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1 Dynamic phenomena

Glaciers are huge and slow moving rivers of ice which exist in various parts of the world:
Alaska, the Rockies, the Alps, Spitsbergen, China, for example. They drain areas in which
snow accumulates, much as rivers drain catchment areas where rain falls. Claciers also
flow in the same basic way that rivers do. Although glacier ice is solid, it can deform by
the slow creep of dislocations within the lattice of ice crystals which form the fabric of
the ice. Thus, glacier ice effectively behaves like a viscous material, with, however, a very
large viscosity: a typical value of ice viscosity is 1 bar year (in the metre-bar-year system
of units!). Since 1 bar = 10® Pa. 1 year = § x 107 s, this is & viscosity of some 1012 Pa s,
about 10%® times that of water. Asa consequence of their enormous viscosity, glaciers move
slowly - a typical velocity would be in the range 10-100 m y~' {(metres per year), certainly
measurable but hardly dramatic. More awesome are the dimensions of glaciers. Depths of
hundreds of metres are typical, widths of kilometres, lengths of tens of kilometres. Thus
glaciers can have an jmportant ceffect on the human environment in their vicinity. They
are also indirect monitors of climate: for example, many lithographs of Swiss glaciers show
that they have been receding since the nineteenth century, a phenomena thought to be
due to the termination of the ‘little ice age’ in the middle ages.

Where glaciers are the glacial equivalent of rivers, i.e. channeled flow, ice sheets are
the equivalent of droplets, but altogether on a grander scale. When an entire continent,
or at least a substantial portion thereof, has a polar chimate, then snow accumulates on
the uplands, is compressed into ice, and flows out to cover the continent, much as a drop
of fluid on a table will spread under the action of gravity. llowever, whereas droplets can
reach a steady state through the contractile effect of surface tension, this is not relevant
to large ice sheets. In them, equilibrium can be maintained through a balance between
accumulation in the centre and ablation at the margins. This can occur either through
melting of the ice in the warmer climate at the ice mnargin, or through calving of icebergs.
(Indeed, the same balance of accumulation al higher clevations with ablation at Jowoer

elevations is responsible for the normal quasi-steady profile of valley glaciers.)
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There are two imajor ice sheets on the Earth, namely those in Antarctica and Greenland
(the Arctic is an ocean, and its ice is sca ice, rarely more than three metres thick). They
are on the order of thousands of kilometres in extent. and kilometres deep (up to four
for Antarctica). They are thus, in fact. shallow flows. a fact which greatly facilitates the
solution of mathematical models of the flow. Possibly more famous are the ice sheets
which covered much of North America (the Laurentide ice sheet) and northern Europe
(the Fennoscandian ice sheet) during the last ice age. Throughout the Pleistocene era
(that is, the last two million years), there have been a succession of ice ages, each lasting
a typical period of around 90,000 years. during which global ice sheet volume increased.
interspersed with shorter (10,000 year) tnterglacsals, when the ice sheets rapidly retreat.
The last ice age finished some ten thousand years ago, so that we are about due for
another now.

Drainage and sliding

While the motion of ice sheets and glaciers can be understood by means of viscous theory,
there are some notable complications which can oceur. Chief among these is that ice can
reach the melting point at the glacier bed. due to frictional heating or geothermal heat
input, in which case water is produced, and the ice can shde. Thus, unlike an ordinary
viseous fluid, slip can occur at the base, and this is determined by a sliding law which
relates basal shear stress 7 to sliding velocity n, and also, normally. the effective pressure
N = p, - py. where p; and p, are ice and water pressures. The determination of p,.
further requires a description of the subglacial hydrology, and thus the dynamics of ice is
intricately coupled to other physical processes: as we shall see, this complexity leads to
some exotic phenomena.

1.2 Waves on glaciers

Just as on rivers, gravity waves will propagate on glaciers. Because the flow is very slow,
they only propagate one way (downstream), and at specds comparable to the surface speed
(but slightly faster). These waves are known as surface waves, as they are evidenced by
undulations of the surface: an example is shown in Fig. 1. They are examples of kinematic
waves, driven by the dependence of ice flux on glacier depth.

A more exotic kind of wave is the “seasonal wave’. This has no obvious counterpart in
other Auid flows. It consists of (sizeable) perturbations in the surface velocity field which
propagate down glacier at speeds in the order of 20-150 times the surface speed. There is
no significant surface perturbation, and these waves must in fact be caused by variations
of the basal sliding speed due to annual fluctuations in the basal water pressure. Although

well-known and reported at the turn of the century, little attention has been paid to these
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Figure 1: Changes of mean surface elevation of Mer de Glace, France, along four cross-
profiles over a period of 9 years. The broken line corresponds to a wave velocity of 800
m/a. Reproduced from L. Lliboutry, IASH publ. 47, 125-138, by permission of the
International Association of Hydrological Sciences.
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Figure 2: The measured surface speed of Nisqually Glacier, Mt.Rainier. as a function of
time and distance. The contour interval is 25 mm d~!. The maximum and minimum
speeds occur progressively later with distance down-glacier; this represents a “seasonal
wave” in the ice flow. Reproduced from Hodge (1974) by permission of the International
Glaciological Society.
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waves in recent yenrs. Figure 2 shows measurements of Hodge on Nisqually Glacier which
indicates the rapid passage of a velocity wave downstream.

Mention should also be made of wave ogives, although we will not deal with them
in this lecture. They are bands (also known as Forbes bands) which propagate below

ice-falls, and are due to the annual ablation cycle.

1.3 Surges

Perhaps the most spectacular form of wave motion is the glacier surge. Surges are large
scale relaxation oscillations of the whole length of a glacier. They are roughly periodic,
with periods on the order of 20-100 years. During a Jong quiescent phase, the glacier is
over-extended and thin. Ice accumulation causes the glacier to thicken upstream, while
the over-extended snout thins and retreats. Eventually, a critical thickness is reached,
and the glacier slumps rapidly downslope again. These surges will typically last only a
year or two, during which time the velocity may increase a hundred-fold. The glacier
snout will then advance by several kilometres.

A typical (and much studied) example is the Variegated Glacier in Alaska. Its surge
periodicity is about twenty years. while its surges last about two vears. The glacier, of
length twenty kilometres and depth four hundred metres, advances some six kilometres
during its surge, at measured speeds of up to 65 metres per day. Such large velocities
can only occur by basal sliding, and detailed observations during the 1982-3 surge showed
that the surge was mediated by an alteration in the basal drainage system, which had the
effect of raising water pressure dramatically. A dynamic model suggests, in fact, that the
oscillations are caused by the competitive interaction between the basal sliding law and
the hydraulics of the subglacial drainage system. When the ice is relatively thin (hence
the driving shear stress is low) the drainage occurs through a network of channels incised
into the ice at the glacier bed - called Rothlisberger channels. These allow effective
drainage at quite low water pressures (hence high effective pressures) and thus also low
velocities. At higher driving stresses, however, an instability forces the channel system
to close down, and the basal water is forced into cavities which exist between the ice and
bedrock protuberances (such cavities are well-known to exist). The water flow is reduced,
and the sudden increase in water pressure causes a sudden increase in ice velocity - - the
surge. The transition front between the linked cavity drainage system and the channel
system is nucleated near the maximum depth, and propagates rapidly both upstream and
downstream, at (measured) speeds on the order of hundreds of metres per hour. At the
end of the surge, the channel drainage system is re-established. Figures 3 and 4 show a
vertical view of Variegated Glacier in pre- and post-surge states.

