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Singular Systems Analysis (SSA), or time domain Principal Component Analysis (PCA),
is most appropriately analysed in terms of local, moving-window spcctral analysis. The
behaviour of Empirical Orthogonal Functions (EOF) of this theory are examined, for con-
tinuously sampled data, in the limits of large and small window length, and for centre or
end projection. Filters obtained by projecting on to these EOFs are shown to approximate
local, linear band pass filters, where the EOFs depend upon the correlation structure (or the
power spectral density) of the signal and the window length. Power in the spectra is not
generally conserved, and projection to the endpoints of a window may not converge to the
underlying signal in the absence of noise. The filters are independent of the phase of the
Fourier transform, and are therefore unable to distinguish dynamically between a signal and a
surrogale (phase-randomized) transform of it. Iteration of such local filters using a prediction
error-bascd stopping criterion can and does lead to improved results, but the choice of window
length must be made a priori. Hence, we introduce an iterative local filter with the window
length being determined as part of the filtering procedure. This involves the determination of
the predictability of the projected time series, and hence allows SSA to be used in a genuinely
nonlincar way.

1 Moving spectral filters

It is often the case in time series analysis that one wants to monitor the cxistence of
local periods of oscillation. A geophysical example can be found in Dehant et al. (1993),
where certain oscillatory frequencies in the earth’s gravity field are thought to be due to
the motions of the earth’s core, and these are buried in a noisy background time series. A
medical application requiring a similar analysis is the extraction of the respiratory signal
taken during REM sleep (Pilgram er al., 1995) from a noisy background. Elsewhere, in
neonatal respiratory monitoring (Fleming et al., 1988), it is of interest when monitoring
abnormalities to chart the existence of periodic breathing, indicated by a slow (12-15
second period) oscillation in the basic rhythm. In these examples, onc wants a filter to
select these oscillations, and moreover that it be local, insofar as the amplitude of the
signal may be locally varying.

A different application is to the assessment of baroreceptor sensitivity (Robbe et
al., 1987). Here one measures heart rate and blood pressure, which interact in the
cardiovascular system via the baroreceptor reflex, and the object is to determine the
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strength of this coupling through analysis of the two time series. Since the frequency
of the signals emitted by the baroreceptors is known, this can be done spectrally, if the
coupling is linear. However, that is not in fact the case, and the coupling acts both ways.
Therefore, one needs to separate the part of the heart rate signal which is exclusively
due to forcing by variations in blood pressure. State-of-the-art methods use moving
segment Fourier spectra, but it has been suggested that more flexibility is available
through SSA (Vautard & Ghil, 1989) where the choice of basis functions is adaptive.
SSA has been applied to the decomposition of short, noisy time series (Vautard et al.,
1992) into dynamical components. A medical example of such an application of SSA is
to the separation of EEG potentials into trends, alpha and beta components (Mineva &
Popivanov, 1996).

Thus, the main aim in this paper is to establish the equivalence between linear, moving-
window spectral methods and SSA. This link is important, since it will establish the extent
to which SSA improves the Fourier approach, and expose the limitations of a linear
approach such as SSA for decomposing signals into dynamical components.

Let X (1) be a real, continuous (for convenience) time series, given for all ¢, and which in
any particular realization exists on the finite interval [T, T], where T is large. Assume
that the series is normalized to have mean zero and variance one, and the subsequent
discussion assumes that this normalization has been carried out. Given such a realization,
X is extended to be zero outside [—T, T] (thus X depends implicitly upon T), so that the
Fourier transform X(f) is defined as

T
X = / X(0)e* e, (1.1)
-T

Note that X f) = X (=), if X(¢) is real. The (one-sided) power spectral density Px(f) is
then given by Press et al. (1989):

Px(n = Jim ||, (12)
supposing this exists.
The autocorrelation function is defined by
1 (7
Cx(t) = Tll_r}gL ﬁ[TX(s)X(s—t)ds, (1.3)

and is a smooth, even function of r. The Wiener-Khintchin theorem can then be written
in the form

Ex(f) = 3Px(f). (1.4)

For each ¢, a centred window is defined as the interval (t — t,t + 1) and 27 = 7, is the
window length. Each value X(r) of the time serics is associated with a local window
X(t —s), where s € (—1,7). When X is sampled discretely, X(t — s) is a matrix, called the
trajectory matrix, and in the continuous case is called the trajectory kernel.

