
Techniques of Mathematical Modelling

Specimen fhs questions.

Warning: these are rather longer than actual fhs questions would be. In parts they
are also somewhat harder.

1. Explain what is meant by a conservation law and a constitutive law in a mathe-
matical model. A certain substance has a density φ of a certain quantity, which
moves with a flux f . Write down an integral conservation law for the quantity
of the substance in an arbitrary volume V , and hence deduce carefully that φ
satisfies the partial differential equation

∂φ

∂t
+ ∇.f = 0.

The density of cars on a certain one lane highway is ρ (with units of cars per
unit length), and the speed v of the cars is measured as a function of the density,

v = v0

(
1− ρ

ρ0

)2

.

Give a physical interpretation of the quantities v0 and ρ0, and explain why this
relation is intuitively sensible.

Write down an equation governing the traffic density, using the above expression
for car speed, and by choosing suitable non-dimensional variables, show that
the model can be written in the dimensionless form

∂ρ

∂t
+
∂q

∂x
= 0,

where q = ρ(1− ρ)2, and x represents dimensionless distance along the road.

A line of cars of initial (dimensionless) density ρ0(x) moves along a road −∞ <
x <∞, and is governed by the preceding equation. Consider the three situations
in which ρ0(x) is monotonic, with ρ→ ρ− as x→ −∞ and ρ→ ρ+ as x→∞,
where (i) ρ− < 1

3
< ρ+ < 2

3
, (ii) 2

3
> ρ− > 1

3
> ρ+, (iii) 1

3
< ρ− < 2

3
< ρ+.

Explain qualitatively, using diagrams, what happens in each case. In particular,
describe in which situation(s) a shock forms, and give an expression for the
resulting shock speed(s). [An exact solution is not required.]

1



2. Explain what is meant by a regular perturbation and by a singular perturbation
for an algebraic equation and for an ordinary differential equation. [It may be
useful to give illustrative examples.]

The quantity x satisfies the algebraic equation

x4 − εx− 1 = 0.

Suppose that ε ¿ 1. Find approximate expressions, correct to terms of O(ε),
for each of the four solutions of the equation.

Now suppose ε À 1. Show that an approximate solution cannot immediately
be found, but that by a suitable rescaling of the equation (which you should
find), it can be written in the form

X4 −X − δ = 0,

where δ = ε−4/3 ¿ 1.

Hence find leading order (non-zero) approximations for all four of the solutions.

Find a more accurate approximation to the smallest root in this case.
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3. A nonlinear damped pendulum satisfies the equation

lθ̈ + kθ̇ + g sin θ = 0.

Explain the meaning of the terms in this equation, and how it is derived.

Suppose that θ = 0, θ̇ = ω0 at t = 0. By suitably non-dimensionalising the
equation, show that the model can be written in the form

θ̈ + θ̇ + ε sin θ = 0,

θ(0) = 0, θ̇ = µ,

and give the definitions of ε and µ.

The pendulum is suspended in a bath of liquid (e. g., water). Why might this
be consistent with a value of ε¿ 1?

Assume now that ε ¿ 1 and that µ = O(1). Find an approximate solution in
this case, and show that θ → µ for large t.

By rescaling t = τ/ε, find an approximate equation satisfied by θ over this
longer time scale, and explain why a suitable initial condition for θ as τ → 0 is
θ ≈ µ.

Hence show that for τ ≥ O(1),

θ ≈ 2 tan−1
[
e−τ tan

µ

2

]
.

Do these results accord with your expectation?
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4. The temperature T of a fluid satisfies the equation

∂T

∂t
+ u.∇T = κ∇2T +

H

ρcp
,

and the quantity H is given by

H = A exp
(
− E

RT

)
.