Our understanding of the Variegated surges relies on the concept of drainage switch
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Figure 3: Variegated Glacier at the beginning of a surge, 20 August. 1964, Photograph
by Austin Post, U.S. Geological Survey.

Figure 4: Variegated Glacier at the end of a surge, 22 August, 1965. Photograph by
Austin Post, U.S. Geological Survey.
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between channelised flow and linked cavities, implicitly for ice flowing over (hard) bedrock.
A rather different situation appears to operate in Trapridge Glacier, another well-studied
surging glacier in the Yukon. Here the glacier is cold (unlike the temperate (at the melting
point) Variegated) and rests on a thick (~ 6 metres) layer of (il — a rather sludgy
mixture of water and rock particles. The till has a bimodal distribution, consisting of
coarse pebbles and boulders interspersed with finer clay material. Till is produced by
the erosion of brittle underlying bedrock, and is evacuated by the slow motion of the ice
downstream.

The sequence of events which appear to be occurring as the Trapridge thickens is that
the basal ice reaches melting point (and the till thaws). The till is then deformable, and
the surge will be associated with a slump of the ice riding over the soft till; it (herefore
depends on the rheology of the till. While this is presently uncertain, it is clear that
water pressure in unconsolidated sediments has a major effect on till rheology. As water
pressure increases, the till dilates and its effective viscosity is reduced. Thus, surging here
could also be explained by a sudden alteration of drainage mechanism. Quite what this
could be, however, is unclear. At the moment, water is evacuated from the base through
the till to a subglacial aquifer, and emerges at an outlet stream in front of the glacier. One
possibility is that, as the ice thickens and more basal melt water is produced, the water
pressure at the base necessary to evacuate the meltwater gradually increases towards
overburden pressure, with an associated increase in basal till deformation. One might
expect a runaway phenomena, as the accelerating ice flow produces yet more melt water,
a process eventually relieved by the surge and the re-freezing of the base due to thinning
of the ice. However, the long-awaited next surge of Trapridge has not yet occurred and
such mechanisms are highly speculative.

1.4 Ice streams

Although ice sheets also flow under the horizontal pressure gradients induced by the
glaciostatic pressures beneath their sloping surfaces, they rest on essentially unsloping
bases, and therefore have no advective component in their dynamics. Thus ice sheets do
not, at least on the large scale, exhibit wave motion: the governing equations are essen-
tially diffusive in character. On a more local scale, however, ice sheets have interesting
phenomena of their own.

Principal among these may be ice streams. Ice sheets do not tend to drain uniformly to
the margin from their central accumulation zones, but rather the outfiows from catchment
areas are concentrated into fast-moving ice streams. Examples are the Lambert Glacier in
Antarctica and Jakobshavn in Greenland, a fast-moving (8 metres per day) outlet glacier.
These ice streams gain their speed by carving out deep channels through which they flow.
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Indeed, there is an obvious positive feedback here. The deeper an ice flow, the larger
the driving basal stress, and the warmer the basal ice (due to increased frictional heat
and decreased conductive heat loss), and hence 1he softer the ice. Both of these effects
contribute to enhanced ice flow, which explains the formation of such channels. since
the erosive power of ice flow increases with the basal velocity and the basal shear stress.
Indeed, flow of ice over a plane bed is subject to a lateral instability (much as overland
flow of surface water is unstable to the formation of rills and gullies).

A similar kind of mechanism may operate when ice flows over deforming sediments,
as in the Siple Coast of West Antarctica. Here, it is found that the flow is concentrated
into five ice streams, A, B, C, D, and £. which are characterised by their heavily crevassed
appearance. The flow in these ice sircams is very rapid and is due to basal sliding over
the underlying sediment (except for ice stream €, which appears to have “switched off*
several hundred years ago). Measurcients on ice stream B indicate that the basal water
pressure is high (within 0.4 bar of the overburden pressure), and that it is underlain by
some eight metres of saturated till. A similar instability to that concernng ice flow over
hard bedrock can explain the streaming nature of the flow. Where ice flow is larger,
there is increased water production. If the drainage system is such that increased water
production leads to increased water pressure (as one might expect, e.g. for a Darcy flow),
then the higher water pressure decreases the viscosity of the till, and hence enhances the
ice flow further. This is au instability mechanism, and the limiting factor is that when ice
flow increases. there is increased heat loss from the base, which acts to limit the increase

of melt rate. Although this mechanism is viable, it has not vel been shown that it works

1.5 Jokulhlaups

It will be clear by now that basal water is tremendously important in determining 1he
nature of ice flow. Equally, the basal water system can fluctuate independently of the
overlying ice dynamics, most notably in the outburst floods called jokulhlaups. In leeland,
in particular, these are associated with volcanoes under ice caps, where high rates of
geothermal heat flux in the confines of a caldera cause a growing subglacial lake to occur.
which eventually overflows, propugates downglacier, and releases enormous floods over
the southern coastal outwash plains, These Hoods carry enormous amounts of volcanic
ash and sediments, which create vast beaches of black ash. Despite their violence, the
ice flow is hardly disturbed. Jokulhlaups are essentially internal oscillations of the basal
drainage system. They are initiated when the rising subglacial lake level causes leakage
over a topographic rim, and the resultant water flow leads to an amplifying water flow by
the following mechanism. Water flow through a channel in ice enlarges it by meltback of

the walls due to frictional heating. The increased channel size allows increased flow, and
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thus further eplargement. The process is limited by the fact that the ice tends to close
up the channel due 1o the excess overburden pressure over the channel water pressure,
and this is nccentuated when the channel is larger. In eflfect, the opening of the valve by
the excess lake pressure is elosed by the excess ice pressure. These flouds ocour more or
less periodically, every five to ten years in the case of the best known, that of Grimsvitn
under Vatnajokull in South-cast Ieeland.

1.6 Notes

The best source for general information about glaciers and ice sheets is the book by
Paterson (1994).

An early discussion of surface waves is by Finsterwalder (1907). The modern theory
is largely due to Nye (1960}, who analyses linear waves; o nonlinear nnalysis is given by
Fowler and Larson (1980b). Seasonal waves are discussed by Decley and Parr (1914) and
more recently by Hodge {1974). Wave ogives are lucidly discussed by Waddington (1986).

