K)'/?, which we initially take to be O(1) (and < 1, so that surface
ponding does not occur).
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Neglecting «, the solution is the step function

S =50, z<zy,

S=0, z>z, (6.79)
and the shock front at z; advances at a rate 2, given from the jump condition

NN S M

Zp = S =5;. (6.80)

In dimensional terms, the shock front moves at speed ug/$Sy, which is in fact obvious
(given that it has constant S behind it).
The shock structure is similar to that of Burgers’ equation. We put

z=2zf+ KZ, (6.81)
and S rapidly approaches the quasi-steady solution S(Z) of
—VS' +35%5" =[S(1+ 887, (6.82)

where V' = Z7; hence
S(14 85?8 = -85(S2 - 5?), (6.83)

in order that S — Sy as Z — —oo, and where we have chosen
V=283, (6.84)
(as S; = 0), thus reproducing (6.80). The solution is a quadrature,

/5 (1+5%)dS g

G~ (6.85)

with an arbitrary added constant (amounting to an origin shift for Z). Hence

S —

(1+50) [So + 5] _z (6.86)

25 So— S

The shock structure is shown in figure 6.7, and one particular feature is notewor-
thy; the profile terminates where S = 0 at Z = 0. In fact, (6.83) implies that S =0
or (6.86) applies. Thus when S given by (6.86) reaches zero, the solution switches to
S = 0. The fact that 05/0Z is discontinuous is not a problem because the diffusivity
S(1 + S?) goes to zero when S = 0. In fact, this degeneracy of the equation is a
signpost for fronts with discontinuous derivatives, and we shall encounter this situa-
tion again when we study non-linear diffusion. Essentially, the profile can maintain
discontinuous gradients at S = 0 because the diffusivity is zero there, and there is no
mechanism to smooth the jump away.

Suppose now that kg = 107°m? (a plausible value) and p/p = 107°m?s™!, then
the saturated hydraulic conductivity K = kgpg/p = 10 2ms 1. On the other hand,
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105

Figure 6.7: S(Z) given by (6.86); the shock front terminates at the origin.

if a metre thick snow pack melts in ten days, this implies ug ~ 107°ms~!. Thus
S2 = ug/K ~ 107*, and the approximation S & Sy looks less realistic. With

0S8
S3—kS(1+ 8% —— =S5, (6.87)
0z
and Sy ~ 1072 and k ~ 107!, it seems that one should assume S < 1. We define
3\ 1/2
S = (i) s, (6.88)
K
note that (S2/k)!/2 ~ 0.03, so that (6.87) becomes
3
Bsd —s ll + iSQ] Os =1 on z=0, (6.89)
K 0z
and we have S5 /k ~ 1073, B8 = (Sp/k)*/? ~ 0.3.
We neglect the term in S /k, so that
0
Bs® — sa—z ~1 on z=0, (6.90)

and substituting (6.88) into (6.73) leads to

0s 0s 0 | Os
— +338° —~ — s . 6.91
or +30s 0z 0z lsaz] (6.91)
A simpler analytic solution is no longer possible, but the development of the solution
will be similar. The flux condition (6.90) at z = 0 allows the surface saturation to
build up gradually, and a shock will only form if 8 > 1 (when the preceding solution
becomes valid).
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6.5 Similarity solutions

If, on the other hand, 8 < 1, then the saturation profile approximately satisfies

o _ o[ 0s
ar 0z |70z’
0s 1 on z=0,
o, T { 0 on z=1. (6.92)

At least for small times, the model admits a similarity solution of the form

s=71%f(n), ’I’]:Z/TB, (6.93)

where satisfaction of the equations and boundary conditions requires 2a0 = (8 and
26 =1= a, whence a = 1/3, § = 2/3, and f satisfies

(ff) —3(f—2nf") =0, (6.94)
and the condition at z = 0 becomes
—ff'=1 at n=0. (6.95)

The condition at z = 1 can be satisfied for small enough 7, as we shall see, because

the equation (6.94) is degnerate, and f reaches zero in a finite distance, 7, say, and

f=0forn>mn. Asn =1/7%3 at z = 1, then this solution will satisfy the no flux

condition at z =1 as long as 7 < 7, 3/ 2, when the advancing front will reach z = 1.
To see why f behaves in this way, integrate once to find

Ff +2n) = —1 +/0"fdn. (6.96)

For small 7, the right hand side is negative, and f is positive (to make physical sense),
so f decreases (and in fact f' < —2n). For sufficiently small f(0) = fo, f will reach
zero at a finite distance n = 79, and the solution must terminate. On the other
hand, for sufficiently large fy, [; fdn reaches 1 at n = n; while f is still positive (and
f'' = —3%n there). For n > ny, then f remains positive and f' > —25 (f cannot reach
zero for n > ny since [ fdn > 1 for n > n;). Eventually f must have a minimum and
thereafter increase with n. This is also unphysical, so we require f to reach zero at
1N = no- This will occur for a range of fy, and we have to select fy in order that

70
/ Fdn=1, (6.97)

0
which in fact represents global conservation of mass. Figure 6.8 shows the schematic

form of solution both for 8 > 1 and 8 < 1. Evidently 8 ~ 1 will have a travelling
front solution between these two end cases.

72



1

| |

z:r]oTZ/3 z~[31/3r

Figure 6.8: Schematic representation of the evolution of s in (6.91) for both large and
small (.

Exercises

6.1 A simple model for the flow of a mixture of two fluids along a tube (e.g., air
and water) is
ar+ (aw), =0

—au+[(1 - a)ul. = 0
pul(av) + (a0?).] = —ap.,
Al{(1 = ayul + {Di(1 = a)u?}] = = (1 = a)ps,

where p is pressure, u and v are the two fluid velocities, o is the volume fraction
of the fluid with speed v, p, is its density, and p; is the density of the other
fluid. Show that there are two characteristic speeds dz/dt = A, satisfying

(A —u)? = (D; — D[u? + 2u(XA — u)] — s*(A — v)?,

where 12
s — lpg(l - 04)]
jy1e

Deduce that the characteristic speeds are real if, when D, — 1 <« 1, s < 1,

D,z1+{M}2.

u

In particular, show that the roots are complex if D; = 1 and u # v. What does
this suggest concerning the well-posedness of the model?
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6.2

6.3

6.4

6.5

The function u(z,t) satisfies
uy + uug = a(l — u?)

for —oo < z < o0, where alpha > 0, and with v = wug(z) at t = 0, and
0 < ug < 1 everywhere. Show that the characteristic solution can be written
parametrically in the form

_ up(s) +tanhat
1+ ug(s) tanh at’

expla(z — s)] = cosh at + ug(s) sinh at.