The fluid is contained in a vessel D of linear size l, and the fluid velocity is of
order of magnitude U . The boundary condition for T is

T = TB on ∂D,

where TB is constant. Show how to non-dimensionalise the equation to obtain
the dimensionless form

Pe

[
∂θ

∂t
+ u.∇θ

]
= ∇2θ + λ exp

(
θ

1 + εθ

)
,

with
θ = 0 on ∂D,

and show that

Pe =
Ul

κ
, ε =

RTB

E
, λ =

µ

ε
exp(−1/ε),

where

µ =
Al2

kTB

,

and k is the thermal conductivity, k = ρcpκ.

Suppose that D is one-dimensional, and of length 2l, so that the dimensionless
range of the space variable x is [−1, 1]. Suppose also that Pe ¿ 1, ε ¿ 1,
and λ = O(1). Write down an approximate equation and boundary conditions
satisfied by θ, and show that the solution in x > 0 can be written in the integral
form ∫ θ0

θ

du√
eθ0 − eu

=
√

2λx,

where θ0 = θ|x=0.

Evaluate the integral to find θ(x), and deduce that θ0 satisfies

√
λ

2
= z sech z,

where

z =

√
λeθ0

2
.
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Draw a sketch graph of θ0 in terms of λ, explaining the behaviour of θ0 for small
λ.

Show that no solution exists for λ > λc, where

λc = 2ζ2 sech 2ζ, 1 = ζ tanh ζ.

[It may help to consider the graph of zsech z.]
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5. Draw a graph of the function

V (x) =
x4

4
− x2

2
.

The function x(t) satisfies the ordinary differential equation

ẍ+ Λẋ+ V ′(x) = 0.

Show that the equation has fixed points at x = −1, 0 and 1.

(i) Suppose that Λ = 0. Show that the quantity

E = 1
2
ẋ2 + V (x)

is constant. Deduce the form of the trajectories in the (x, ẋ) phase plane.

Hence or otherwise show that the solutions are oscillatory, and sketch the form
of the solutions as graphs of x against t, distinguishing clearly between solutions
in which E < 0 and those in which E > 0.

Now suppose that Λ ¿ 1. Show that Ė = −Λẋ2, and deduce that for almost all
trajectories, E → −1

4
. Hence, or otherwise, show that the fixed points at ±1 are

stable, and that at 0 is unstable. Sketch (roughly) the form of the trajectories
in the phase plane.

(ii) Suppose now that Λ À 1. Find a suitable rescaling of t so that the equation
for x can be approximated by a first order differential equation. Hence show
that if x(0) 6= 0, x → ±1 as t → ∞. How does the limiting state depend on
x(0)?

Describe briefly how you could reconcile the prescription of two initial conditions
for x with this approximate first order equation.
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6. The function x(t) satisfies the equation

ẍ+ (x4 − 1)ẋ+ ω2x = 0.

Show that the steady state x = 0 is an unstable spiral, or an unstable node,
depending on the size of ω.

Suppose that ω2 ¿ 1. Find a suitable rescaling of t so that the equation can
be written in the form

εẍ+ (x4 − 1)ẋ+ x = 0, (∗)

and give the definition of ε. Hence show that ε¿ 1.

Draw a graph of the function f(x) = 1
5
x5−x. Show that the equation x5−5x−

4 = 0 has real roots of −1, −1 and x0 (and no others), where x0 is the unique
positive root of x3 − 2x2 + 3x − 4 = 0. (You should explain why this root is
indeed unique.)

Show that, by defining y suitably, the differential equation (∗) for x can be
written as the pair

εẋ = y − f(x),

ẏ = −x.

Deduce that for small ω, a relaxation oscillation occurs, and indicate its form
in the (x, y) phase plane.

Show that the period of oscillation P is approximately given by

P = 2
∫ x0

1

f ′(x) dx
x

,

and hence find an approximation for P in terms of x0.

7



7. Describe what is meant by a boundary layer approximation to the solution of a
differential equation.

Describe, giving brief reasons, where you expect the boundary layers to be
located for the solutions of the boundary value problem

εy′′ + a(x)y′ + b(x)y = 0, y(0) = 0, y(1) = 1,

if ε¿ 1 and (i) a(x) > 0; (ii) a(x) < 0.