The surge on Variegated Glacier is discussed by Kamb et al. (1985}, and theoretical
descriptions are given by Kamb (1987) and Fowler (1987a). Observations of Trapridge
Glacier are described by Clarke et al. (1984). The issue of the Journal of Geophysical
Research in which Fowler’s (1987a) article appears is a collection of articles on fast glacier
flow, including both ice streams, surging glaciers, and tidewater glaciers. For a discussion
of the dynamics of ice stream B in Antarctica, see Engelhardt et al. (1990). The basic
theory of jékulhlaups is due to Nye (1976).
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2 Mathematical models
2.1 The basic shallow ice approxitnation

We consider first motions of a glacier in a (linear) valley. We take the » axis in the
direction of the valley axis. 2 upwards and fransverse 10 the mean valley slope, and g
across stresn. The basie equations are those of mass and momentum conservation, which
for an incompressible ice flow (neglecting inertial tenins) are

Va = 0,
0 = ~Vp+V.r+pg. (2.1)

where ¢ is the gravity vector, p is the pressure, and 7 is the deviatoric pirt of the stress

tensor. The usual relation between stress and strain rate is

Ty = ’If-v;v (22)
where i is the effective viscosity, and £,; is the strain rae
. 1 fdu,  Om,
=iy T v ) (2.3}
2\0x, O,

The most common cheice of flow lnw is known as Glen’s law, that is

< A(T)r"tr,, (2.4)

”w=

10—

where the sceond stress invariant is given by 272 = 7,;7,, (using the sununation convention)
and A(T) is a temperature dependent rate factor which causes 4 1o vary by about three
orders of magnitude over a temperature range of 50 K: variation of A is thus significam
for ice sheets (which may be subject to such a temperature range). but less so for glaciers.

If we adopt. the configuration shown in Fig. 5, then g = (gsina,0, ~gcosa), where o
is the mean valley slope downhill.

A major simplification ensues by adopting what has been called the shallow ice ap-
prozimation. It is the lubrication theory idea that the depth f « the glacier length !, and
is adopted as follows. We scale the variables by putting

o~ e~ 86
re~{iy 2~
T2 ~ 7

P = P~ {pgcosal( - 2) ~ 8l7):

[ B
w
—

11 T2 T3 T2y ~ Of7]. (
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Figure 5: typical profile of a valley glacier
where z = ((x,y,t) is the top surface of the ice. Here

§=djl (2.6)

is the aspect ratio and we anticipate § < 1. The choice of d and [7] has to be determined
self consistently; we choose [ from the given spatial variation of accumulation rate, and we
choose U via 6U = [a], which is a typical accumulation rate. If we choose [r] = pydsina,

and define

e =dbcota, (2.7)

then the scaled momentum equations are

dra Om3 il . {dp  Omn
e 0 S S N :
3y e T (a: Iz

¢ éz[ gp  Omg Oty Oy
by = Rl | P ooy et el ke pe

dy 3 dy dr dy z
dz dr dy z

To get some idea of typical magnitudes, use values d ~ 100 m, I ~ 10 km, tana ~ 0.1
then 6§ ~ 1072, £ ~ 107, so that to leading order { = ((x,t) and

dris Ay d¢

i M L N . (2.9)
dy d: dr

we retain the € term for the moment.

an

o ;
I'he final relation to choose tand hence also [7]) is determined by effecting a balance

i the flow law, If the viscosity scale is [u], then we choose

7] = [w|U/d. (2.10)

For example, choosing [5] via Glen's law, we would have [n] = 2/{A[=]""'}, from which
we find

g Sina )

- 2a)t s s
A ' (211)

which leads, with sensible choices of A1, [a]. n to values of d comparable to those observed

(d ~ 100 m)

At leading order, the important components of the flow are then

in du
A= —. T2 = 1—, (212]
oz ! }r)J \2.12)

and if y depends on the (scaled) second invariant =, then to leading order

= rh e ol (213)

for example, Glen's flow law would he

n=[A(T)r""Y (2.14)

where A(T) would be a scaled rate factor. We see that

T =n|Vul, (2.15)

where ¥V = (J/dy, d/0z), and for Glen's law (with A = 1),

)= |Vn|""“"" (2.16)

(note n = 1 for a Newtonian flow: Glen's law usually assumes n = 3); the determination

of v -'t .3 1 o e g » -, B +« olly 1 £ i 1
f velocity in a glacier then reduces to the elliptic equation for » (putting = = 0)

V.[:j{]Vr;!}Vr;!=—l (2.17)

with appropriate boundary conditions for no slip at the base bemg v = 0 on z = 4
FE e ; :
Gufdz =0 on 2 = (. and ¢ s determmed through a prescribed mass flux, [udydz = @
(given).

Most studies of wave motion ignore lateral variation. and in this case (with 733 = 0 on

:=() (2.9) gives
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i3 = (1 - (¢ - 2), (2.18)
and Glen's law is
dn . " N W )
72 = AT = AL = e (¢~ =)™ {2.19)

If A = L is constant, then two integrations of (2.19) give the ice flux Q = I wdz as

Iln+2
Q=upH +(1 ~ .‘.‘(,)"m, {2.20)

where H = ¢ ~ h is the depth, and u, is the sliding velocity. Integration of the mass con-
servation equation, together with an appropriate kinematic surface boundary condition,

then leads to the integral conservation law,

aH  0Q p
— == = 2.21
o "9z " (2.21)

where ¢ is the dimensionless accumulation rate. (2.21) is an equation of convective diffu-
sion type, with the diffusive term being that proportional to ¢.

Note that if transverse variations were to be included, we should solve

94 9@ _ 2.29
o 9x © ( )

where A is the cross sectional area, and Q would be given by @ = J4udS, where u solves
(2.17) in A, rogether with appropriate boundary conditions.

Ice sheets

A model for ice sheets can be derived in much the same way — typical aspect ratios
are 1073 — but there is no ‘downslope’ gravity term pgsina (cffectively a = 0), and
the appropriate balance deternines the driving shear stress at the base in terms of the
surface slope. Effectively, the advection term is lost and £ = 1. Another difference is tha
T~y ~ 1 {~ 3000 kin} while z ~ 3 km is the only small position variable. An isothermal
version of (2.21} is then (with ¥V = (8/2x. 2/9y))

n—1 grna2
=9, [{W—C]—-—I;—VC} + ll“f,] +u, (2.23)
n -+

and is a nonlinear diffusion type equation for ¥, since ¢ = I +h. The sliding velocity u,
is apparently & convective term, but in fact the sliding b usually has us in the direetion
of shear stress, whence uy oc = V¢, and this term also is dilfusive,
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Temperature

Although the isothermal models are mathematically nice, they are not quantitatively very
realistic. For a glacier, probably the neglect of variation of the rate parameter A(T') in
the How law is as important as the assumption of a two-dimensional flow, although the
possible coupling of temperature to water production and basal sliding is also significant.
For ice sheets, temperature variation is unquestionably significant, and cannot in practice
be neglected.