The aim of a moving spectral window is to choose an orthogonal basis of functions in
a suitable function space on [—1,7], and expand X(t — s) in terms of this. An appropriate
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space is La[—t,1] of square-integrable functions with inner product

| I A
f.8) =5 _tfg di. (1.5)
If {px(s)} is a complete, countable basis for Ly[—1,1], then for each ¢ in R,

X(t—s)=")_ Xult)oxls), (1.6)
k
and if {px} is an orthonormal basis, then the components are given by

X0 = - / X(t — s)prls)ds, (17)

where p; denotes the complex conjugate of p;.
A filter is then a projection on to one or more values of k. Centre projection occurs if
s =0, thus

Xe(t) =) pr(O)Xi(r), (1.8)
{k}
where {k} denotes a subset of the integers k which label the basis. End projection occurs
if s = 47, and for example back projection is taken to be s = —1,

Xe(t+7) =Y =) Xil0). (19)
1k}

The difference between centre and end projection lies in the way the (discrete) time series
is embedded in the phase space. Associated with the sequence {X,}_,, a di-dimensional
embedding can be chosen variously as

Xy = (Xn’Xn—len—lw--Xn—(:!g—“);
Xy = (men+lsXn+2a~~Xn+(dg—li),
Xn = (Xu_tde/2)s- - » Xnt[(dg-1)/2))- (1.10)

When SVD and projection on to the singular vectors is carried out, then the embeddings
above lead respectively to backward, forward and centre projection. While there would be
appear to be little to distinguish these, we shall sec that (at least in the continuous limit)
there are differences concerning the ability of the various projections to converge to the
data set at the window end-points.

The aim of a filter is to select {p;} which can optimally capture certain parts of the
signal. For example, consider a moving Fourier window, p; = e™*s/t where k € Z. The
filtered signal determined by centre projection is

Xr(t) = Xul0), (L11)
*)

and the components X are just the Fourier components of X over the window. The
difference between centre and end projection is immediately apparent. For cach 1, the
Fourier representation of X(1—s), s € [, 7], will converge to X(1—s) for all s € (—1,7) but
not in general at the end points, where the Fourier series converges to %[X (t—-0)+X(+1)].

The question now arises as to what basis to choose for pi. SSA answers this as follows.
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By Hilbert-Schmidt theory, the positive, symmetric integral operator
T
Ap = l / Cx(t — s)p(s)ds. (1.12)
2t J_,

has a denumerable sequence of eigenfunctions p; with positive eigenvalues i = of,
A1 = 4y = ... 2 0. These cigenfunctions form a complete orthonormal basis for La[—1,1]
if A is non-degenerate and their form is discussed in the following section.

It is perhaps easiest to understand in what sense the eigenfunctions of (1.12) might be
‘better’ than (say) a Fourier basis in terms of the practical implementation of the method-
ology above. Just as the discrete Fourier transform is the practical way to do Fourier
analysis, so singular value decomposition (SVD) is the discrete method corresponding
to SSA (Broomhead & King, 1986; Vautard & Ghil, 1989; Vautard et al, 1992). The
singular values correspond 1o a3, while the singular vectors correspond to px. However,
in this implementation, one can interpret the window vectors as points in phase space,
and the singular vectors then represent the principal axes of the trajectory explored in
the phase space. The point is that the singular vectors sequentially select the directions
with most power (in a least squares sense); thus projection on to them is most efficient
insofar as representing the data with the fewest possible components is concerned. The
same observation applies to the continuous system.

To put it another way, SSA is ‘better’ at representing data since, even where the EOFs
are indeed sinusoidal (as they are when the window is large — see below), their period is
not constrained 1o be an integer fraction of the window width, as would be the case for the
base period of a Fourier basis. On the other hand, the fact that the EOFs are themselves
orthogonal is a limitation, and indicates that other, *better’ bases ought to be available.