Find a leading order approximation (including boundary layers, where neces-
sary) to the solution of the boundary value problem

εy′′ + (1 + x)y′ + xy = 0, y(0) = 0, y(1) = 2.

Hence show that, approximately,

y′(0) =
e

ε
.
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8. Suppose that

Ẋ = A(t)X, (∗)

where X ∈ Rn and A is a 2π–perodic n×n matrix, whose elements are contin-
uous.

Define what is meant by the fundamental matrix Φ(t), and use it to show that
the solution of (∗) satisfying X = X0 at t = 0 is given by

X = Φ(t)X0.

Suppose that W = det Φ; show that

Ẇ = (trA)W,

and deduce that W is never zero.

Deduce that the monodromy matrix M = Φ(2π) has no zero eigenvalues.

Suppose the (distinct) eigenvalues of M are exp (2πλs), s = 1, 2 . . . n, and that
Λ is the diagonal matrix diag (λs).

If Ψ is the matrix exp(tΛ), show that

Ψ(2π) = diag [exp(2πλs)] .

Suppose now that the constant matrix P satisfies P−1MP = Ψ(2π). Show that
PΨ(2π) = Φ(2π)P , and deduce that the matrix B = ΦPΨ−1P−1 is 2π–periodic.

Show how this can be used to prove Floquet’s theorem, that there is a 2π–
periodic matrix B(t) such that X = BY , and

Ẏ = CY,

where C is a constant matrix, which you should find.

Explain how the eigenvalues of C are related to those of M .
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9. (i) The function u(x, t) satisfies the heat equation

ut = uxx

on 0 < x <∞, together with the initial condition

u = 0 at t = 0,

and the boundary conditions

u = 1 at x = 0,

u→ 0 as x→∞.

Find a similarity solution for u.

(ii) Suppose now that u(x, t) satisfies

ut = (uux)x in 0 < x <∞,

with the same initial and boundary conditions as above.

Show that a similarity solution in the form u = f(η), η =
x

ctα
can be found if

α is chosen appropriately, and show that if also c takes a certain value, then f
satisfies the equation

(ff ′)′ + 2ηf ′ = 0.

Write down the boundary conditions for f .

Suppose now that f > 0 for all finite η, and assume that ηf → 0 as η → ∞.
By integrating the equation for f , show that f satisfies

f ′ = −2η − 2
∫∞
η f(ξ) dξ

f
,

and deduce that
f < 1− η2

in this case.

Hence show that in fact f must reach zero at some finite value η0. Can this
same argument be used to show that η0 < 1?
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10. Jensen’s inequality states that

f
[∫

Ω
g(x) dω

]
≤

∫

Ω
f [g(x)] dω,

if f is convex, i. e., f ′′ > 0, and the spatial domain Ω has unit measure, i. e.,∫

Ω
dω = 1.

The function u satisfies

ut = ∇2u+ λf(u) in Ω,

u = 0 for x ∈ ∂Ω, u = 0 at t = 0,

where Ω is a bounded domain, λ > 0 and f is a positive convex function for
u ≥ 0. Assume that u ≥ 0 for t ≥ 0.

Assume that the principal eigenfunction φ and the corresponding eigenvalue µ
of Helmholtz’s equation

∇2φ+ µφ = 0

satisfy φ > 0 and

µ = min
φ

∫

Ω
|∇ψ|2 dV

∫

Ω
|ψ|2 dV

.

Using the definitions

dω =
φ dV∫

Ω
φ dV

and
v =

∫

Ω
u dω,

use Jensen’s inequality to show that

v̇ ≥ −µv + λf(v),

where v̇ = dv/dt.