With variables scaled as in the previous section for a shallow shear flow, the temper-
ature equation for an ice sheer may be written approximately as

'-{'fTT = ar®/y = OT,.. (2.24)

where T - 7, is scaled with AT {a typical surface temperature helow wmelting point).
The derivative dT/df is a materia) derivative, The stress invariant r is related to the
horizontal velocity u = (i, ) by
= (¢~ )vgl, (2.25)

’i)u
72—

gz

since the horizomal stress vector + = {713. 723} satisfies

du s

T=agT s -C- )9 (2.26)

(For an ice sheet, this relation is derived as for (2.18), but the downslope term 1 is absent,

scales are chosen so that £ = 1, and {2.26) represents the two {(horizontal) dimensional
version. )

The parameters e and 3 are given by

L (2.27)
AT dfe) -

where 4 is the depth scale, cp is specific heat, g is gravity, « is thermal diffusivity, [a]
is accumulation rate, Typical sorts of value for Antarctica are a ~ 0.3, 4 ~ 0.12. We
see that viscous heating (the a term) is liable 1o be significant, while thermal conductjon
is small or moderate. In addition, a scaled geothermal heat. flux condition at the base
(ef. T < 0 there) is 8T/9z =~ =T, where I ~ 1.5 is a typical value, Temperature
variation is likely to be significant, while the rate factor in the flow law can be modelled
as A ~ exp(7T), with 5 ~ 11 for a temperature range of 50 K,

The temperature equarion for a valley glacier is the same as (2.26). although with the
previous scalings, (2.25) is corrected by simply replacing |V¢| in the last expression by
{1 ~ €¢z). Although the scales are different, typical values of a and 8 are a ~ 0.25, 3 ~
0.33. and thus of significance. On the other hand. geothermal heat is of less importance,
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2.2 Using the equations

Nonlinear diffusion

For flow over a flat base, & = 0, with no sliding, the isothermal ice sheet equation (2.23)
is just

H=V. {M:VH] +a, (2.28)
w42

which for Glen’s flow Jaw would have n = 3. This is a degenerate nonlinear diffusion

equation, and has singularities at ice margins (H = 0) or divides (where VH/|VH]| is

discontinuous). [n one space dimension, we have near a nargin = z,,(1) where ¢ < 0

(ablation},

H ~ (afim)(zm - z) il 2, < O (retreat),

4 1\ N
H o~ (2"'; 1) (1 + 2] P (i — 2) P if £ > 0 (advance).  (2.20)

This is the common pattern for such equations: margin retreat occurs with finite slope,
while for an advance, the slope must be infinite. Conscquently, there is a waiting time
between a retreat and a subsequent advance, while the front slope grows.

Near a divide £ = z4, where #; = 0 and a > 0, H is given by

1/n

H ~ Hol) - (57) [(" = ﬁ;ﬁ: "")] le = 2+, (2.30)

and thus the curvature is infinite. Singularities of these types need to be taken into

account in devising numerical methods.

Thermal runaway

One of the interesting possibilities of the thermomechanical coupling between flow and
temperature fields is the possibility of thermal runaway, and it has even been suggested
that this may provide an explanation for the surges of certain thermally regulated glaciers.
The simplest model is that for a glacice, with exponential rate factor, thus

dT

== a7 4 6T, {2.31)

where the stress is given by
r=¢(-2 (2.32)

The simplest configuration is the parallel sided slab in which ¢ = constant, u = (#(z),0,0),
so that
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ar . &
= - )T 2
o =l )T v hom (2.33)
with (say)
T=-lonz=¢( T;=-Tonz=0. (2.34)

For given ¢, (2.33) will exhibit thermal runaway for large enough o, and T — oo in
finite time. As the story goes, this leads to massive melting and enhanced sliding, thus
‘explaining’ surges. The matter is rather more complicated than this, however. For one
thing, ( would actually be determined by the criterion that the flux j(f udz is prescribed.
= 5 say, where s would be the integrated ice accumulation rate from upstream (= fadr).

Thus even if we accept the unrealistic parallel slab “approximation'. it would be ap-
propriate to supplement (2.33) and (2.34) by requiring ¢ to satisfy

1z = 5. K
L(m s (2.35)

Since the flow law gives

a .
_a__:-i = (C _ :)"C.'T. (2.36)

we find, if w =0 on 2 =0, that {2.35) reduces to

< .
jo (€~ 2" ez = 5. (2.37}

Thermal runaway is associated with multiple steady states of (2.33), in which case we
wish to solve

0 = af(- :)'HIC"T + 8T1%,,
T = -1lonz=¢,
T. = -Tonz=10,
T: = —[F+(as/8)onz=¢ {2.38)
Putting £ = { — =, we solve
Tg = -{af3)g"e ™,
T = -1, Te=T+(as/Bonf=0, (2.39)

as an initial value problem. T¢ is monotone decreasing with increasing £, and thus there
is a unique value of ¢ such that T; =T there. It follows that there is a unigue solution to
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the free boundary problem, and in fact it is linearly stable. It then seems that thermal
runaway is unlikely 10 occur in practice.

A slightly different perspective may allow runaway, if we admit non-steady ice fluxes.
Formally, we can derive a suitable model if A = a/g8 = O(1}, 8 — oo. In this case, we
can expect T to tend rapidly to equilibrivin of (2,33}, and then ¢ reacts more slowly via
mass conservation, thus

Cr+qr=a,
1
9= 3IT:f6. (2.40)

An z-independent version of (2.40), consistent with the previous discussion, is

a6 ]
LY 241)

and this will allow relaxation oscillations if g(¢) is multivalued as a function of ¢ — which
will be the case. Surging in this sense is conceivable, but the limit 8 — oo is clearly
unrealistic, and unlikely to be attained. The earlier conclusion is the more likely.

2.3 The sliding law

The sliding law relates the basal shear stress 73 to the basal sliding velocity uy. The
classical theory, enunciated by Lliboutry, Weertman, Nye, Kamb, and others, considers
ice flowing at the base of a glacier over an irregular, buinpy bedrock. The ice is lubricated
at the actual interface by the mechanism of regelation, or melting-refreezing, which allows
a thin film (microns thick) to exist at the ice-rock interface, and allows the ice to slip. The
drag is then due to two processes; regelation itself, and the viscous flow of the ice over the
bedrock. Regelation is dominant for small wavelength roughness, while viscous drag is
dominant for large wavelengths, and early work emphasised the importance of a controlling
(intermediate) wavelength (of several centimetres). More recently, the emphasis has been
away from regelation and considered only the viscous flow.

