Techniques of Applied Mathematics

PROBLEM SHEET 2, WEEK 2 LECTURES. [2006]

1. The absolute temperature 7' of an igniting solid is modelled by the equation

dT

E
c = —k(T — Tp) + Aexp (——) :

RT

Find a non-dimensionalisation of this equation so that it can be written in the
form _

0 =0 — g(0),
where 0y = RTy/FE and g = 0 — ae %, Give the definition of .. Hence show
that the steady state 6 is a multiple-valued function of 6 if o > ieQ.

Now suppose that o > ieQ, and 6y varies slowly according to
0o = v(0* — 0),
where v < 1. Show that there are three possible outcomes, depending on the

value of 6#*, and describe them.

. Phase plane revision. u and v satisfy the ordinary differential equations
U = kl — kg’u + kguzv,
Vo= k4 - k3u2v,

where k; > 0. By suitably scaling the equations, show that these can be written
in the dimensionless form

U = a—u+u’v,
0 = b—uly,
where a and b should be defined. Show that if u,v are initially positive, they

remain so. Draw the nullclines in the positive quadrant, show that there is a
unique steady state and examine its stability.

Show that if k; < k4, then a < b, and show that an oscillatory (Hopf) instability
occurs in this case if b < 1 (i.e., b is approximately less than one). Assuming
a stable periodic orbit occurs in this case, sketch its form in the (u,v) phase
plane.

. H and (@ satisfy the ordinary differential equations
H =a-— Qa

where a and ¢ are positive constants, ¢ < 1, and
fQ)=4+(Q-1)(Q -2

Show that if a is in a certain range, which you should find, then relaxation
oscillations will occur, and describe them in the (H, Q) phase plane.



Techniques of Applied Mathematics

PROBLEM SHEET 3, WEEK 3 LECTURES. [2006]

1. The Van der Pol oscillator is represented by the equation
i+e(@®—1)i+x=0,

and we assume that 0 < ¢ < 1.

Use the Poincaré-Lindstedt method to find the amplitude and frequency cor-
rection of the periodic solution of the equation.

2. Duffing’s equation is
i+z+er®=0.

By first finding a first integral, show that all solutions are periodic if ¢ > 0. If
€ < 1, use the Poincaré-Lindstedt method to construct approximate solutions,
and find the frequency correction of a periodic solution in terms of ¢ and its
amplitude A.

3. The heat equation for the temperature T'(r,t) of a fluid flowing axially in a pipe
0 < r < a satisfies

)

or _ ko |[oT) 7
pcpﬁt Cror r@r I

where p is density, ¢, is specific heat, k is thermal conductivity, 7 is shear stress
and g is viscosity. The boundary conditions are that 7" = Ty at r = a, and

oT

— =0atr=0.

or

The shear stress 7 satisfies the slow flow momentum equation
o) _
r Or

where p’ is the axial pressure gradient, taken to be constant, and 7 = 0 at r = 0.

The stress is related to the velocity gradient by

ou
T::Ll’ga

where p is the viscosity, and for a shear thinning fluid (like tomato ketchup or
Guinness), the viscosity decreases with increasing stress. Suppose such a fluid
flows in a cylindrical tube of radius a, and has viscosity

_ H | T T)
A e AT |’

where the power law exponent n > 1 (n = 1 corresponds to Newtonian flow).



Show that a suitable dimensionless formulation of the temperature profile across
the tube satisfies the dimensionless equation

00 10 |, 00 ntl 6
with the boundary conditions

=0 on ¢=1,
and

05 =0 at § = 0.
Give the definition of the parameter (3.

Find a steady solution of this problem,! and find a Sturm-Liouville eigenvalue
problem, whose eigenvalues determine the linear stability of the steady solution.

IThe transformations z = —1In¢, § = ¢ + (27)"/22, e¥ = %sech 24 for some appropriate 7, may

help in this.
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PROBLEM SHEET 4, WEEK 4 LECTURES. [2006]

1. Show that the second order differential equation
w” + a(z)w' + [b(z) + Ac(z)]w =0
can be transformed to the Sturm-Liouville form
(pw') + (Ar — qJw =0,
by suitable definitions of the functions p, g and r. Show further that by suitable
definition of £, the equation can be written in the form

d*w
d7§2+()\R_Q)w:0’
and give the definitions of the functions () and R.