Sketch the form of the characteristics for an initial function such as wug(s) =
a/(1+ s®). Show that, in terms of s and ¢, u, is given by

[asech 2at]uf(s)
[1+ wo(s) tanh at][a + {ug(s) + aug(s)} tanh at]’

Uy =

and deduce that a shock will form if uy + (1 4 uy) becomes negative for some
s. Show that if ug = a/(1 + s?) and a is small, this occurs if

3av/3

a <
~ 8

Discuss the formation of shocks and the resulting shock structure for the equa-
tion
uy + utug = e[uPugl,,

where a, 8 > 0, and ¢ < 1. (Assume u > 0, and u — 0 at +00.)

Show that the equation
Ut + YUy = EUUL,

admits a shock structure joining u_ to a lower value u,, but not one in which
_l’_
the wave speed ¢ = [%uﬂ _ /[u]t. Why should this be so?

Use phase plane methods to study the existence of travelling wave solutions to
the equation
up = uP(1 — u?) + [u"ugl,,

when (i) p=1,¢=2,r=0;(ii))p=1,g=1,r=1.

Two examples of integrable partial differential equations which admit soliton
solutions are the nonlinear Schrédinger (NLS) equation

; 2
iug = |ul“u + Ugg,
and the sine-Gordon equation
Ut — Uggy = sinu.

Show that these equations admit solitary wave solutions (which are in fact
solitons).
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6.6 In a model of snow melting, it is assumed that the permeability is k = £S<,
and the capillary suction is p.(S) = po(S—? — S), where o, 3 > 0, and S is
the saturation. How does the choice of different values of a and g affect the
formation and propagation of shock waves, and their internal structure?
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Chapter 7

Nonlinear diffusion

Like travelling wave solutions, similarity solutions are important indicators of solu-
tion behaviour. For example, in the example we have just seen, the existence of a
propagating front solution is a hallmark of the degeneracy of the diffusion coefficient
where the saturation goes to zero.
A particularly good illustration of this behaviour is in the general nonlinear dif-
fusion equation
u = (U Uy, (7.1)

which arises in many contexts. We shall illustrate the derivation of this equation for
a fluid droplet below. Typically, (7.1) represents the speed of the density of some
quantity v with a diffusive lux —u™u,. A standard kind of problem to consider is
then the release of a concentrated amount at z = 0 at t = 0. We can idealise this by
supposing that at ¢ = 0 (in suitable units),

[e o]

u=0, z#0, / u(z)dz = 1. (7.2)
This apparently contradictory prescription idealises the concept of a very concentrated
local injection of u. For example, (7.1) with (7.2) could represent the diffusion of sugar
in hot (one-dimensional) tea from an initially emplaced sugar grain. (7.2) defines the
delta function d(z), an example of a generalised function. One can think of generalised
functions as being (defined by) the equivalence classes of well-behaved functions u,
with appropriate limiting behaviour. For example, the delta function is defined by
the class of well-behaved functions u,, for which

[ wl@)f(@)dz = £0) (73)
for all well-behaved f(x). As a shorthand, then,
| @)@ o= 1(0) (7.4)

for any f, but the ulterior definition is really in (7.3). In practice, however, we think
of a delta function as a ‘function’ of x, zero everywhere except for a (very) sharp spike
at z = 0.
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In solving (7.1), we also apply boundary conditions
u—0 as = — +oo, (7.5)

and these, together with the equation, imply that

/ Y udr=1 (7.6)
for all time.

A similarity solution is appropriate because there are no intrinsic space or time
scales for the problem. It is in this context that one can expect the solution to look
the same at different times on different scales. In general, as t varies, then the length
scale might vary as £(t) and the amplitude of the solution u might vary as U(t). That
is, if we look at u/U as a function of z /£, it will look the same for all ¢. This in turn
implies that the solution takes the form

u=U(t)f l%} : (7.7)

and this is one of the forms of a similarity solution.

It is often the case that U and £ are powers of ¢, and the exponents are to be
chosen so that the problem has such a solution. This is best seen by example. If we
denote n = z/£(t), and substitute the form (7.7) into (7.1), (7.5) and (7.6), we find

!
3
where U' = dU/dt, £ = d¢/dt, but f' = df/dn. The initial/boundary conditions
become

UI ! Um m g1/
E R (78)

f(Fo0) =0, (7.9)

and the normalisation condition (7.6) is

Ug/_o:ofdn — 1. (7.10)

A solution can be found provided the ¢ dependence vanishes from the model, and this
requires U¢ = 1 (the constant can be taken as one without loss of generality), whence
(7.8) becomes

[fm ]+ €mE (nf) =, (7.11)
and £™T1¢' must be constant. It is algebraically convenient to choose E™1¢" = 2/m,
thus )
m m+2
=—z|— 12
=7 l2(m n 2)tl ! (7.12)

and a first integral of (7.11) is
m £/ 2
f"f+—nf=0, (7.13)
m
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with the constant of integration being zero (because f — 0 as  — +00). Thus either
f=0,or

f =g -1, (7.14)
so that the solution has the form of a cap of finite extent, given by (7.14) (for |n| < no,
and f = 0 for |n| > ny. The value of 7 is determined from [*_ fdn = 1, and is

1

e (7.15)
[2 JTP2 cos™m 0d0] e

o =

The finite extent of the profile is due to the degeneracy of the equation when m > 0.
(The limit m — 0 regains the Gaussian solution of the heat equation by first putting
n = vmnl, f = F/\/m, and noting that ny ~ (mm)™™/2 as m — 0 (this last
following by application of Laplace’s method to (7.15)).) The graph of f(n) is shown
in figure 7.1.

Figure 7.1: f(n) given by (7.14).