A suitable model for discussion is that of a Newtonian fluid over a rough bedrock of
‘wavelengtl’ [z) and amplitude {y), given, in coordinates scaled with [z], by y = vh{z),
where y is now the vertical coordinate, and

v={yl/ls] (242)

is a measure of corrugation. The governing equation for slow, two-dimensional flow is the
biharmonic equation

Vie =0 (2.43)
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for a suitably sealed strean function. Appropriate boundary conditions for no flow
through the bed, and no shear stress there, are

é=0

(1 = 20Ny, = o) — Aok, =0, (2.44)

on y = vh. Asy — o0, the local basal flow must maich to a far field flow with *basal’
velocity uy and *basal’ stress r,,; thus the main body of the ice flow sees the bedrock flow
as & boundary layer, and w, und 7y are then the appropriate basal limits of the ‘outer’
ice flow. Specifically, we find that the correct matching condition is (in terms of correctly
scaled ‘outer’ velocities and stresses)

1 \
G~ oy + Eyzfﬁyz as y —~ oo, (2.45)

A convenient solution method can be presented if » is small. [n this case, we subtract
usy from & and divide by v (so ¢ = (& = uyy)/v); then to leading order in v, the new ¢
satisfies {2.43), with

e — 0asy— oo,

@ = =il (1), By — Wre =0on y =0, {2.46)

The shear stress is uncoupled from the determination of &, but can be determined by an
integrated force balance, whence (e.s. if 4 is periodic with period 217)
1 g .
w=o f (p + 2¢y)ly=oh'dx: (2.47)

more generally a spatial average would be used. Notice that the expression in brackets in
(2,47} is simply (minus) the normal stress, and therefore is equal to the water pressure
Pw in the lubricating film. We come back to this below,

A nice way to solve this problem is via complex varinble theory. We define the complex
variable 2 = z + iy, and then the general solution of the biharmonic equation is

¢ = (3 -z)f(z) - B(z) + (cc), (2.48)
where f and B are analytic functions and (cc) denotes the complex conjugate. The
zero stress condition (2.46) requires f = —%B'. and also B — 0 as = — oo (with

fn £ > 0), and the last condition is then

B+ B=uhonlmaz=0 (2.49)

If b is periodic, with a Fourier series
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o0
h= Z“"clh' (2.50)
-00
then B js simply given by
ad ‘)
B=u Zake'k‘ (2.51)
]

(we can assume ap = 0, i.e. the mean of 4 is zero). However, it is also convenient to
formulate this problem as a Hilbert problem. We define L(z) = B*(z), which is analytic
inIm 2 > 0, and then L{z) = B*(Z) is analytic in Im = < 0. It then turns out that, with
the usual notation,

Ly+L. = wh",
1
Ly-L. = Eip, (2.52)
relate the values cither side of Im = = O; here p is ice pressure (p = ~2i(B" - B") on

y = 0, since p + iV2¢ is analytic), and in fact p = p,, on y = 0, since ¥y is found to be
zero there. The drag (i.e. the sliding law) is then computed as (for a 2z-periodic &)

1 2% ,
= —f (L, = L_)h'dx, (2.53})
T Jo
and turns out to be
o
= du Y Al (2.54)
1

For a linear model such as this, 7 is necessarily proportional 10 . For Glen's flow law,
variational principles can be used to estimate

Ty R Ru:/". {2.55)

Weertman's original sliding law drew a balance between (2.55) and the linear dependence
due to regelation, and the heuristic *Weertman's law' 7y & 1)/™, with m = (n + 1)/2 was
often used.

Simplistic sliding laws such as the above have been superceded by the inclusion of
cavitation. When the film pressure behind a bump decreases to a value lower than the
local subglacial water pressure, a cavity must form, and indeed, such cavities nre plentifully

observed. An appropriate generalisation of (2.52) is then

Ly+L. = wh” in C’,
Ly-L_ —.—ilp“ in C,
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Figure 6: stress versus velocity for a bed of isolated bumps

where the bed is divided into cavities {C') where p is known (= —pc), and attached regions
where A is known. One can solve this problem to find the unknown cavity shapes, and for
a bed consisting of isolated bumps. 7,{uy) increases monotounically for small uy, reaches a
maximum, and then decreases for large wy, s shown in Fig. 6. The decreasing portion
of the curve is unstable (increasing velocity decreases drag) and is caused by the roofs of
the cavities from one bump reaching the next bump.

Since p in the scaled ice flow model is measured relative to jce overburden pressure, it.
follows that p. in (2.56) is proportional to the effective pressure N, and in fact the sliding
law has the specific form 7, = N f(uy/N). For a nonlinear Glen's law. the suggested
generalisation is

7o = N [{up/N7). (2.57)

The multivaluedness of uy(y) is very suggestive of surging — but is it realistic? Con-
sideration of more realistic beds suggest that in fact f(-) in (2.57) will be an increasing
function of its argument, since when smaller bumps start to be drowned, larger ones will
take up the slack. A plausible sliding law then has £(£) increasing as a power of £, or (for
exnnple}

7o = ey N>, (2.58)

where we would expect r.s > 0. Indeed, there is some experimental and field evidence
vonsistent with laws of this rype, with r = 5 & 1/3. for example.

An apparently altogether different situation ocenrs when ice slides over wet. deforming
till. If the till is of thickness & and has (effective) viscosity n7-. then an appropriate sliding
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law would be

Ty = nrnpfhp. {2.59)

In fact, till is likely te have a nonlinear rheology, and also in accordance with Terzaghi’s
principle of soil mechanics, one would expect #y to depend on effective pressure N. One
(measurcd) rheology for till gives the strain rate as

é = AproNY, (2.60)
in which case the sliding law would be again of the form (2.58), with ¢ = {Agky)~Ve,
r = 1/a, s = bfa. Thus there are some good reasons to choose (2.58) as an all purpose
sliding law, and this points up the necessity of a subglacial hydraulic theory to determine
N.

2.4 Drainage and jékulhlaups

Subglacial water is generated both by basal melt (of significance in ice sheets) and from
run-off of surface melt or rainfall through crevasses and moulins, which access the glacier
bed. Generally the basal water pressure py, is measured to be below the overburden ice
pressure py, and the resulting positive effective pressure N = p, — py, tends to cause any
channels in the ice to close up (by creep of the ice). In fact, water is often seen to emerge
from outlet streams which flow through large tunnels in the ice, and the theory which is
thought to explain how such channels remain open asserts that the channel closure rate
is balanced by melt back of the channel walls by [rictional heating due to the water flow.