Hence, or otherwise, find the eigenvalues A and eigenfunctions w of the equation
2zw” +w' + dw = 0,
subject to the boundary conditions

w(0) =w(1) = 0.

2. Bessel’s equation of order v is
1 V2
w” + ~w' + (1——2>w:0,
z z
and the solutions are called Bessel functions of order v. Show that the solutions
of the Sturm-Liouville equation
2

ORT+@%—@)R:O(Q

r

can be written as Bessel functions of order m.

By seeking solutions near z = 0 of the form w ~ 2#, show that if v # 0, then
independent solutions w.. are possible with w4 ~ z*”. Deduce that if we require
R(0) = 0 when m is a positive integer in (x), then we must have R oc w, (kr).

(wy is normally written J,, and is the Bessel function of the first kind; the
Bessel function of the second kind is singular at z = 0 and is denoted Y,,.)

Show that if v = 0, then independent solutions are possible in which

Jowl—izﬂ, Yo ~Inz.

[When v = 0, the first solution can be found by seeking a Taylor series approz-
imation for small z, i.e., a perturbation series in the small parameter z; the
second can be found by writing the equation in Sturm-Liouville form, and then
supposing that zw — 0 as z — 0.]



3. A function u(z,t) satisfies the nonlinear reaction-diffusion equation
U = Uge + f(u) on [0,1],
with boundary conditions
u=0 on z=0,1.

Suppose that wug(z) is a steady solution. By writing u = ug + U, derive a
linearised equation for small perturbations U. Show that it has separable solu-
tions of the form U = v(z)e”*, and deduce that v satisfies the Sturm-Liouville
equation

v+ [s(z) —oJv =0, v(0)=0(1)=0,

where

s(z) = f'luo(z)].
Deduce that

/01(1)'2 — s(z)v?) dz

1 3
/ v2dz
0

and hence show that if s(z) < 0, then all eigenvalues o are negative, and hence
the steady state is stable.

—0 =

If s(z) > 0, this argument does not work. Show in this case that by writing
q = Smax — S and A = Spax — 0, that X is an eigenvalue of a Sturm-Liouville
problem, and by writing A as the minimum of a suitable functional, show that
instability can occur (¢ > 0) if a function v satisfying v(0) = v(1) = 0 can be
found for which )

/ (v"? — s(z)v?) dz
min 2 5 <0.
b v’ dx

0

(This shows that the constraint that ¢ > 0 in Sturm-Liouville theory is not
necessary. )

/ v de
By consideration of the minimum value of “%5—— (with v(0) = v(1) = 0),
2
vidx

0
show that instability occurs if s > 72 for all z € (0, 1).
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PROBLEM SHEET 5, WEEK 5 LECTURES. [2006]

1. Show that the Wronskian W = y,y5 — yjy2 of two solutions yi, ys of the differ-
ential equation

[p(z)y] —q(z)y =0, p(z) >0,

satisfies pW = C, a constant. Show that the solutions are dependent (one a
multiple of the other) if C'= 0, and independent if C' # 0.

Use the method of variation of parameters to find the solution in integral form
of

y' +wly=—f(z), y(0)=y(0)=0.
By constructing the Green’s function, find the solution of

y' +wly=—f(z), y(0)=y(1) =0,
in the form

v=[ G856 de.

2. (i) Use the Neumann series iterative method to solve the integral equation

6@) =1+ [ ofy)dy.

Show that the successive approximations suggest an exact solution, and check
that it is indeed a solution. Could you have found this solution directly?

(ii) Use the Neumann method to find successive approximations to the nonlinear
integral equation

1
6@) =1+ [ {p(y)}* dy.

Show that the approximations suggest a series solution
d=1+aA+aX+...,

and by direct substitution, find the values of a; and a;. Are these values con-
sistent with the iterative method?

Solve the integral equation directly, and show that there are two solutions if
0< A< i or A <0, and one if A = i or A = 0. Show that one of the solutions
is represented by the series solution. Why is the other not?

(iii) Find the solution of the equation
1
¢(z) =1+A /0 zyd(y) dy
if A # 3. Show that there is no solution if A\ = 3.