7.1 The viscous droplet

An example of where the nonlinear diffusion equation can arise is in the dynamics of
a drop of viscous fluid on a level surface. If the fluid occupies 0 < z < h(z,y,t) and
is shallow, then lubrication theory gives the approximation

o%u
Vp = po—
p: = —pg, (7.16)

in which u = (u, v, 0) is the horizontal component of velocity, and V is the horizontal
gradient (0/0z,0/0y,0). With p = 0 at z = h, we have the hydrostatic pressure
p = pg(h — z), so that Vp = pgVh, and three vertical integrations of (7.16); (with
zero shear stress Ou/0z = 0 at z = h and no slip u = 0 at z = 0) yield the horizontal
fluid flux

h PY ;2
q= / udz = — P p2wh. (7.17)
0 3
Conservation of fluid volume for an incompressible fluid is h; + V.q = 0, and thus
Pg 3
hy = ==V.|h°Vh 7.18
(= 0V 1V, (718)
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T 2K>0
P

Figure 7.2: The surface shown has positive curvature when the radius of curvature is
measured from below the surface; in this case equilibrium requires p > p,.

corresponding to (7.1) (in two space dimensions) with m = 3. A drop of fluid placed
on a table will spread out at a finite rate.

That this does not continue indefinitely is due to surface tension. Rather than
having p = 0 at z = h (where the atmospheric pressure above is taken as zero), the
effect of surface tension is to prescribe

P = 2VK, (7.19)

where 7 is the surface tension, and « is the mean curvature relative to the fluid droplet
(i.e. K > 0 if the interface is concave, as illustrated in figure 7.2). The curvature is
defined as 2k = V.n, where n is the unit normal pointing away from the fluid (i.e.,
upwards). At least this shorthand definition works if we define

o (_hza _hya 1) .
thus vh

It is less obvious that it will work more generally, since there are many ways of defining

the interface as ¢(z,y, z) = 0 and thus n = V¢/|V¢| (that is (7.20) uses ¢ = z — h);

but in fact it does not matter, since we may generally take ¢ = (z — h)P, so that

V¢ = (—hgy,—hy,1) on z = h, and V¢/|V ¢| is the same expression as in (7.21).
For shallow flows, we replace p = 0 on z = h by p = —yV?2h there, and thus

p~ pg(h—z) —yV°h, (7.22)

and (via (7.17)), (7.18) is modified to

h3
h,=V. @V{pgh —yV2h}| . (7.23)
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The fourth order term is also ‘diffusive’, insofar as it is a smoothing term: this
is most easily seen by considering the fate of modes e?***® for the linear equation
hi = —Rgees : 0 = —k*: high wave number (high gradient) modes are rapidly damped.
Surface tension can thus also act to smooth out shocks. The effect of surface tension
relative to the diffusional gravity term is given by the Bond number

2
Bo = @, (7.24)
Y

where [ is the lateral length scale of the drop. This is the (only) dimensionless

parameter which occurs when (7.23) is written dimensionlessly.
For a drop released on a table, (7.23) still predicts unending dispersal, but if the
full nonlinear curvature term (7.21) is kept, then a steady state will exist, and surface

tension keeps the drop of finite extent.

7.2 Advance and retreat: waiting times

The similarity solution (7.14) predicts an infinite slope at the margin (where f = 0)
if m > 1 (and a zero slope if m < 1). If one releases a finite quantity at t = 0, then
one expects the long time solution to be this similarity solution. The question then
arises as to how this similarity solution is approached, in particular if the initial drop
has finite slope at the margin.

This question can be addressed in a more general way by studying the behaviour
near the margin x = z4(t) of a solution h(z,t) of (7.1),

hy = (h"hsg) . (7.25)
Suppose that h ~ c¢(xg — z)” for z near zg. Then satisfaction of (7.25) requires
tg~c™v(m+1) —1)(zg — )™ " (7.26)

Note that the similarity solution (7.14) has &g finite when v = 1/m, consistent with
(7.26), and more generally we see that the margin will advance at a rate &g ~ c™/m
if h ~ c(zg — z)V/™,

Suppose now that m > 1, and we emplace a drop with finite slope, v = 1. Then
the right hand side of (7.26) is zero at = zg, and thus £g = 0: the front does not
move. What happens in this case is that the drop flattens out: there is transport
of h towards the margin, which steepens the slope at zg until it becomes infinite, at
which point it will move. This pause while the solution fattens itself prior to margin
movement is called a waiting time.

Conversely, if m < 1, then the front moves (forward) if the slope is zero, v = 1/m.
If the slope is finite, v = 1, then (7.25) would imply infinite speed. An initial drop of
finite margin slope will instantly develop zero front slope as the margin advances.

(7.26) does not allow the possibility of retreat, because it describes a purely dif-
fusive process. The possibility of both advance and retreat is afforded by a model of
a viscous drop with accretion, one example of which is the mathematical model of an
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ice sheet. Essentially, an ice sheet, such as that covering Antarctica or Greenland,
can be thought of as a (large) viscous drop which is nourished by an accumulation
rate (of ice formed from snow). A general model for such a nourished drop is

he = (W"hy)e + a, (7.27)

where a represents the accumulation rate. Unlike the pure diffusion process, (7.27)
has a steady state

1
h= l@] " (22— ) (7.28)
where xo must be prescribed. (In the case of an ice sheet, we might take xy to be at
the continental margin.) (7.28) is slightly artificial, as it requires a = 0 for x > x,
and allows a finite flux —h™h, = axy where h = 0. More generally, we might allow
accumulation and ablation (snowfall and melting), and thus a = a(z), with a < 0 for
large |z|. In that case the steady state is

1

zo mii
h— [(m—i— D [Msar] ™ (7.29)
where the balance is -
s :/ adz, (7.30)
0
and z is defined to be where accumulation balances ablation,
/ " adz = 0. (7.31)
0

This steady state is actually stable, and both advance and retreat can occur.
Suppose the margin is at zg, where a = ag = —|ag| (as < 0, representing ablation).
If we put h = c(xg — z)¥, then (7.27) implies

veig(zg — z)' & vd™  v(m + 1) — 1](zg — )P4 — |qg], (7.32)

and there are three possible balances of leading order terms.
The first is as before,

g~ c™v(m+1) —1)(zg — )™, (7.33)

and applies generally if v < 1. Supposing m > 1, then we have advance, &g ~ c¢™/m
if v = 1/m, but if v > 1/m, this cannot occur, and the margin is stationary if
I/m<v<1l Ifv=1thenv(m+1)—2=m—1>0, so that

.’i‘s% —|as|/c, (734)

and the margin retreats; if ¥ > 1, then instantaneous adjustment to finite slope and
retreat occurs.