If we consider a single channel of cross sectional area S, through which there is a water
flux @, then conservation of mass requires

a5  9Q m
95 .9 _m 61
T i + M {2.61)

where m is the mass of ice melted per unit length per wnit time, py, is water density, s is
distance down chanuel, and A is an external source due to rainfall or surface run-off. If
the flow is turbulent, then a hydraulic correlation for flow in a straight conduit is

pugsina — % = f1Q*/$%3, (2.62)

where a is the local bed slope, p is water pressure, and f; is a roughness coeflicient related
to the Manning friction factor. If we suppose that the frictional heat dissipated by the
turbulent flow is all used to melt the walls, then

ml = Qpugsina - ‘%]. (2.63)

)

where L is the latent heat.

" .
The last equation to relate the four variables S, a,p and w1 is essentially a kinematic
boundary coundition for the ice:

a5 m ) ,
o =5~ KSh- R (2.61)

here m/p; is the rate of enlargement due to melt back, while the second term on the right
hand side represents closure to Glen's law viscosity of the ice.

Steady state drainage can occur. One can show that (for glaciers) M > m/p,.. and
with M prescribed, effectively the warer flux @ is a prescribed function of 5. I is also
found that 1ypically 8p/9s < pugsina (in fact, we expect 8p/ds ~ pugd/l, so that in
the notation of (2.7), the ratio of these terms is of O(e)); the neglect of the dp/ds term
in (2.62) and {2.63) is singular, and causes boundary layer of size O(¢) 1o exist noar the
terminus in order that p decrease to atmospheric pressure. Away from the snout, then

LR A "
S [ fHQ RSN~ Qpuy sina (2:65)

fug sina ml

where N is the sought for effective prossure. Thus

AT (2.66)
where 3 is a material parameter which depends (inversely) in roughness. Tvpical values
give N = 30 bars when @ = 10 m3 5=, Since p, = 9 bars for a 100 metre deep glacier, it is
clear that the computed & may exceed pr- In this case, p must be atmespheric and there

will be open channel flow. It is likely that seasonal variations are important in adjusting
the hydraulic régime.

Jékulhlaups

These equations can also describe an outburst food. In this case, M s irrelevant, and a
suitable scaling shows that @ = Q(#), and a dimensionless model is

as .

5 = PGS _ g N3, (2.67)
where & is the (scaled) hydraulic potentia) gradient. The model is supplemented by a
boundary condition which prescribes the water pressure at the lake outlet to be iydro-
statie.  As the jokulhlaup proceeds, lake level falls, thus N increases, and the rate of
increase is related to the water flux. A suitable dimensionless model is then

— = p§'3, (2.68)
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Figure 7: numerical simulation of a jokulhlaup and the hydrograph of the 1972 jokulhlaup
from Grimavitn

wlhere N and § are measured at the lake outlet; the paramecter v is small. These two
equations can simulate a flood. For simplicity, take ¢ = 1. In the initial stages, N is
negligible, so that §=58" and § ~ 27(=1)"3 (with 1 < 0). Also ¥ ~ r§, so that
SN? ~ 1359, and the closure suddenly switches on when § ~ »~%8: this causes the
jokuihlaup to self-terminate. A numerical example is shown in Fig. 7.

In order to model the periodicity of jokulhlaups, a regeneration term —j must be
added to (2.68) (1 < 1), which corresponds to the slow refilling of the lake; in addition
a trigger must be set. Grimsvatn appears to ‘switch on’ when N decreases to 6 bars, for

reasons which are opaque, but are in any case outside the scope of these equations.

2.5 Notes

The basic sealing in the shallow ice approximation is due to Fowler and Larson (1978): it
is elaborated in the book by Hutter (1983). For ice sheets, similar derivations have been
done by Morland (1984), Hutter et al. (1986} and Fowler (1992), of whom we follow the
latter. The concept of thermally induced instability was enunciated by Robin (1955) and
taken up by Clarke et al. (1977) and Yuen and Schubert (1979), but more or less scotched
by Fowler and Larson (1980a).

The theory of basal sliding over hard beds stems from Weertiman (1957) and Lliboutry
(1968). Two reviews of progress by the end of the seventies are in Lliboutry (1979) and
Weertman (1979), The linear theory is primarily due to Nye (1969, 1970) and Kamb
{1970), while the material presented here is based largely on Fowler (1986, 1987b). Till
rheology is discussed by Boulton and Hindmarsh (1987).

323

The elassical theory of drainage is due to Rothlisberger (1972), while the development
for jokulhlaups follows Nye (1976).
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3 Large scale fluctuations

3.1 Waves on glaciers

Waves on glaciers are mostly easily understood by considering an isotherinal, two-dimensional
model. We suppose the base is flat {h = 0), so that equations (2.20) and (2.21) give

Hne

H+|(1- sll,}""lT; | =), 3.1)

where s'(z) is the accumulation rate, and ¢ ~ 0.1, [f we firstly put ¢ = 0 and also up = 0,
then

He+ HYH, = s'(z). (3.2)
which has the steady stare
H'v)w‘) o . -
i s(x). (3.3)

With s’ > 0inz < 0 {say) and s' < 0in « > 0 {x = 0 is then the firn line) (3.3)
defines a concave profile like that in figure 5. (3.2} is clearly hyperbolic, and adinits wave
like disturbances which travel at a speed /™, which is in fact (n + 1) {= 4) times the
surface speed. For an arbitrary initial condition I = A(z) at ¢t = 0, the solution by
characteristics is

Hn+2
v S s(z) = s1(a),
z dz
! l [(n + 2){s{z) = sy(a)}][im+V/tnvD)? B4
where s, is defined by
F n+d
‘"T(;” = s(7) - s1(a). (3.5)

Thus, for small perturbations, s, is small.

The characteristics of (3.2) propagate downstream and reach the snout (where H = 0)
in finite time. If we wish to approximate the characteristic selution where s, is small,
strajghtforward linearisation is invalid near the snout where Hg = 0; rather, a uniformly
valid approximation can be obtained by linearising the characteristics:

He+ HIPH, = s'(x) (3.6)

for H == Hp, where the general solution is
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H = Ho(r) + o8 - t), {3.7)
where
€= /’_ 18
> o Hy V() 38

is a characteristic spatial coordinate (note £ is finite ar the snout). (3.7) clearly reveals
the travelling wave characteristic of the solution.

If #f is increased locally (v.g. due 10 the surge of a iributary glacier) then a shock
travels forward. The role of the term in ¢ is then to diffuse such shocks. A shock at r = &,
will propagate at a rate

i .

= (n+2Q{HT" (39)
where { ] denotes the jump across r,. When the shock reaches the snout, it then
propagates at a speed HPY/(n + 2), which is slower than the surface speed.