2 Eigenfunctions

In the preceding section, centre and end projection were shown to lead to different results
if a Fourier basis is chosen. To examine whether this difference occurs in SSA, the
behaviour of the eigenfunctions p; for centred windows (§ 1), is examined for the limits
where 1 = o0 and 1 — 0.

The limit 1 — o

Consider the cigenvalue problem Ap = Ap, A given by (1.12), in the limit where 1 — co.
When T » 1 » 1, the local transform, defined as

w+t
Xw, )= / X(r)e*™dr, .1

Lt 4
is independent of w when 1 is large. Essentially, this means that the power spectrum of X
is stationary. If p = ¢*™/', then

1
~ar’

1 'I~ it | u—i+1 2nif

o —2rifu } 2nifv
[27, X(u)e {21_ [ X(v)e dv} du] p- (2.2)

—r—t

Ap / X)X (u — t + s)e*™duds
-t
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By assumption, the expression in curly brackets, which is X(u—1t,f), is independent of
u—1, and in this case (2.2) may be approximately written as

Ap = ip, (2.3)

where

R 1 1 T =2nif ! 2zifv
b=y /_ . X(u)e™ "y / X(v)e*™*dv. 24)

-t

Using (1.1), (1.2) and (1.4), we deduce that for large values of 1, the pair
2ni ; P
p=e = ,,—tC,\-(f), (2.5)

form an approximate eigensolution for (2.3). In this case, for centred windows, large
window lengths are equivalent to Fourier analysis. The practical effect of projection to
such a basis is examined in §3. For completeness, the behaviour of eigenfunctions for
windows which are not centred is examined in the Appendix, but the lesson is the same;
projection to either endpoint of a large window does not guarantce convergence to the
underlying signal in the absence of noise.

The limit t - 0

Gibson et al. (1992) analysed the discrete formulation of this eigenvalue problem (i.e. the
singular value decomposition of X (¢ —s)), and showed that in the limit r — 0, the singular
vectors could be approximated by discrete Legendre polynomials. The continuous version
is analysed here, and it is shown that the appropriate eigenfunctions, as expected, are
approximated by Legendre polynomials. Our intention is not to suggest that such short
windows should be used in practice, because we expect an optimal window length to be
comparable to the ‘recurrence time’ (Kember & Fowler, 1993), but rather to gain some
analytic insight into the sort of structure the eigenfunctions can be expected to have at
moderate window lengths.
Recall that

T
Ap = % Cx(t — s)p(s)ds = Ap. (2.6)

-t

4

If t = ¢, p(t) = $(&), and Cy is assumed to be analytic, then
1
‘P = ;/ Cx[t(¢ — u))p(u)du
2 Ja

1 it .
=3 Z %f; / I(c’ — u) ¢p(u)du, 27)
J : -

where ¢; = C ,'\4"(0). The assumption of analyticity is necessary in writing this, and is
crucial to the result that the eigenfunctions are approximately Legendre polynomials. For
example, a red noise process with Cyx(f) = ¢~ has eigenfunctions which are sinusoidal
in (—t,7) (for all t) (Vautard & Ghil, 1989).

The orthonormal polynomials over L»[—1, 1] are the Legendre polynomials P,(¢), and
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we write the nth (starting from n = 0} eigenfunction as
zwmm. 28)

The superscript n is omitted where convenient. Substituting this in, and using the orthog-
onality property of the Legendre polynomials over [—1,1],

ZakPA(g) =3 Z c,Za,/ (¢ — uy P(u)du, 2.9)

)>0 120 -

whence the coefficients a; satisfy the equations

2k T l =3 Z c,Za;/ / (& = uy Pu)Pi(&)du dé. (2.10)
120
Since Cy is an even funclion, ¢; =0if j is odd, and integration by parts gives
cxs = (= 1)K, (2.11)
where
Ka = {{X"}}) = lim L / ' (X"} 2dr (2.12)
" Jim 57 /., . .12
Note that if
1
bij = / u' Pj(u)du, (2.13)
-1

then bj; = 0 if i < j. By expanding the double integral in (2.10), that equation can be
written in the form