6



Show that the homogeneous equation

P(z) = A /O 1 zyd(y) dy

has an infinite number of solutions if A = 3, but only the trivial solution ¢ = 0
if A # 3.

(iiii) Solve the integral equation

#(@) = 14X [ cos(z — y)o(y) dy,
and find the value of A for which no solution exists.

. (i) The function y(z) satisfies the Fredholm integral equation

y(@) =2 [ Gl Or(Ou(©) dé + (o), ()

where r > 0, and the real kernel G,, is degenerate, that is,
Gn(z,€) = di(z)¥i(§).
1

(Neither ¢; nor 9; are assumed to be eigenfunctions for the homogeneous equa-
tion.)

Show that the solution takes the form
y(x) = g(z) + A Z c;oi (),
1

where the vector ¢ = (cq,...,c,)" satisfies the vector equation
(I —XA)c=s,

and the vector s and real-valued matrix A should be determined.

From linear algebra we (should) know the Fredholm alternative for solutions of
the (real-valued) matrix equation Tv = c, which takes the following form: if
det T # 0, then T is invertible, and v is uniquely determined as v = T'c; or,
det T' = 0, in which case the null space N(T7) of TT (as well as that of T) is
non-empty, and then the equation has a solution iff n”c = 0 for all n € N (T7)
(and then are infinitely many solutions, as any element of N'(T") can be added
to a solution).?

2The proof of the necessity of this orthogonality condition is simple. The proof of the sufficiency
uses the fundamental theorem of linear algebra (see the book by Gil Strang, Introduction to applied
mathematics): if T’ is an n x n matrix on R", then R" = R(T) & N (TT), where R(T) is the range
of T. This means the direct sum, i. e., there is no intersection between range and adjoint null space.
That there is no intersection is clear since (easily) N'(T7) L R(T); the fact that R" = R(T)+N (T7)
then follows from the dimension of each. If the dimension of R(T') is r, then so is that of R(TT)
(because row rank equals column rank), and thus that of N(T7) is n — r. Hence c is in the range
of T if and only if it is orthogonal to the null space of T7.

7



Use this to deduce the Fredholm alternative in the following form: for each A,
either there is a unique solution of (x), or else there is no solution unless a set
of subsidiary conditions are satisfied, in which case there are an infinite number
of solutions. Explain what the conditions are, and the form of the consequent
solutions, in terms of the eigenvectors of A and AT.

(ii) Now suppose that G,, — G uniformly as n — oo. Show that if the solution
to (*) is denoted as y,, and the solution when G, is replaced by G is denoted

y, assuming these exist, then e, = sup |y — y,| satisfies
[a,b]

en < Ae+ Mye,],

for any € > 0 and sufficiently large n, if M, is chosen appropriately. Hence show

that
AE

L —
= 1M,
1
and deduce that y, — y as n — oo if |A\| < —, where

M = (b= a) max(r|G]).



Techniques of Applied Mathematics
PROBLEM SHEET 6, WEEK 6 LECTURES. [2005]

1. The integral operator G is defined on the space of continuous functions on [a, ],
Cla, b], by

Gu = [ Gl €)r(e)ule) de.

where G is real, symmetric and continuous on [a, b] X [a, b], and r is positive and
continuous on [a, b].

Suppose that the eigenfunctions ¢, with corresponding eigenvalues )\, of
(I —AG)¢p =

form a complete, orthonormal sequence, and that a continuous function f has
a Fourier expansion
f= Z CiPi-
i

By writing (I — AG)~ Z A"G", show that a formal solution of the inhomo-

geneous Fredholm integral equatlon

(I =Gy =f
can be found in the form
. Z CZ 74¢7/
Ai — A
Show that the derivation is only valid for |A| < @ but that the series in (%)

converges for all A except the eigenvalues (where there are simple poles).

2. The function G(z,€) is defined in [0, 1] by

_ x(1_§)7 LL'<§,
Glz,€) = { El—2z), z>E¢&.

Show by direct calculation that the functions u = sinnmx are eigenfunctions of

=) [ Gl gu) e,

with eigenvalues \ = n272.

Hence show (assuming this set of eigenfunctions is complete) that the solution
of the inhomogeneous integral equation

= )\/01 Gz, €)u(€) dé + 1
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can be written in the form

Inm
u = Z m SsInnre,
n odd

providing ) is not an eigenvalue.