In the neighbourhood of a shock (with u, = 0), we put

r=ua,+vX, (3.10)

s0 that

o voNtTn

if ¥ is small, the profile rapidly relaxes to the steady travelling wave described by

0+ 2

aif ry O 1 ¢ n g2
! [{'" "} ] = 5(ea+ v X); (3.11)
X

an-’.’
folly = - HeV 3.12
ol y [{1 Hx} "+2].\" {3.12)

providing we choose v = ¢, which rhus gives the width of the shock structure. (3.12) can
be solved by quadrarture,

Seasonal waves

Thete is no explanation of seasonal waves available. On the face of it, we might seck waves
of amplitude of velocity of O(1) propagating at a speed O{1/u), where p is the ratio of
one year 10 the convective time scale, so 4 < 0.05. Apparently we should associate the
variations in » with variations in water supply, so that a natural model would involve

only sliding, so

Hy+ (Hu), = s'(2). ’ (3.13)

and if up = @(t/p)H™f(m + 1), where o(t/u) represents the seasonal variation of water
supply and hence of N, then
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Figure 8: A multi-valued fAlux-depth relation can cause oscillatory surges.

Hi+o(t/n)H"H, = §'(z). (3.14)

Unfortunately, while the surface speed will indeed oscillate seasonally in this model, the
kinematic wave equation propagates waves at (m + 1) times the surface speed, so there
seems to be no mechanism for the rapid propagation which has been observed. Another
possibility is then that the variations in ¥ force a wave passage in the hydraulic system
itself, but this has not been explored.

3.2 Surges

It has long been suggested that the fast velocities during surges could only be caused by
rapid sliding. Therefore it is sufficient (o analyse the mass conservation cquation in the
form

Hy + (Hu)p = 5'(2), (3.15)

where u is the sliding velocity. Also, it has been thought that if the sliding velocity were
a multi-valued function of basal stress 7, (i.e. ry(1) has a decreasing portion)) then since
7= H(l - <(;) = H, this would cause the ice flux @ = uH to be multi-valued as shown
in fig. 8, in which case we might expect relaxation oscillations to occur for values of s
intermediate between the two noses of Q(#). Two fundamental questions arise. Firstly,
is there any genuine reason why (1) should be non-monotone, and secondly, how would
such a relaxation oscillator work in the spatially dependent case?

The discussion i section 2 suggested the possibility of non-monotone 7,(x) for flow
over a periodic bedrock. However, more realistic bedrocks probably do not have this
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feature, and 7 increases with both » and N. What observations of the 1982-3 surge of
Variegated Glacier showed, however, was that there is a switch in drainage pattern during
a surge. There are two possible modes of drainage: the Rothlisberger channel described
in section 2 with the value of N determined by the water flow. Ng, say: however, if no
channels are present. then water will fill cavities at the bed and leak from one to another.
This is called the linked cavity régime and operates at a higher water pressure and thus
lower effective pressure, N, than in the channel drainage. The crucial factor which enables
surges to take place is the switch mechanism, and this depends on the ice flow over the
cavities. If the sliding law is, as discussed in section 2, of the form 7, = N f(u/N"), then
in fact the stresses in the ice are actually determined by /N ™ and i particular the water
stored by cavities depends on tlus parameter.

It turns out that a simple model of combined water flow through both cavities and a
channel system exhibits instability (the channels close down) if the cavity storage volume
is large enough, and thus the instability occurs at a critical value of A = o/N", denoted

Ac. Tt follows from this that & combined mode] of the drainage system is

N = Vg u/N" < A\

N=No w/N" > A (3.16)

and if this is written as a function N (u), it is multi-valued, as shown in Fig. 9. As a
consequence of this, the sliding law is indeed multi-valued, and hence Q(#1) has the formn
shown in Fig. 10.

There are two critical values of Q in fig. 10, denoted Q.,Q_: these are the values
at the noses of the curve (where also H = H. . H_). If s{x) < Q.. then an equilibrium
glacier profile exists in which @ = s(r). However, if the maximum value of s, s 15
greater than @4, then such a stable equilibrium cannot occur, and the glacier surges.

The sequence of events in a surge is then as follows. The glacier grows from a quiescent
state in which @ < @, on the lower (slow) branch evervwhere. When the maximumn
depth reaches H ., there is a reservoir zone where # > H_. The ice flux av #, jumps
to the upper (fast) branch by switching drainage pattern, and this switch propagates
upstream and downstream to where # = H_. These activation waves propagate at rates
of hundreds of metres per fiour (and in effect have been observed). Once the activation
waves have propagated to the boundaries of the reservoir zone. it is in the fast mode
on the upper branch, and the activated reservoir zone propagates rapidly downstream,
overriding the stagnant snout and propagating forwards as a front. In tenns of fig. 10,
the surge terminates when # reaches H_ everywhere, and deactivation waves propagate

inwards from the boundaries of the exhausted reservoir zone to re-establish the channel
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Figure 9: ¥ is a multi-valued function of #

Figure 10: @ is a multi-valued function of H
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drainage system. There then follows another quiescent phase where the maximum value
of H increases from f1_ 1o H, before the next surge is initinted.

3.3 Sliding and ice streams

It is not known why the ice flow on the Siple Coast of Antarctica, which flows out to
the floating Ross ice shelf, segregates itself into the five distinet ice streams A to £, The
picture which one bas of this region is of a gently sloping (slope o ~ 1077) kilometer
thick ice sheet which flows in the ice streams at typical rates of 500 m y~'. Such rapid
velocity can only be due ro basal sliding. and the seismic evidence indicates that the ice
is underlain by several metres of wet till. One can expect than a sliding law of the form

advocated previously is appropriate, that is

= (‘ll;;x '3, (3.17)

with r amd s positive. The issue then arises as 1o how to preseribe . Recall from section
2 that for drainage through Réthlisberger channels, an appropriate law is ¥ = 3Q".
where @, is water lux. When ice fows over till, an ahernative flow route is possible.
that is, that water excavates “canals’ in the subglacial till. A theoretical descriprion of
this drainage system suggests that it is more likely for gently sloping ice flow, and also
that the relation between N and @, is of the opposite seuse, that is, that 4N /8Q,, < 0.
In this case an interesting feedback exists. In Antarctic ice streams, there is little, if
any, surface melt reaching the bed. and the basal water flow is due to melting there. The
quantity of meltwater produced per unit area per unit time is given by the melt velocity
py, = ST 8 (3.18)
Pl

where p,. is water density, L is latent Tiear, G is geothermal heat fux, and g is the basal
heat flux into the ice. This assumes the base is at the melting point. Thus we expect the
basal water flux Qu ~ G = maay, — ¢. and 50 Q. increases with uy (the dependence of ¢
on uy is likely 10 be weaker —- boundary laver theory wonld suggest g ~ u,',”). Il also N
decreases with Q.. then N decreases as u, increases. But this causes further inerease of
g via the sliding law. This positive feedback can lead to o runaway phenomenon which

we may call hydraulic runaway.
To get a crude idea of how this works. we denote the ive thickness as # and slope sina.