Suppose now that w(t) satisfies the equation

ẇ = −µw + λf(w), w(0) = 0,

and that f(w) > 0, f ′(w) > 0 for all w ≥ 0. By writing the solution as
a quadrature in the form t = I(w), show that if λ is sufficiently large that
λf(w)− µw is positive for all w ≥ 0, then w →∞ as t→ tc, where

tc = I(∞) =
∫ ∞

0

dw

λf(w)− µw
,

assuming this integral exists.

Show that I(v) is a monotone increasing function of v, and that v satisfies the
inequality I(v) ≥ t. Deduce that v ≥ w, and therefore that u must blow up in
finite time.
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11. A forced pendulum satisfies the equation

lθ̈ + kθ̇ + g sin θ = a sinαt.

By scaling the equation suitably, show that this can be written in the dimen-
sionless form

θ̈ + βθ̇ + sin θ = ε sinωt,

and give the definitions of β, ε and ω.

Suppose that ε¿ 1 and θ ¿ 1. Find an approximate linear equation for θ and
obtain its (particular) solution if β = 0. Plot the amplitude A = max |θ| as a
function of the driving frequency ω.

Now suppose β 6= 0 (but is still small). Find the solution (ignoring the transient)
and show that its amplitude A is given by

A =
ε

|1− ω2 + iβω| .

Next consider the oscillator when β = 0 and ε = 0. Find a first integral of the
motion, plot the trajectories in the (θ, θ̇) phase plane, and hence deduce that
the period of oscillation P is given by

P = 4
∫ A

0

du√
2[E − (1− cosu)]1/2

,

where A is the amplitude of the oscillation, and

E(A) = 1− cosA.

Hence show that the frequency of the undamped, unforced pendulum is given
by

Ω(A) =
π

√
2
∫ A

0

du

[cosu− cosA]1/2

.

Show that Ω → 1 as A→ 0.

Suppose that when β 6= 0 and ε 6= 0, the amplitude of oscillation is related to
the forcing frequency by

A = R[Ω(A)],

where
R(Ω) =

ε

|Ω2 − ω2 + iβω| .

Assume that Ω(A) = 1− 1
8
A2; write down an expression for the inverse function

A = I(Ω).

By consideration of the intersection of the graphs of I(Ω) and R(Ω), show that,
for sufficiently small ε and β, there can be one, three, or exceptionally two
values of Ω (and thus A) for given ω. Draw a graph of the amplitude A in
terms of ω.
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12. The size of courgette plants in my garden is measured by the leaf area L. The
rate of growth of the plants is proportional to leaf area, and also to received
sunlight, which is itself proportional to leaf area. Additionally, the plants grow

to a maximum size. Explain why a growth rate for L of gL2
(
1− L

L0

)
represents

these assumptions.

Slugs consume courgette leaves at a rate rS, where S is slug density, and I
plant out seedlings at a rate p (leaf area per unit time). Explain why a model
equation for leaf area can be assumed to be

L̇ = p− rS + gL2
(
1− L

L0

)
,

where L̇ = dL/dt.

Assume to begin with that the slug density S is constant. Non-dimensionalise
the equation to obtain the dimensionless model

l̇ = 1− ρ+ γl2 (1− l) ,

and define the parameters ρ and γ.

Show that if ρ < 1, the plants grow to a healthy size.

Show that if ρ > 1 +
4γ

27
, I cannot grow courgettes.

Show that if 1 < ρ < 1 +
4γ

27
, there is a threshold value lc such that if l > lc,

plants will thrive, but if l < lc, plants will die out.

Draw a graph of the steady state l versus ρ, and show that this response diagram
indicates hysteresis as ρ varies. Indicate where l̇ > 0 and l̇ < 0 on the diagram,
and thus determine the stability of the steady state(s).

In reality, the slug consumption rate depends on leaf area. Suppose now that

r =
r0L

L+ Lc

.

Write down the corresponding form of the dimensionless model in this case.
Suppose that l0 = Lc/L0 is small. Draw a response diagram of steady state
l versus ρ0 = r0S/p in this case, indicating carefully how this diagram differs
from the previous one.