2 -k ®
%+lm=2;IOmWT (2.14)
where
251
Y (U (-1 )s+r'\‘sbrkb23—r.l
Z r'(2s—r)! ’ (2.15)

r=k
and the sum limits in (2.14) may be restricted, since 'y(") Oifk+1>2s.
Next, it is easy to show that if (&) satisfies (2.7) for some 4, then so does ¢(—¢). Hence,
the eigenfunctions can be considered as being either even or odd, and in particular can
be written respectively as

= APxQ) (2.16)
r=0
(n even, and A, = a'?), with
z Z yg"")sA,,.rzs, (2.17)
s2r m=0

and

$n =D B,Pyyi() (2.18)

rz0
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(n odd, and B, = az,“) with

4r — 3 ——B =) Z Pt ™, (2.19)

s2r m=0
The solutions are power series in z° as T — 0. For example, at leading order, (2.17) implies
24Ap = 7§gdo + O(x), Ad, = O(z?) for r >0, (2.20)

suggesting 4o =~ ;'00/ o = Po(¢) for the Oth eigenfunction. Since the eigenfunctions are
orthogonal, the next one must have Ag small (O(t?)) so that 4, = O(13). Proceeding in this
manner suggests 4, oc 12", ¢, o¢ Py(¢), with A, and B, being O(1), and the rest smaller, in
fact Anyj and B,y; are O(t%). This can be formalized by redefining 2, A,, and B,, in (2.17)
and (2.19) as follows. For the even eigenfunctions, put n = 2N, and

A= ﬂT4N, Am = TZIN—'"ICM; (2'2])
for the odd eigenfunctions, put n = 2N + 1, and
J=utNt2 g = N-mp, (2.22)

It is reasonable to anticipate that eigenfunctions and eigenvalues can be found in which,
#s Am, B = O(1) as t© — 0. Rearranging the summations, the two expressions (2.17) and
(2.19) can be simplified as

5 x N
l‘ ’[N-—rﬂN—r\] C, = 2r)
4’, + 1 Zomz_%}"m.miﬂ-fr
w0 [4/2]

442
+ Z Z 7’(~+|+pm+~+l—p+rCN+1+pT 4, (2.23)
q=0 p=0

and

2u

2 - +1 2j
e LML ’"D = ZZ/(’;«LILﬂwHDmt !
ar+3 par o

x [q/2)

(2r+1) 4429
+ Z Z )"(N+|+p)+l,q+"+N—p+rDN+l+pt . (2.24)
q=0 p=0

The eigenfunctions and eigenvalues are then determined at leading order as follows,
considering for example the 2Nth ecigenfunction. Cy can be taken as given with no loss
of generality (it simply normalizes ¢ax). Then for r < N, (N —r 4+ [N —r|} > 0, so to
leading order

N
P sCm =0, T =0,1,..N -1, (2.25)
m=0Q
giving N equations for the N coefficients Co, «Cn—1. Whenr =N,

_;1

[Cn = ,‘,;,f’,,’H N (2.26)
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then determines y, while for r > N

(20

gives the leading order expressions for C,. Evndently the procedure can be carried to
higher powers of 7%, and the process is identical for the odd eigenfunctions.

Legendre functions as n — oo

Thus the eigenfunctions are sinusoidal for large t, but more like Legendre polynomials
when © — 0. These two behaviours can be reconciled by examining the behaviour of the
Legendre polynomials when n is large. The Mehler-Dirichlet integrals for P, are

¢ cos[(n+ 1)0]d0
Palcos ¢) = _/ [2cos 0 — 2cos ]!/ (2.28)

With x = cos ¢, a = €'®, z = ¢,

[ A 2.2
Pl = { AW} (2.29)