. An integral operator is defined by

Gu= [ 6w Or(e)u(e) &

where G is real, symmetric and continuous, r is positive and continuous, and u
is continuous.

Show that
b 1/2
full = { [ ru e
defines a norm for u, and that

161] = sup 171
ul

defines a norm for G.

Write down the corresponding inner product (u,v), and write down the Cauchy-
Schwarz inequality for it. Hence, by writing Gu = (G, u), or otherwise, show

that 12
||g||<{// G2£77)d£dn} .

Bessel’s equation of order zero is
—(zu") = Azu.

Suppose we require u bounded at x = 0 and v = 0 at x = 1. Show that
the Green’s function of the left hand side of this equation with these boundary

conditions is
a_l- Inz, z>¢,
] —In¢, z <,

and deduce that the corresponding Bessel function solves the integral equation

1
u=AGu= A /O £G(z, €)u(€) de.

Hence show that G is bounded.

10



Techniques of Applied Mathematics
PROBLEM SHEET 7, WEEK 7 LECTURES. [2005]
1. The function u(z,t) satisfies the nonlinear advection-diffusion equation
U + u Uy = 5[uﬂum]z

for —oo < z < oo, with u = ug(s) on the initial curve x = s, t = 0. The
parameters o and 8 are positive, and 0 < ¢ < 1. Assume that ug > 0, and that
up(s) — 0 as s = + oo.

Write down the solution in the case € = 0, and show that a shock will form at

1
t=t,= min ———.
b0 (ug)

For t > t. show that the shock at x = z4(t) will travel at a speed

[ua+1]t
— (1)
(o + 1)[u]”

defining what you mean by u.. Sketch the form of the solution.

Ts =

Now suppose that 0 < ¢ < 1. By writing x = z, + €X, derive an approximate
equation describing the shock structure of the solution for u within the shock.
Write down suitable boundary conditions for this equation. By integrating the
equation, show that

ua—i—l

+ K —cu

where ¢ = 1, is the (constant) shock speed and K is a constant, and by applying
the boundary conditions, confirm that the shock speed c is indeed given by (1).

By using the definitions of K and c needed to satisfy the boundary conditions,
show that the numerator N(u) of the fraction in (2) can be written as

(uy —u)(utt —ust) w

(a+1)(u_ —uy) * a+1

and deduce that the derivative of N is
N'(u) = u* — {

and that N(us) = N(u_) = 0.

Use the mean value theorem for derivatives to show that

a+l _ o+l
Uy

N(u) =

Y

at+l _ ,,a+1
u_ u+ }
)

(a+ D(u- —uy)

! s e
N'(u) = u® — ug
for some u, between u_ and u.

Deduce that N < 0 for v between u_ and u,, and hence show that a solution
of (2) exists only if u_ > u,.

11



2. Show that the equation
U + UUy = EUUgy,

with u positive, admits a shock structure joining u_ to a lower value uy, in

which the wave speed is
_
°= [lnu]t”

Naively, one might have expected the wave speed to be ¢ = [%uﬂt /[u]t. Why?
And why is it not?

3. In a model of snow melting, it is assumed that the permeability is k£ = kyS?,
and the capillary suction is p.(S) = po(S—# — S), where a, 8 > 0, and S is the
saturation. The saturation for one-dimensional flow is described by

95 , 0K _ 0 [,05
ot 0z 0Oz oz |’

where ¢ is porosity, K = kpg/ is the hydraulic conductivity, and D = —kp.(S)/u
is the hydraulic diffusivity; z is the vertical coordinate pointing downwards from
the surface z = 0.

If a suitable depth scale is h, show how to non-dimensionalise the equation to

obtain the form
o5 850 [ (1 )],

ot | Oz 0z S| 9y

where
_ P

pgh’
Suppose that an initially dry snowpack (S =0at¢=0and S — 0 as z — o0)
is inundated at the surface (i.e., S =1 at z =0 for ¢ > 0). Assume also that
k = 0. Write down the characteristic equations for the model, and show, by
drawing the characteristic diagram, that if o > 1, then a shock must form, but
that if o < 1, a solution can be found with an expansion fan emanating from
z =t = 0 (note that S is indeterminate at this point on the initial boundary
curve, and can take any value between 0 and 1). For this latter case, show that
the solution is
S=1, z<at,

t 1/(1—a)
S = (a_) , z> at.
z

For the case a > 1, write down a suitable jump condition across a shock, and
hence show that the wetting front (i.e., a shock) z = z,(t) moves downwards
at a speed 2, = 1.