Show that the diagram again displays hysteresis, and that there are two values
ρ− and ρ+ such that for ρ− < ρ0 < ρ+, there are three possible steady state

values of l, only two of which are stable. Show that ρ− → 1 and ρ+ → 1 +
4γ

27
as l0 → 0, and that the corresponding values l− → 0 and l+ → 2/3.

Slugs are attracted towards foliage at a rate proportional to leaf area, and I
kill them at a rate proportional to their number. Explain why a suitable model
equation for slug density is

Ṡ = aL− bS,
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and show that by suitable choice of the slug density scale, the dimensionless
slug model can be written in the form

ṡ = l − µs,

and give the definition of µ.

Hence show that for small killing rate or high planting rate, a stable state occurs
in which slugs win, but for high killing rate or low planting rate, the plants win.
Show also that for intermediary rates, oscillations are possible.
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13. The variables x and y satisfy the ordinary differential equations

ẋ = f(x, y),

ẏ = g(x, y),

where ẋ = dx/dt, ẏ = dy/dt, and t denotes time. Suppose (x0, y0) is a fixed point
of these equations. Describe how the stability of the fixed point is determined
by the trace T and determinant D of the community matrix

M =

(
fx fy

gx gy

)
,

and indicate on a diagram in which regions of (T,D) space the fixed point is a
saddle, a node, or a spiral. Give a necessary and sufficient condition on T and
D for (x0, y0) to be stable.

The functions G(x) and H(x) are defined for positive x by

G(x) = x2e−x, H(x) = βe−2x,

where β > 0. Show that the equation G(x) = H(x) has a unique positive
root. If this root is denoted by x0(β), show (for example, graphically) that x0

increases with β, and that x0 → 0 as β → 0 and x0 →∞ as β →∞.

Now suppose that in the differential equations for x and y,

f(x, y) = y −G(x), g(x, y) = H(x)− y,

and suppose that x and y are initially non-negative. Show that x and y remain
positive for t > 0.

Show that there is a unique fixed point P at (x0, H(x0)) in the positive quadrant.
Draw the nullclines in the phase plane, indicating on your diagram the direction
of trajectories in the four regions of the positive quadrant delineated by the
nullclines.

Show that the trace T and the determinant D of the community matrix at the
fixed point P are given by

T = −G′(x0)− 1, D = G′ −H ′,

and deduce that D > 0 for all positive values of β.

Derive an expression for −G′(x), and show that it has a maximum at x = xM =
2+

√
2. Assuming that −G′(xM) < 1, deduce (explaining why) that P is stable

for all positive values of β.
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14. The Fisher equation is given by

ut = ru
[
1− u

K

]
+ {Dux}x.

If r, K and D are constant, show how to non-dimensionalise the equation to
the form

ut = u [1− u] + uxx.

If, initially, u = 0 except on a finite interval where it is small and positive,
explain using diagrams how you would expect the solution to evolve. Verify your
description by seeking travelling wave solutions of the form u = f(ξ), ξ = x−ct,
and write down the resulting equation and boundary conditions which f must
satisfy, assuming that c > 0. How should the boundary conditions be modified
if c < 0?

By examining the solutions in a suitable phase plane, show that a travelling
wave in which u > 0 is positive is possible if c ≥ 2. What happens if c < 2?

Sketch the form of the wave as a function of ξ. If, instead, D = D0u, what form
would you expect a travelling wave to take, assuming such a wave exists?
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15. The function u(x, t) satisfies the equation

ut + uux = −βu,

with initial conditions

u = u0(x) on −∞ < x <∞,

and u0 > 0, u→ 0 as x→ ±∞.

Use the method of characteristics to derive the solution in the parametric form

u = u0(s)e
−βt,

x = s+
u0(s)

(
1− e−βt

)

β
.

Assume that β > 0 and that t ≥ 0. By first writing u = F (x, t, u), or otherwise,
find an expression for ux, and hence show that a shock will develop if max |u′0| >
β.

