Combustion

Lighting a match is an everyday experience, but an understanding of why it occurs is
less obvious. As the match is lit, a reaction starts to occur, which is exothermic, i.e.,
it releases heat. The amount of heat released is proportional to the rate of reaction,
and this itself increases with temperature (coal burns when hot, but not at room
temperature). The heat released is given by the Arrhenius expression A exp(—FE/RT),
where F is the activation, R is the gas constant, 7" is the absolute temperature, and
we take A as constant (it actually depends on reactant concentration). A simple
model for the match temperature is then
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where € is a suitable specific heat capacity, k is a cooling rate coefficient, and Tj
is ambient (e.g., room) temperature. The terms on the right represent the source
term due to the reactive heat release, and a Newtonian cooling term (cooling rate
proportional to temperature excess over the surroundings).

We can solve (1) as a quadrature, but it is much simpler to look at the problem
graphically. Bearing in mind that T is absolute temperature, the source and sink
terms typically have the form shown in figure 1, and we can see that there are three
equilibria, and the lowest and highest ones are stable. Of course, one could have only
the low equilibrium (for example, if k is large or Tj is low) or the high equilibrium (if
k is small or Tj is high). The low equilibrium corresponds to the quiescent state —
the match in the matchbox; the high one is the match alight. If we vary Tj, then the
equilibrium excess temperature A (= T — Tp) varies as shown in figure 2: the upper
and lower branches are stable.

We can model lighting a match as a local perturbation to A; the heat of friction
in striking a match raises the temperature excess from near zero to a value above the
unstable equilibrium on the middle branch, and A then migrates to the stable upper
branch, where the reaction (like that of a coal fire) is self-perpetuating. Figure 2 also
explains why it is difficult to light a wet match, but a match will spontaneously light
if held at some distance above a lighted candle.

Figure 2 exhibits a form of hysteresis, meaning non-reversibility. Suppose we
place a (very large, so it will not burn out) match in an oven, and we slowly raise
the ambient temperature from a very low value to a very high value, and then lower
it once again. Because the variation is slow, the excess temperature will follow the
equilibrium curve in figure 2. At the value T,, A suddenly jumps (spontaneous
combusion) to the hot branch, and remains on this if T is increased further. Now if
T) is decreased, A remains on the hot branch until 7o = T, below which it suddenly
drops to the cool branch again (extinction).! The path traced out in the (Tp, AT)
plane is not reversible (it is not an arc but a closed curve).

—k(T — To) + Aexp(—E/RT), (1)

!We can understand why 7T follows the equilibrium curve as follows. We can write (1) in terms
of suitable dimensionless variables as A = Tj — g(A), where g(A) is a cubic-like curve similar to
the function Ty(A) depicted in figure 2. if Ty is slowly varying, then Ty = Ty(et) where € < 1, and
putting 7 = et, we have edA/dr = Ty(7) — g(A); thus on the slow time scale 7, A will tend rapidly
to a (quasi-equilibrium) zero of the right hand side.
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Figure 1: Plots of the functions Aexp[—E/R(T + T,,)] and k(T — T,) using values
T, = 273 (so T is measured in centigrade), with values A = 1, E = 20,000, R = 8.3,
k=104 T, = 15° C.
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Figure 2: Equlibrium curve for Ag as a function of T, parameters as for figure 1,
but £ = 35,000. An initial condition above the unstable middle branch leads to
combustion.



The reason the multiple equilibria exist (at least for matches) is that for many
reactions, E//R is very large and also A is very large. This just says that it is possible
that Ae~Z/ET is very small near T, but jumps rapidly at higher T to a large asymptote.
To be more specific, we non-dimensionalise (1) by putting

T =Ty + (AT), t=[t]t", 2)

and in fact we choose the cooling time scale [t] = ¢/k. Then we have, dropping the
asterisk, and after some simplification,
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where ¢ = AT/Ty. The temperature rise scale AT has to be chosen, and there are
two natural choices: to set the exponent coefficient EAT/RT; to one, or the pre-
multiplicative constant to one. In one way, the latter seems the better choice: it
seems to balance the source with the sink. But because F/R is large, we might then
find EAT/RT? to be large, which would ruin the intention. So we choose (but it
does not really matter)
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If typical values are Ty = 300 K, E/R = 10,000 K, we see that ¢ < 1, and also, since
Ao 1 A
)\zg—zexp (—g>, Ao = LE’ (7)

A is extremely sensitive to € and thus 7j.
So long as § = O(1), or at least § < 1/e (i.e. T — Ty < Tp), we can neglect the
€6 term, so that
0~ —0+ \é’. (8)
This gives the lower part of the S-shaped curve in figure 2, and the equilibria are
given by fe=? = X, and these coalesce and disappear if A > e~!. This corresponds to
the value of Ty = T’y in figure 2, and implies
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There are two roots to this, but only one has E/RT, > 1. Further, since z > 2Inz

if z > 1, we have, approximately,
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If E/R > T, then the fact that one can light matches at room temperature suggests
that Ao is large, and specifically In\g ~ E/RT,. (Note that this does not imply
A=0(1).)

Carrying on in this vein, let us suppose that we define a temperature 7, by
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and we suppose T, ~ Tj. It follows that T\ ~ T}, or more precisely,
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where €, = RT,/E. The stable cool branch and unstable middle branch are then the

roots of . . -
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and in general A < 1 (if To < T,), so that we find the stable cool branch (when
6 <1)
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and the unstable middle branch (where 6 > 1),
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Evidently € becomes O(1/¢) on the middle branch, and to allow for this, we put
0 =0/, (16)
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Equating the right hand side to zero gives the approximate equilibria

and (5) becomes

Ty —Tp+ Ty In (B3 2)
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and O tends to infinity as 7y — 0. The hot branch is recovered for even higher values
of ©, so that © > 1, in which case equilibria of (16) are given by
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and increase again with 7.



The critical value of T is that on the unstable middle branch, as this gives the
necessary temperature which must be generated in order for combustion to occur.
From (17) (ignoring terms in ¢), this can be written dimensionally in the simple

approximate form
T~T,, (20)

where 7', is the critical temperature at the nose of the curve in figure 2. The fact
that T is approximately constant on the unstable branch is due to the steepness of
the exponential curve in figure 1, which is in turn due to the large value of E/R. In
terms of the parameters of the problem, the critical (ignition) temperature is
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