The ice sheet exhibits the same sort of waiting time behaviour as the viscous drop
without accretion. For 1/m < v < 1, the margin is stationary, and if zg < zo then
the margin slope will steepen until v = 1/m, and advance occurs. On the other hand,
if xg > xg, then the slope will decrease until v = 1, and retreat occurs. In the steady
state, a balance is achieved (from (7.29)) when v = 2/(m + 1).
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Figure 7.3: Maximum values of u, u(0), as a function of the parameter A\. Blow-up
occurs if A > 0.878.

7.3 Blow-up

Further intriguing possibilities arise when the source term is nonlinear. An example
is afforded by the nonlinear (diffusion) equation

U = Ugg + AE¥, (7.35)

which arises in the theory of combustion. Indeed, as we saw earlier, combustion occurs
through the fact that multiple steady states can exist for a model such as (6.70), and
the same is true for (7.35), which can have two steady solutions. In fact, if we solve
u” + \e* = 0 with boundary conditions v = 0 on x = 41, then the solutions are

u = 2In | Asech {\/éAx} : (7.36)
where A = exp[u(0)/2], and A satisfies
A
A = cosh \/;A ) (7.37)

which has two solutions if A < 0.878, and none if A > 0.878: the situation is depicted
in figure 7.3. If we replace e* by exp[u/(1 + eu)], € > 0, we regain the top (hot)
branch also, as in figure 5.2.

One wonders what the absence of a steady state for (7.35) if A > A, implies.
The time-dependent problem certainly has a solution, and an idea of its behaviour
can be deduced from the spatially independent problem, u; = Ae*, with solution
u = In[1/{A(to — t)}]: u reaches infinity in a finite time. This phenomenon is known
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Figure 7.4: Solution of w; = ug, + € on [—1,1], with u =0 at x = —1,1 and t = 0.
The solution is shown for four times close to the blow-up time ¢, = 3.56384027594971.
The many decimal places should not be treated too seriously, but they do indicate
the logarithmic suddenness of the runaway.

as thermal runaway, and more generally the creation of a singularity of the solution
in finite time is called blow-up. Numerical solutions of the equation (7.35) including
the diffusion term show that blow-up still occurs, but at an isolated point; figure 7.4
shows the approach to blow-up as t approaches a critical blow-up time ¢..

In fact, one can prove generally that no steady solutions exist for )\ greater than
some critical value, and also that in that case, blow-up will occur in finite time. To
do this, we use some pretty ideas of higher grade mathematics.

Suppose we want to solve the more general problem

uy = Viu+ Ae* in Q, (7.38)

with 4 = 0 in the boundary 09, and u = 0 at ¢ = 0 (these conditions are for
convenience rather than necessity). We will be able to prove results for (7.38) which
are comparable to those for the ordinary differential equation version (cf. (6.77))

W= —pmw + e¥, (7.39)

because, in some loose sense, the Laplacian operator V2 resembles a loss term.
More specifically, we recall some pertinent facts about the (Helmholtz) eigenvalue
problem

V2 +pup=0 in Q, (7.40)
with ¢ = 0 on 0f). There exists a denumerable sequence of real eigenvalues 0 < p; <
Mo ..., with @, — oo as n — 00, and corresponding eigenfunctions ¢, ¢s, ... which
form an orthonormal set (using the L? norm), thus

(i, ;) = /Q¢i¢j dV = dij, (7.41)
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where 0;; is the Kronecker delta (=1 if ¢ = j, 0 if ¢ # j). These eigenvalues satisfy a
variational principle of the form

4 = min /Q IV [2dV, (7.42)

where ¢ ranges over functions of unit norm, ||@|ls = {f #?dV}/2 = 1, which are
orthogonal to ¢; for j < i; (more generally y; = min{[|V¢|?/ [ ¢?} if ¢ is not
normalised on to the unit sphere ||¢||2 = 1). In particular

= mi V|2V, 7.43
pr = min [ Vo (7.43)

and the corresponding ¢; is of one sign, let us say positive.
We take the inner product of the equation (7.38) with ¢; and divide by [ ¢, dV;

defini
o v(t) = JougrdV’ —/udw (7.44)
h Jo$rdV o ’ .

where dw = ¢1dV/ [ $1dV is a measure on Q (with [, dw = 1), and using Green’s
theorem, we find

0= )\/Q e" dw — pyv, (7.45)

and the equation for v is close to the ordinary differential equation (7.39).
Now we use Jensen’s inequality. This says that if we have an integrable function
g on € and a convex function f(z) (i.e. one that bends upwards, f” > 0), then

7l [ gdo] < [ flold (7.46)

for any measure w on 2 such that [, dw = 1. We have chosen w to be so normalised,
and e" is convex: thus

/Qexp(u) dw > exp [/Q udw] =e", (7.47)

so that
0> e’ — . (7.48)

It is now easy to prove non-existence and blow-up for A greater than some critical
value A.. Firstly, v must be positive, and hence also v. (For suppose u < 0: since
u=0at t =0 and on 0f), then u attains its minimum in Q at some ¢ > 0, at which
point u; < 0, ugz, > 0, which is impossible, since then u; — ugz, = Ae* < 0.) For any
v, €’ > ev, thus © > (Ae — p1)v. In a steady state, v = 0, and v > 0 (clearly u =0 is
not a solution), so this is impossible if

A> /e (7.49)

This implies non-existence of a solution for A > A., where A\, < p;/e.
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In a similar vein, if A > p; /e, then

1

0> e’ =), (7.50)

and v > w, where
W= (et —w), w(0)=0. (7.51)

(This is a standard comparison argument: v = w at t = 0, and © > w there, so v — w
is initially positive. It remains so unless at some future time v — w reaches zero again,
when necessarily v — w < 0 — which is impossible, since ©¥ > w whenever v = w.)
But w — oo in finite time (& > 0 so that w — oo as ¢ increases, and as w — oo,
e i &~ pe~!, so e”¥ reaches zero in finite time); therefore also v reaches infinity in
finite time. Finally

v = / udw < supu, (7.52)
Q Q

since [ dw = 1: hence u — oo in finite time.

In fact © — oo at isolated points, and usually at one isolated point. As blow-up
is approached, one might suppose that the nature of the solution in the vicinity of
the blow-up point would become independent of the initial (or boundary) conditions,
and thus that some form of similarity solution might be appropriate.