Suppose that u0(s) = α(1 − |s|) for s ∈ (−1, 1), and u0 = 0 otherwise. If
0 < α < β, show that characteristics do not intersect, and deduce that u = 0
for |x| > 1. By considering the characteristics from 0 < s < 1, show also that

u =
αβ(1− x)e−βt

β − α(1− e−βt)

for
α((1− e−βt)

β
< x < 1. Write down a corresponding expression for u in

0 < x <
α((1− e−βt)

β
. Draw the characteristic diagram for the solution.
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16. The function u(x, t) satisfies the equation

ut + u2ux = εuxx

on (−∞,∞), where ε ¿ 1. At t = 0, u = u0(x), where u0 is positive and

u0(±∞) = 0. Show that
∫ ∞

−∞
u dx is conserved in time.

If the diffusion term is neglected, use the method of characteristics to solve the
equation, and hence derive an expression for ux as a function of x, t and u.
Use this to show that a shock will form for t > 0 if u′0 < 0, and this occurs at

t = min
u′0<0

1

2u0|u′0|
.

Suppose u0(x) = V (1 − |x|) for |x| < 1, u0 = 0 otherwise, where V > 0. Show

that a shock first forms when t =
1

2V 2
, at the point x = 1

2
. Draw the shape of

u as a function of x at this time.

For time t >
1

2V 2
, a shock propagates forwards at a position x = X(t). If the

value of u behind the front is U(t), show that, for large enough t,

tU2 +
U

V
− 1−X = 0,

and that (also for large enough t)

Ẋ = 1
3
U2.

Deduce that for large t and X,

U ≈
(
X

t

)1/2

,

and hence that
X ≈ at1/3,

and use the value of the conserved integral
∫ ∞

−∞
u dx to show that

a =
(

3V

2

)2/3

.

If ε is small but non-zero, show that a shock structure consistent with this
description is possible, by writing x = X+εξ, and solving the resulting approx-
imate equation for u with the boundary conditions u→ U as ξ → −∞, u→ 0
as ξ →∞.
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17. A model of snow melt run off from a snow pack is described by the equations

φ
∂S

∂t
+
∂u

∂z
= 0,

u = −k(S)

µ

[
∂p

∂z
− ρg

]
,

pa − p = pc(S),

where z measures distance downwards from the surface of the snowpack, and
S ∈ (0, 1) is the relative water saturation (S = 1 represents total saturation,
S = 0 represents complete dryness).

Show that the equations can be reduced to a single equation for S of the form

φ
∂S

∂t
=

∂

∂z

[
D(S)

∂S

∂z
−K(S)

]
,

and give the definitions of the hydraulic diffusivity D(S) and hydraulic conduc-
tivity K(S).

If k(S) = k0kr(S) and pc(S) = p0f(S), where kr and f are dimensionless and
of O(1), show that a dimensionless model can be written in the form

∂S

∂t
= −∂u

∂z
=

∂

∂z

[
D(S)

∂S

∂z
− εkr(S)

]
,

where now
D(S) = −kr(S)f ′(S),

u is the dimensionless flux, and

ε =
ρgd

p0

,

d being a suitable length scale.

Assume now that kr(S) = S2 and f(S) = ln(1/S). Find the form of the equation
for S in this case.

An initially dry snowpack (i. e., with S = 0) of depth d begins to melt, so that
the dimensional surface flux for t > 0 is u|z=0 = q. Show that the corresponding

dimensionless surface flux is q∗ =
µdq

k0p0

.

Supposing that ε ¿ 1, show that a similarity solution in the form S = tαg(η),
η = z/tβ, which describes the advance of the wetting front into the snowpack
can be found, if

(gg′)′ = 1
3
g − 2

3
ηg′,

and
gg′ = −q∗ on η = 0.
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Explain briefly why for this model there is a finite wetting front, i. e., g = 0 at
η = η0.