The roots of the quadratic are at § = +-¢, and a branch cut is taken along the arc of the
circle joining a 1o a. Applying the method of steepest descents as n — oo leads to

i 1 b4
Py(cos ¢) ~ \/gsm {n+3)o+ “}, (2.30)

sin'2 ¢

which is locally sinusoidal for large n.
This expression is invalid near the end points, e.g. ¢ — 0, and specifically when ¢ ~ 1/n.
Putting n¢ = O(1) as n — oo, we have

P,(cos ) ~ Jo(ng) as n — oo (ng ~ 0(1)), (2.31)
(see Abramowitz & Stegun, 1964, p. 787). Hence
Pa(x) ~ Jo [n(z(l _ x))'/z] (2.32)

as x — 1, with even or odd extension as x — —1 if n is even or odd. As 1 — x becomes
O(1), the Bessel function asymptotes back to (2.30).

3 Filters

Now consider the question of local filtering. Recall that if {p,(s)} is a complete orthonormal
sequence of functions in La[—rt, 1], then projection of X(t —s), s € [—1.7] on to a set of
k-values is, from (1.6),
X(t—s)="_ Xu(t)pu(s), (3.1)
{k}
and the resulting filter is, for centre projection,

Xe(t) = pu(0)Xi(2). (3.2)

{k}
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The spectral transfer function of such a filter is of interest and is defined by

(f) = Px.(f)/ Px(f) (3.3)

i.. the ratio of the filtered power spectrum to that of the original signal, and is also given
in terms of the basis functions as follows. The Fourier transform of X}, is

X:(f) = pHX(N), (3.4)
where

T
an) =5 [ pulsreisas (3.5)
i 4
is the reduced transform of p;. Thus the Fourier transform of Xy (found by centre

projection)

Xe() =) plOXi(f), (3.6)
{k}
can be written as
Xe(f) =Y plOpNX(S), (3.7)
&}
so that
Px.(f) = 1) s Ope (I Px(f) (3.8)
{k}
and
Px.(f) .
B(f) = S5 =1 pOp(f) (3.9)
Px(f) %}:

The filtering effect of SSA is determined by the transfer function @(f). @(f) is determined
by the eigenfunctions p; of the integral operator (1.12), which depends upon the correlation
structure of the signal, Cx(t), and the window length 1, = 2r. Thus the effect of such
a filter is independent of the phase of the signal and has the same spectral effect on a
deterministic signal and a surrogate signal which has had its phase randomised (Provenzale
et al., 1992): this filter has an effect that is independent of whether the signal is random or
not. The apparent inference is that SSA is unable to selectively filter oscillatory dynamical
signals from an irregular time series, as has been claimed (Ghil & Vautard 1991). The
transfer function is now constructed for the limits of large and small centred windows.

The limit 1 - o©

In this limit, the eigenfunctions are ¢**/*, corresponding to eigenvalues 4 = Cx(f)/2t (see
(2.5)); a pair f = +f* with corresponding eigenfunctions p; = ¢*2%/"* is chosen, and the
corresponding reduced transforms are

_ sinRx=(f ¥ f*)7]
* 2n(f + f*)e
For large 1, p, =~ (2t)"'8(f — f°), where § is the delta function; thus the cigenfunctions

approximately select the frequency f°, much as an ordinary Fourier transform does.
Evaluating &(f), the spectral transfer function corresponding to centre projection on to

(3.10$)

i
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f=2f" gives

d’(f)z( 3.11

2nt(f — f*) 2n(f + f°)

whereas for back projection (as in (1.9)),

sinf2ne(f - )] | sin[2ne(f +f‘)])2

sinl2at(f — f) _ sin[2ne(f + f')])2 N
2nt(f — f*) 2nt(f + f*)

sinf2ne(f — 7)) _ sin2n(f +f')1)2
2nt(f - f*) ri(f + 1)/

d(f) =~ cos*(2nf"1) (

sin’(2nf 1) ( (3.12)

Thus, for centre projection (3.11), and back projection (3.12), the function &(f) selects a
weighted band of frequencies near f = f°, and when 1 — o¢ both filters approach, near

=5,

sin’[2ne(f — f°))
Rrz(f — )

If the eigenfunctions approximate a Fourier basis when t = O(1), which is not unusual,
then the corresponding transfer functions arc different; for example when t = 1/4f°,
centre projection (3.11) has @(0) > 1 and spectral power is fed to the filtered signal,
whereas back projection (3.12) has ¢(0) = 0.