If the velocity is », then the ice flux is

Q= hn, (3.19)

the basal shear stress is
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Figure 11: thermal feedback causes a multi-valued ice flux.

r = pghsina = en"NT,

we suppose

N= 7Q;P‘

and that
Qu =[G + Tu - g,

with

g=au'/?
Consequently

h= fu"
- [G + (pgsin a)hu - a3’

where

E)

oy

=ps, f= m———
m=ps, f (pgsina )™

(3.20)

(3.23)

(3.21)

(3.25)

N

It is nor difficult to see from (3.24) if f is low enough (equivalently, the friction
coclficient ¢ is low enough). that « and hence the ice flux @ will be a multivalued function
of &, a5 shown in fig. 11. In fact, application of realistic parmneter values suggests that
such multi-valued lHux laws are normal.

What then happens in a region such as the Ross ice shelf area? We suppose that the
ice flux is determined by conditions upstream, so that if the ice fux per unit width is 4,
and the width of the discharge region is 1%, then

Wq=s. (3.26)

where s is the volume flux of ice discharged. Now if s/ < Q. (see fig. 11), then a
uniform slow moving ice flow is possible. Similarly, if s/W > @Q,,, a uniform fast moving
ice stream is possible. What if Q. < s/W < Q.7 A uniform stream is now unstable,
and we may expect an instability to occur, whereby ice strenms spontancously occur, as
observed. Such an instability would be mediated by transitions in water pressure, since
basal water will flow from fast streams at high water pressure to slower ice at low water
pressure. This generates a lateral enthalpy flux, and in a steady state this can be balanced
by a heat flux in the ice in the opposite direction, since cooling {g) is less effective at lower
u, therefore the slow ice is warmer near the base than the ice streams. No analysis of this

idea has yet been done, though it is an intrigning mathematical problem.

3.4 Heinrich events and the Hudson strait mega- surge

What if the drainage channel of an ice sheet over deforming till is relatively narrow? By
analogy of the pattern formation mechanisin in reaction diffusion equations, one would
expect that a multivalued flux-depih relation would not allow separate streams to form if
the channel width is too small, and in this case we would expect periodic surges to oceur
down the channel. if the prescribed mass flux lies on the unstable position of fig. 11.

A situation of this type appears to have occurred during the last jee age. The Lau-
rentide ice sheet which existed in North America drained the ice dome which lay over
Hudson Bay out through the Hudson Strair, a 200 km wide trough which discharged the
ice {as icebergs) into the Labrador sea and thence to the North Atlantic.

Hudson Bay is underlain by soft carbonate rocks, mudstones, which can be mobilised
when wet. It is suggested that the presence of these deformable sediments, together
with the confined drainage channel, led ro rhe occurrence of semi-periodic surges of the
Hudson Strait ice stream. The cevolution of events is then as follows. When ice is thin
over Hudsen Bay, the mudstones are frozen at the base, there is no sliding and very little
ice flow. Consequently, the ice thickens and eventually the basal ice warins. The basal
muds thaw, and sliding is initiated. If the friction is sefficiently low, then the multi-valued
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sliding law of fig. 1] is appropriate, and if the accumulation rate is large enough. cydic
surging will occur. During a surge, the flow velocity increases dramatically (calculations
suggest a velocity of 2 centimetres a second!), and there results a massive iceberg flux into
the North Atlantic. On the lower branch of fig. 11, water production is virtually absent,
Qu is low in (3.22) since the flow is slow and the geothermal and viscous heat at the base
can be conducted away by the ice. The low value of Q. gives high N, consistent with low
u. On the upper branch, however, viscous heat dominates, and Q,, is large, N is small,
also consistent with a high u.

At the end of a surge, the rapid ice drawdown causes the water production to drop, and
the rapid velocities switch off. This may or may not also be associated with re-freezing
of the basal mudstones.

When water saturated soils freeze, frost heave oceurs by sucking up water to the
freezing front via capillary action, and this excess water freezes (at least for fine grained
clays and silts) in a sequence of discrete ice lenses. Heaving can occur at a typical rate
of perhaps a metre per year, though less for fine grained soils, and the rate of heave
is suppressed by large surface loads. Calculations suggest a surge period of perhaps a
hundred years, with a drawdown of a thousand metres, and a recovery period on the
order of 5,000- -10,000 years. During the surge, the rapidly deforming basal muds will
dilate (in the deforming horizon, likely to be only a metre or so thick). At the termination
of a surge, this layer re-consolidates, and we can expect the total heave 1o be a certain
(small) fraction of the frost penetration depth. In effect, the ice lenses freeze the muds
into the ice stream, so that when the next surge phase is initiated, some of this frozen-in
basal sediment will be transported downstream, and thence rafted out into the North
Atlantic in iceberg discharge.

In fact, there is evidence that this rather glamorous sequence of events actually oc-
curs. Heinrich events are layers of ice-rafted debris in deep-sea sediment cores from the
North Atlantic which indicate (or are consistent with) massive iceberg discharges every
7000 years or so. In addition, oxygen isotope concentrations in ice cores from Greenland
indicate that severe cooling cycles occurred during the last ice age. One theory has it that
such cooling events can be caused by a switch-off of North Atlantic deep water (NADW)
circulation — effectively switching off the convective heat transport from equatorial lat-
itudes and thus cooling the atmosphere. It seems that bunches of these cooling cycles
are terminated by Heinrich events, in the sense that following Heinrich events the climate
warms suddenly. There are two reasons why this should be so. On the one hand, the
sudden reduction in ice thickness should warm the air above, and also it can be expected
that a massive iceberg flux to the North Atlantic acts as a source of negative thermal
buoyancy, which cay re-initiate an otherwise stagnant cirenlation. Rather than being
lumbering beasts, glaciers and ice sheets show every sign of being dynamically active

agents in shaping the climate and the earth’s topography.
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3.5 Notes

The theory of surface waves on glaciers was really worked out by several carly authors,
and is discussed by Lliboutry (1965) i his voluminous treatise. The modern linear theory
is worked out by Nye (1960}, and is expanded on by Fowler and Larson (1950b). Fowlet
(1982) obtained a theory of seasonal waves on the rather dubious basis of a shiding law
with duy/d7 > 1, but this is unlikely to be correct.

Surges are discussed hy Kamb ot al. (1985) and Clarke et al. (1984). The present
discussion is based on work by Fowler (1987a). the mathematical details of which are
worked out in Fowler (1989).

The dynamics of ice streams are reviewed by Bentley (1987), while the theory of
Hudson Strait mega-surges is due to MacAyeal (1993). Heinrich events are discussed
by Bond et al. (1992), while the present discussion is based on a paper by Fowler and
Johnson (1995).
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