Show that
∫ η0

0
g dη = q∗.

Show that

g′ = −2
3
η −

∫ η0

η
g dη

g
,

and deduce that g′ < −2
3
η.

If g = g0 at η = 0, show that g < g0 − 1
3
η2, and deduce that g0 >

1
3
η2

0. Show

also that the integral constraint on g implies g0 >
1
9
η2

0 +
q∗

η0

.

By graphical means, show that these two inequalities together imply that g0 >
(3q∗2/4)1/3.

Show that the dimensionless breakthrough time (when the wetting front reaches

the base of the snow pack) is tB = 1/η
3/2
0 , and the dimensionless ponding time

(when the surface saturation reaches S = 1) is tS = 1/g3
0. By means of the

above inequalities, show that (tB/tS)1/3 > (g3
0/3)1/4, and hence deduce that

tB > tS if q∗ > 2.
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18. The function u(x, t) satisfies the nonlinear diffusion equation

ut = [(D + u)ux]x on 0 < x <∞,

where D is a non-negative constant, together with the boundary conditions
u = 1 at x = 0, u → 0 as x → ∞, and the initial condition u = 0 at t = 0.
Show that a similarity solution in the form u = f(η), η = x/ctβ, can be found,
where for suitable constants c and β, f satisfies

[(D + f)f ′]′ + 2ηf ′ = 0. (1)

Write down the boundary conditions satisfied by f .

Suppose that f(η) is any analytic function satisfying an equation of the form

f ′′ = φ2,1(η, f, f
′)f ′,

where φ2,1(η, f, g) has derivatives of all orders with respect to f and g. Show
by induction that

f (n) = φn,1(η, f, f
′)f ′ + . . .+ φn,n−1(η, f, f

′)f (n−1),

and deduce that if f ′ = 0 at a point, then f ′ ≡ 0.

Hence show that the solution of equation (1) satisfying the boundary conditions
you have prescribed must be monotonically decreasing.

Deduce from this that if D > 0, then f > 0 for all finite η. Why does this
conclusion not apply if D = 0?

Show, contrarily, that if D = 0, then ff ′ < −2ηf , and deduce that f must
reach 0 at a finite value of η = η0, and that in fact η0 < 1.

21



19. A small drop of fluid of depth h sits on a horizontal plane. The equation of
conservation of mass can be written in the form

ht + ∇.q = 0,

where q denotes the horizontal fluid flux (i. e., the integral over the depth of the
horizontal velocity). Assume that the horizontal fluid flux, q, can be approxi-
mated as

q = −ρgh
3

3µ
∇h,

where ρ is density, g is gravity, and µ is the viscosity.

Hence derive the evolution equation

ht =
ρg

3µ
∇.[h3∇h],

and show that it can be written in the dimensionless form

ht = ∇.[h3∇h].

A lava dome is modelled by a shallow two-dimensional fluid flow of dimensionless
depth h(x, t) satisfying the above equation in one space variable x. The eruption
rate is modelled by a prescribed dimensionless flux q = 1 at x = 0. Restricting
attention to the dome shape in x > 0, show that it may be modelled by the
equation

ht =
[
h3hx

]
x

in x > 0,

with
h3hx = −1 on x = 0, h→ 0 as x→∞.

Look for a similarity solution of the form h = tαf(η), η = x/tβ to the above
equations and boundary conditions for a suitable choice of α and β, and show
that f satisfies (

f 3f ′
)′

+ 4
5
(ηf)′ = f,

with (
f 3f ′

)′
= −1 at η = 0, f(∞) = 0.

If f first reaches zero when η = η0 (which may be infinite) (thus f > 0 for
η < η0), show that

f 3f ′ = −4
5
ηf −

∫ η0

η
f dη.

Deduce that f ′ < 0, and that

f 2f ′ < −4
5
η

while η < η0. Hence show that η0 is in fact finite, and that

η0 <

√
5f(0)3

6
.
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