This is indeed the case, although the precise structure is rather complicated.
We examine blow-up in one spatial dimension, z. As a first guess, the logarithmic
nature of blow-up in the spatially independent case, together with the usual square-
root behaviour of the space variable in similarity solutions for the diffusion equation,
suggests that we define

r — g
(to — 1)1/’

where blow-up occurs at z = xq at t = ty; hence g satisfies

r=—lnto—1t), n= u = —In[A(ty — )] + g(n,7), (7.53)

9r = oy — 3M9n + €9 — 1. (7.54)

The natural candidate for a similarity solution is then a steady solution g(n) of (7.54),
satisfying
g"—gng + (2 = 1) =0, (7.55)

and matching to a far field solution u(z, tg) would suggest
g~ —2ln|n| as n— Foo, (7.56)

and solutions of (7.55) with this asymptotic structure do exist — but not at each end.
(7.55) admits even solutions, and if we restrict ourselves to these, then we may take

9'(0)=0, ¢(0) #0. (7.57)
(If g(0) = 0, then g = 0 is the solution.) However, it is found that such solutions
have a different asymptotic behaviour as n — oo, namely
A

1,
g~ ——exp|=n°], 7.58
oesply] (7.59)
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and A = A[g(0)] > 0 for g(0) # 0 (and A(0) = 0), and these cannot match to the
outer solution. If one alternately prescribes (7.56) as n — +o00, for example, then the
solution is asymmetric, and has the exponential behaviour (7.58) as n — —oo. thus
the appealingly simple similarity structure implied by steady solutions of (7.54) is
wrong (and actually, the solution of the initial value problem (7.54) satisfying (7.56)
tends to zero as T — 00).

However, (7.54) itself develops a local similarity structure as 7 — oo, using a
further similarity variable

n T — o

TR G DT — O (759

Rewriting (7.54) in terms of z and 7 yields
gr +329: +1—¢? = 1[g.. + 320.]. (7.60)

At leading order in 77! this has a solution
g=—In[l1+ }c2?, (7.61)

where c is indeterminate, and this forms the basis for a formal expansion. It is
algebraically convenient to use (7.61) to define ¢ as a new variable, and also to write

s=lnr; (7.62)

Then (7.60) becomes

2
¢, = — |2c+4zc, + 2%c,, + 2*

[c + %chP
728

- +c+ 3z, — csH : (7.63)

We seek a solution for (7.63) in the form

1 1
c~co(z,8) + —ci(z,8) + 5 c2(2,8)., (7.64)
T T
and then, since 7d/dT = d/ds, we have
N 1.
cs ~ o+ —(&1—c1) + (& —2c2) + .., (7.65)
T T

where ¢, = Oc;/0s. Substituting this into (7.63) and equating powers of 7, we find

Co = 00(8), (766)
where Cj is arbitrary, and
_ 2 2 Cs ~
Cl1, = ; l200+2 {—]W+CO—CO}] . (767)

The arbitrary function C, arises because the order of the approximate equation is
reduced. In order to specify it, and other arbitrary functions of s which arise at each
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order, we require that the solutions ¢; be smooth, and this requires that there be no
term on the right hand side of (7.67) proportional to 1/z as z — 0, in order that
logarithmic singularities not be introduced. Specifically, we require at each stage of
the approximation that

8ci 2

5 = 3 [am‘ + a2 + a2 + .. } : (7.68)

so that z2¢; is smooth. Applying this to (7.67) requires that
Co = Co(1 — Cy), (7.69)

so that Cy — 1 as s — 00, and then

2C,
e1 = =3+ Cils) + G In[1 + {Co=?). (7.70)
At O(1/72), we then have
2 .
Cyy = 3 [201 + 4z, + 22cryy + 2 {—(cl —c)+ (a1 + %chz)

2¢o(cy + %zclz)
1+ iCOZ2

+ icdaZ?(1+ }1coz2)2H , (7.71)

and applying the regularity condition (7.68), we find, after some algebra,
Cy =2(1—Cp)Cy + 2C3, (7.72)

so that Cy — Cio+ gs as s — o0o. Thus finally we obtain the local similarity solution

ur—In l)\{to—t-l—Ll[c_(ilz—;O_);]H, (7.73)

where ¢ &~ Cy(s), s =In7 = In[—In(t, — t)].

Exercises

7.1 Write down the equation satisfied by a similarity solution of the form u = t° f(n),
n = x/t*, for the equation

u = (u™ugz), in 0<z< o0,

where m > 0, with v™u, = —latz =0, u > 0asx — oo, u =0at t =0.
Show that [;° fdn = 1, and show that in fact f reaches zero at a finite value
M. Is the requirement that m > 0 necessary?

87



7.2

7.3

7.4

7.5

7.6

u satisfies the equation
uy = [D(u)ugl, in 0 <z < oo,

with u = 0 at £ — oo and ¢t = 0. For a general function D (not a power of u),
for what kind of boundary condition at z = 0 does a similarity solution exist?
What if, instead, D = D(u,)? Write down suitable equations and boundary
conditions for the similarity function in each case.

A small droplet satisfies the surface-tension controlled equation
he = — L V.[R*VV2h].
3

A small quantity [hdV = @ is released at time zero at the origin. Find a
suitable similarity solution in one and two spatial dimensions.

A gravity-driven drop of fluid spreads out on a flat surface. Its viscosity u is a
function of shear rate, so that in (7.16),
or
Vh=—
pg 82 )
0
5. = Al
(A constant viscosity fluid has n = 1.) Show that the horizontal fluid flux is
A(pg)" -
= = | VA" TRV A
and deduce that
oh _ Alpg)"

— = V.[h" 2|V h|"'Vh].

ot n+2 [ | | J

Find similarity solutions in one and two dimensions for the initial emplacement
of a finite volume at the origin. What happens as n — co or n — 07

Suppose a two-dimensional drop as in question 7.4 is subjected to a spatially
varying accumulation a(z), with za’ < 0 for z # 0. Find appropriate local
behaviour near the right hand margin z = z, > 0, where h = 0, if z, > 0,
s <0, 2, =0.