12



Techniques of Applied Mathematics
VACATION PROBLEM SHEET, WEEK 8 LECTURES. [2005]
1. The function u(z,t) satisfies the heat equation
Ut = Ugy
on 0 < x < oo, together with the initial condition
u=0 at t=0,
and the boundary condition

u—0 as z — oo.

Find the form of possible similarity solutions for © when the boundary condition
at x = 0, ¢ > 0 has each of the following forms:

() u=1

(ii) u, = —1;
(iil) wu, = —1;
(iiii) u, = —uP.

If you can, solve the resulting boundary value problems (but don’t expect that
this will always be possible).

Show in case (iiii) that no similarity solution exists if § = 1. What is it about
this case that prevents a similarity solution existing?

2. Write down the equation satisfied by a similarity solution of the form u = t# f(n),
n = x/t*, for the equation

up = (uW™ug), in 0<z <00,

where m > 0, with boundary conditions u™u, = —1 at x = 0, u — 0 as x — o0,
and the initial condition v = 0 at ¢ = 0. Show that an ordinary differential
equation for f with time independent boundary conditions is obtained providing

_m-l—l 1

a=——0:H = —.
m+2’ b m+2

Integrate the equation to show that f satisfies

+1 n
o= o 1
frf maa2) ) fdn
and deduce that [;° f dn = 1. Hence show that
m—1 g/ m+1)
<_ -
7 (m+2 ’

and deduce that f reaches zero at a finite value 7.

13



3. Blasius equation. The stream function ¢ of a boundary layer flow over a flat
plate is described by the equation

¢y¢zy - ¢z¢yy = "/Jyyya
valid in 0 < 2 > 00, 0 < y < 0o, with boundary conditions

Yp=19%,=0 on y=0, 9,—1 as y—+oo and z— 0.

Show that a similarity solution exists in the form

Y =az"f(n), n= ﬁ

Find the appropriate value of u, and show that a can be chosen so that the
equation for f takes the form

f”I + ff” — 0.

What are the boundary conditions for f?

This nonlinear boundary value problem must be solved numerically. A useful
way to do this is to solve the initial value problem

FIII + FFII — O,

with
F(0)=F'(0)=0, F"(0)=1.

Show that if in this solution, it is found that F’(co) = ¢, then

4. Stefan problem An Arctic pond of water of depth d at the freezing point 7' = 0°
C begins to freeze when the air temperature above is suddenly lowered (at ¢t = 0)
to —AT° C. A layer of ice forms at the surface, of depth s(t). If z is distance
downwards from the ice surface, the temperature of the ice is governed by the
heat equation

or ka2T
Py =~ "2
with boundary conditions

T=-AT at z=0, T=0 at z=s(t).

The free boundary s(¢) is unknown, and a second condition (a Stefan condi-
tion) is required to determine it. This follows from energy considerations. The
temperature below the ice/water interface is isothermal at 7' = 0 (so there is

no heat flux), but there is a heat flux k(‘)_ away from the interface towards the
z

14



surface, and this removes the latent heat per unit mass L which is released on
converting water at 0° C to ice at 0° C. The resultant Stefan condition is

oT
Li=k <
ps kazz

=8—

Non-dimensionalise the model using length scale d, time scale d?/x (where & is
the thermal diffusivity k/pc,), and temperature scale AT, and show that the
dimensionless model takes the form

or 0’T

ot~ 022’

with boundary conditions
T=-1 at z=0, T=0 at z=s(t),

. aT

0§ = —
0z ’
e

=s

and define the dimensionless Stefan number o.

Show that a similarity form of solution exists in which ' = f(n), n = QL\/E’
s = 2v/at, and solve the resulting boundary value problem. Show that the
Stefan condition leads to an equation for a (which must be solved numerically),

and show that this equation must have a unique positive solution.
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