Let u satisfy
U = AUP + Ugg,

with u =1 on x = +1 and ¢ = 0. Prove that if X is large enough, v must blow
up in finite time if p > 1. Supposing this happens at time ¢, at x = 0, show
that a possible local similarity structure is of the form

1 x

U:mf(g)a fzwa
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7.7

7.8

and prove that 5 = (1/(p — 1). Show that in this case, f would satisfy

1
A R
and explain why appropriate boundary conditions would be
€77 as €= Foo,

and show that such solutions might be possible. Are any other limiting be-
haviours possible?

By direct integration, show that the solution of

"+ e =0

Asech {@Ax}

and find a transcendental equation for A. Hence show that no solution exists
for A > \., and derive and solve (numerically) an algebraic equation for ..

satisfying v =0 on x = +1 is

u=2In ,

If the equation is to be solved in [0, 1], with &' =0 on z = 0 and ' = —1 on
z = 1, find the solution, and plot u(0) as a function of \. Is there a critical
value \.? If so, find it; if not, why not?

(i) Find an exact solution of the Gel’fand equation
VH+X?=0 in 0<r<l,

where 7 is the cylindrical polar radius, and § = 0 on r = 1. [Assume cylindrical
symmetry, and a suitable condition of reqularity at r = 0.] Show that there is
a critical parameter ). such that no solution exists for A\ > \., and find its value.

(ii) Write down the ordinary differential equation satisfied by a spherically sym-
metric solution of the Gel’fand equation in part (i). Suppose that § =0onr =1
and 6, =0 on r = 0 (why?). By putting

p=x?l q=2+41r0, r=ect,
show that p(t) and q(t) satisfy the ordinary differential equations

= —pq,
g = p+q—2.
By consideration of trajectories for p and q in the phase plane, show that mul-

tiple solutions exist for A ~ 2, and infinitely many at A = 2. Sketch the
corresponding response diagram of §(0) versus \.
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Chapter 8

Reaction-diffusion equations

The development of mathematical biology in the last thirty years has led to one
particular pedagogical example of wave and pattern formation, and that is in the
coupled sets of equations known as reaction-diffusion equations. The general type is

8ui
ot

for n reactants uy, ..., u,, where the summation convention (sum over repeated suffixes,
here j) is implied, but much of what is known about the behaviour of such systems
can be illustrated with the two species equations

u = f(u,v) + D1V,
v, = g(u,v) + DyV?. (8.2)

The phenomena which we find are closely allied to the behaviour of the underlying
dynamical system

u = f(u,v),
= g(u,v), (83)

and we will discuss three types of behaviour: wave trains, solitary waves, and sta-
tionary patterns, first in generality and then by example.

8.1 Wave trains

One way in which periodic travelling waves, or wave trains, can arise is when the
underlying kinetics (8.3) is oscillatory. In a spatially distributed medium, the phase of
the oscillatory kinetics will generally vary in space, but diffusion allows neighbouring
phase oscillators to be coupled, in a kind of nearest neighbour resonance. The effect
of diffusion is to cause the oscillations to propagate in space, and a periodic travelling
wave results.
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8.1.1 )\—w systems

A particularly simple example where this can be seen explicitly is in so-called lambda—
omega systems, which are two-dimensional reaction diffusion systems of the form

u; = Au—wv+ DV3y,
vy = wu+ Av+ DV, (8.4)

in which A and w are functions of (u? + v?)!/2; thus the system is nonlinear. It can

conveniently be written in the form
¢ = f(le))e+ DV, (8.5)

where ¢ = u + v and f = )\ +iw.

8.1.2 Slowly varying waves

It suffices to consider components which diffuse equally rapidly, so that we may
consider the suitably scaled equation

w, = f(w) + V3w, (8.6)

where w € R".
Suppose that the reaction kinetics admit an attractive limit cycle for the under-
lying system w; = f(w), and denote this as Wy(?), i.e.

Suppose further that we look for solutions which are slowly varying in space. We
define slow time and space scales 7 and X as

T=ct, X =+/ex (8.8)
and seek formal solutions in the form w(X,t,7), where
w, +ew, = f(w) + eV’w, (8.9)

and V = Vx now. Expanding w as

W~ Wo+ Wy + ... (8.10)
leads to
Wor = f(Wo),
Wit — JWl = —Wp-r + V2W0, (811)

and so on, here J = D f(wy) is the Jacobian of f at wy. After an initial transient, we

may take
wo = Wo(t + v), (8.12)
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where ¢(7,X) is the slowly-varying phase, and J = D f(Wj) is a periodic matrix.
Thus we find that w; satisfies

wi — Jwy = — (¥, — V)W, + | VY[ W). (8.13)

Note that s = W{, satisfies the homogeneous equation s; — Js = 0. It follows that
the solution of (8.13) is

wi = —t(¢, — V*)s + |V|u, (8.14)

where .
u= M) / M Y1) J()s(r) dr + M(t)c, (8.15)

0
and M is a fundamental matrix for the homogeneous equation, i.e., M’ = JM.

Floquet’s theorem implies that
M = Pet*, (8.16)

where P is periodic of period T' (the same as that of the limit cycle Wj). We can take
A to be diagonal if the characteristic multipliers are distinct, and since we assume
W, is attracting, the eigenvalues of A will all have negative real part, except one of
zero corresponding to s. With a suitable choice of basis, we then have

(etA)ij — (5i15j1 as t— oo, (817)

i.e., a matrix with the single non-zero element being unity in the first element. In
this case the first column of P is s, i.e., P;; = s;.
From (8.15), we have

u=P) [ NPt — ) J (¢ — m)s(t — ) dn + Me. (8.18)

The effect of the transient dies away as t — 0o, and if we ignore it, then we can take
Mi]’ = siéﬂ, and thus Mc = C18, and

u:s[/ota(n)dn—l-cl] ) (8.19)

where the periodic function « is given by

o = (P_l)lmeij. (820)
We define the mean of o to be
1 /T
a=7 [ alndn, (8.21)
T Jo
so that .
=] (a—a)dn (8.22)
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is periodic with period T'. Then (8.14) is
wi = [t{—- + V2 + a| VY[*} + ¢1 + fls, (8.23)

and in order to suppress secular terms (those which grow in t), we require the phase
1 to satisfy the evolution equation

¥, = V2 + a| V|2 (8.24)

This is an integrated form of Burgers’ equation; in one dimension, u = —¢x/2a
satisfies u, + uux = uxx. Disturbances will form shocks, which are jumps of phase
gradient. More generally, if u = —V1/2a, then (bearing in mind that curlu = 0)
we find

u, + (u.V)u = V?u, (8.25)

which is the Navier-Stokes equation with no pressure term. Phase gradients move
down phase gradients, and form defects where the (sub-)characteristics intersect.
Solutions of (8.24) which vary with X correspond to travelling wave trains. For
example, in one dimension, waves travel locally at speed dX/dt ~ —(9¢/0X)~!. In
general, however, the phase of the oscillation becomes constant at long times if zero
flux boundary conditions 9¢/On = 0 are prescribed at container boundaries, and
wave trains die away. However, this takes a long time (if € is small), and while spatial
gradients are present, the solutions have the form of waves. For example, target
patterns are created when an impurity creates a local inhomogeneity in the medium.
Suppose the effect of such an impurity is to decrease the natural oscillation period
by a small amount (of O(¢)) at a point, which we take to be the origin; then it is
appropriate to specify
Yv=71 at R=0, (8.26)

where R is the polar radius, and 1 tends towards the solution ) = 7— f(R) as t — oo,
where f satisfies

1
'+ Rf’ —af?—-1=0, (8.27)

together with f(0) = 0 and an appropriate no flux condition at large R; such a
condition can always be implemented by consideration of a small boundary layer
near the boundary. The relevant solution if & > 0 is

F(R) = 210 I(VaR), (8.28)

«

where I is the modified Bessel function of order zero. At large R, ¢ ~ R/+/a, which
represents a travelling wave of speed dR/dt ~ v/a. If, on the other hand, & < 0, then

1
f(R) = = In Jy(y/|@|R), which blows up at finite R, and travelling wave solutions of
a

this type do not exist. At large R, f’ is constant, and the wave speed is approximately
constant, dR/dt ~ /&, corresponding to an outward travelling planar wave train.

93



Figure 8.1: Phase diagram for kinetics of (8.29).

8.2 Activator-inhibitor system

An example of a system supporting travelling wave solutions is the activator-inhibitor
system

u, = flu,v)+ Vi,
v, = g(u,v)+ V3, (8.29)

where the nullclines of the kinetics are as shown in figure 8.1 (cf. figure 4.7). This
system is called an activator-inhibitor system because df/0v > 0, thus increased
v activates u, while dg/0u < 0, so increased u inhibits v. When the intersection
is on the decreasing part of f = 0, as shown, then df/0u > 0, dg/0v < 0, and
—fu/fo > —9u/gv, whence the determinant D of the Jacobian of (u,v)” at the fixed
point is positive. Hence the fixed point is unstable if f, + g, > 0, and a limit cycle
exists in this case if trajectories are bounded. For example, if f = F/e, ¢ < 1, this
is the case, and the limit cycle takes the relaxational form shown in figure 4.7. The
addition of diffusion allows travelling wave trains to exist, as described above.

8.3 Solitary waves in excitable media

Suppose now the intersection point of the nullclines f = 0 and g = 0 is as shown
in figure 8.2. The fixed point of the underlying dynamical system is now stable, but
relatively small perturbations to v can cause large excursions in u, as shown. When
diffusion is included, these large excursions can travel as solitary waves. The simplest
way to understand how this comes about is if we allow u to have fast reaction kinetics
and take v as having zero diffusion coefficient.

In one dimension, a suitably scaled model is then

euy = f(u,v) + e gy,
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Figure 8.2: Phase plane for excitable kinetics.

vy = g(u,v), (8.30)

and we look for a travelling wave solution of the form

u=u(), v=uv(), {=ct—u, (8.31)
where c is to be found. Then
e’ = f+ei,
' = g, (8.32)

and the idea is to seek a trajectory for which (u,v) — (u*,v*) as £ — doo (here
(u*,v*) is the fixed point of the system). The form of this trajectory is shown in
figure 8.3. On the slow parts of the wave, f ~ 0 and ¢’ ~ ¢ (and we anticipate
¢ > 0). On the fast parts, we put £ = ¢Z; then v &~ constant, and we denote v
(=v*) and v_ as the corresponding values of v; v_ is unknown (as is c).

On the fast parts of the wave, we define v’ = w (where now v’ = du/d=), so that

v o= w,

"= cw— fo(u), (8.33)

where fi(u) = f(u,v+). The graphs of f, and f_ are similar, and are shown in figure
8.4, where we see that construction of the connecting branches PQ) and RS requires
that the fixed points P and @, or R and S, of (8.33) have a connecting trajectory. In
general, this will not be the case, but we can choose ¢ to connect P to @ (since v, is
known), and then we choose v_ to connect R to S (with this same value of ¢). The
form of the resulting travelling wave is shown in figure (8.5).
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Figure 8.3: Phase plane for solitary wave trajectory.

f+(U)

Figure 8.4: Phase plane connection for the fast parts of the travelling wave.
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Figure 8.5: Spatial form of the travelling wave.

8.4 Pattern formation

We have seen that an activator (v)-inhibitor (u) system

u = f(u,v),
v = g(u,v), (8.34)

admits periodic travelling waves when the uniform state is unstable, and solitary
waves when it is stable (and the activator diffuses slowly). Stationary patterns can
occur when a stable steady state of (8.34) is rendered spatially unstable by different
component diffusivities. Suppose then that

w = f(u,v)+ U,
vy = g(u,v) + dvg,, (8.35)
is an activator-inhibitor system with f, > 0, g, > 0; the restriction to one spatial
dimension is inconsequential. The parameter d here represents the ratio of activator
to inhibitor diffusivities. Note that when d — 0, we expect solitary wave propagation,
at least for the phase diagram of figure 8.2, where also f, < 0, g, < 0 at the fixed
point.
With the stationary state denoted as (u*, v*), we assume it is stable in the absence
of diffusion; thus assume
T = fut+go<0,
A = fugo — fogu >0, (8'36)

both evaluated at (u*,v*). We put

( u ) _ < U: ) +Weat+ikm; (837)
v v
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linearisation of (8.35) then yields

(M — k*D — o0)w = 0, (8.38)

M:(ﬁz g:),D:<(1)2>. (8.39)

The eigenvalues o are the roots of

where

0'2 - TdO' + Ad = 0, (840)
where

T, = T—(1+d)k?
Ay = Ak (df, + go) + dk (8.41)

The steady state is stable if and only if 7; < 0 and A; > 0 (cf. figure 4.4). Now
T < 0and A > 0 by assumption: hence T; < 0, and thus instability occurs if and only
if Ay < 0. Since A > 0, we see from (8.39) that this can only occur if df, + g, > 0.
Thus either f, > 0 or g, > 0, and the system cannot be excitable. Since f, + g, < 0,
we see that a necessary condition for instability is that d £ 1. Because d is the ratio
of two diffusivities, this instability is known as diffusion-driven instability (DDI), or
Turing instability, after the originator of the theory.

To be specific, let us suppose the situation to be that of figure 8.1, i.e. f, > 0,
gy < 0: then we require d > 1 for DDI. The precise criterion for instability is that
min A4 < 0, and, from (8.41), this is

df, + g, > 2[Ad]'?, (8.42)

and this can be reduced to

A+ {fulgu})’
fu '

The resulting instability is direct and not oscillatory (in time), though it is os-
cillatory in space. We can therefore expect stationary finite amplitude patterns to
emerge as the stable solutions, and this is indeed what often occurs.

The form of these putative steady solutions as d becomes large can be studied by
seeking periodic (in space) solutions of

(8.43)

Vo + €%g(u,v) = 0, (8.44)

where we define 2 = 1/d < 1. As u varies, v is approximately constant, and thus
the equation for u can be integrated to give the first integral

Wi+ [ fdu=0, (8.45)

uU—
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Figure 8.6: Definition of the values vy defined by the function f(u,v). The middle
graph shows the function f(u,v) as a function of u for various v, and the lowest graph
is the potential [* f(u) du for the value of v = v corresponding to the middle of these
three curves.
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where we suppose u = u_ is the minimum during the oscillation. If u = u, at the
maximum, then

/u If F(u,5)du = 0, (8.46)

and this is only possible if v = ¥ € (v_,vy), as defined in figure 8.6. For each such
U, there is a family of periodic solutions parameterised by u_. The choice of ¥ and
u_ must then be made so that v is periodic, and this requires

/OP glu(z; v,u_),v|dx = /OP zglu(z; v,u_),v]dz = 0, (8.47)

where P is the period of the pattern.

One particular case of interest is when u_ and u, lie on the f = 0 nullcline, for
then u — uy as * — =+o00, and the u solution represents a rapid transition layer
between two slowly varying regions where f =~ 0. A periodic sequence of such rapid
transitions between slowly varying regions can be found if there are two values of
v where u4 lie on f = 0. For the present case where f, > 0, this is not, however,
possible.

Exercises

8.1 (i)The complex reactant concentration c satisfies the reaction diffusion system
ce = f(le[)e+ DV,

where f(|c|) = A(|e]) +iw(|e[), and A and w are real-valued. Show that if D = 0,
le] = |e|A(|¢]), and deduce that ast — oo, |c| — ¢*, where A\(¢*) = 0 and N'(¢*) <
0. Hence show that the eventual solution is the limit cycle ¢ = ¢* exp[iw(c*)¢].
(ii) Now suppose D # 0 and X' < 0. Show that travelling waves exist provided
kv/'D < {\(0)}/2. What happens if A\(0) < 0?

(iii) Suppose, finally, that A(0) > 0, but that also ' > 0. What do you think
might happen in this case?

8.2 When an oscillatory reaction-diffusion system has an imperfection of size com-
parable to, or larger than, the wave length, then spiral waves can occur. This
is because the wave trains need not be in phase round the boundary of the
obstacles. For example, consider a slowly varying system (8.6) with solutions
w ~ Wy(t + 1), where 1 satisfies the diffusion equation v, = V1. The effect
of the surface r = a, say, is to alter the period, and we can suppose ¥ = —7+m#b
on r = a, where m is an integer (so that w is single valued, if we suppose the
period of W, is normalised to be 27).

Put ¢ = —7 + mf + ¢(r), and show that if we require ¢’ = 0 on r = a (so that
0w /0n = 0 there), then a steady solution is

Y= —7+mh+ %az[ln(r/a) _ i(ﬁ S

which represents a spiral. Note that the integer m is unconstrained.
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8.3 The Fitzhugh-Nagumo equations are

eu;, = ula—u)(u—1)— v+ Uy,
v, = bu—w,
where 0 < a < 1, € < 1, and b is positive and large enough that u = v =0 is
the only steady state. Show that the system is excitable, and show, by means

of a phase plane analysis, that solitary travelling waves of the form u(&),v(§),
& = ct — x, are possible with ¢ > 0 and u,v — 0 as £ — +o0.

8.4 u and v satisfy the equations

ou; = 62um+f(u,v),
vy = Umw+g(uav),

where

f(u,v) = u[F(u) =], g(u,v) = v[u—G(v)],
and F'(u) is a unimodal function (F" < 0) with F(0) = 0, while G(v) is mono-
tone increasing (G’ > 0) and G(0) > 0, and there is a unique point (ug,vp) in
the positive quadrant where f(ug,vo) = g(ug,v9) = 0, and F’'(ug) < 0. (For
example F' = u(1 —u), GH = 0.5+ v.)

Examine the conditions on ¢ and €2 which ensure that diffusive-driven instability
of (ug,vg) occurs.

If the upper and lower branches of F~! are denoted as u, (v) > u_(v), explain
why u_ is unstable when ¢ < 1. By constructing phase portraits for v when
u = 0 and when u = u, (v), and ‘gluing’ them together at a fixed value v = v*,
show that spatially periodic solutions exist which are ‘patchy’, in the sense that
u alternates rapidly between u, (v) and 0.

8.5 An activator-inhibitor reaction—diffusion model takes the non-dimensional form

ou _uwt_,  Ou
o v 0x?’
Oov 9 0%
E = U —’U+d@,

where u(z,t), v(z,t) are the concentrations of the chemicals at spatial coordi-
nate x and time ¢, and b, d are positive parameters.

Which is the activator and which is the inhibitor? Find the non-zero spatially
uniform steady state and, from first principles, determine the conditions for it
to be driven unstable by diffusion. Show that the parameter domain for which
diffusion-driven instability is given by 0 < b < 1, db > 3 + 2v/2, and sketch the
instability region in (b, d) parameter space. Show that the critical wave number
k. at the onset of instability is

1++/2

k2= :
¢ d
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