P(f) = (3.13)

As an example, consider the Rossler equations: x = —z—x, y = x+ay, 2 = b+z(x—c),
a = 0.15 b = 0.2, ¢ = 10, integrated numerically with a timestep 4t = n/100 (with a
fourth order Runge Kutta solver), and outputted at a time step of At = n/10. The Rossler
equations possess a recurrence time T = 27, and a centred embedding (the discrete version
of a centred window) is constructed from y(t) with t,, = 2t = T/2 = n, where dg = 11.
In Figure 1, a comparison is made of @¢(f), computed from (3.11) with f* =1/T = 1/2a,
T = /2, and the same function found directly from the singular system analysis of
the embedding of y(¢) by projecting onto the eigen-pair (dp = 2) associated with the
largest singular values of the trajectory matrix. This filter selects a band of frequencies
near f* = 1/2n. Good agreement is observed between (3.11) and &(f) computed for the
embedding of y(1), since y(tr) has a strong periodic component of period T = 2z and in
fact the first pair of eigenfunctions are approximately pp = /2cost, and p; = /2sint.

The Rossler equations are an example of a system for which the embedded trajectory
is approximately spanned by a few Fourier modes, despite the fact that the half-window
width t is O(1). As shown in Figure 2, this is due to the strong periodicity of the signal,
as exhibited in the power spectrum P,(f) of y(1). In this figure, the result of projection on
to the first two singular vectors (dp = 2) for both centre projection (as in Figure 1) and
end projection is also shown. The transfer functions are quite different. In particular, the
results in Figure 2 suggest that if Gaussian noise is added 10 y(1), a better filter might be
back projection, even though back projection onto the entire basis (§2) may not recover
the original signal in the absence of noise. The results may be worse for a red-noise process
with an algebraically decaying power spectrum added to y(t), since centre projection to
an eigen-pair is likely to enhance power spuriously at lower frequencies.
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FiGURE 1. Phase portrait of numerical solution of Rossler equations (scc text), together with analytic
(dotted) and numerically (or ‘actual’ in the legend) computed filter @(f). The extent to which the
&(f) arc different is due to the lack of resolution of the cigenfunctions provided with a dy = 11
dimensional embedding.
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FiGure: 2. Power spectrum of numerical solution of the Rdssler cquations shown with spectral
transfer functions obtaincd by centre projection (s = 0 in (1.6)) and back projection {s = —1) in
cquation (1.6) when the cigenfunctions p, approximate a Fourier basis. The power spectrum (no
units are shown) is computed with a square window using 4096 points taken from the numerical
solution (sce text) of the Rossler equations and the Nyquist frequency is approximately f = 16. The
spectral transfer function is strongly dependent upon the choice of projection location s.

The limit 1 = 0

The limit  — 0 is also of interest. Recall from (2.8) that the nth (n = 0) eigenfunction is
given by

£©

PulE) = pul&) = ) _ " Prl@), (3.14)
k=0

where {a{."’} and the corresponding eigenvalues 4, are given by (2.17) and (2.19), or

(2.21)~(2.24). Thus the reduced transforms are
- _ 1 i PP Zm‘fsd.
pnlf) = 2 . Pn(s)e s

1 /!
-3 / B, (3.15)

Consider the case of centre projection. In this case, since px(0) = ¢(0) = 0 for odd k,
projection climinates odd components. For even n (= 2N)

1
pn(f) = 5 f $an(E) cos2rfTE)dE. (3.16)
-1

Now, if projection is on to the 2N-th eigenfunction (or the pair 2N and 2N + 1), then
(from (3.9)) the corresponding transfer function

Pan(f) = o2 (0)pan ().

To compute the spectral transfer function, pan(0) and pan(f) are required. From §2, (2.16),
(2.21) and (3.14),

(3.17)

pan(0) = Cy P2y (0) + O(7?) (3.18)

where Py (0) = (—1)5(2k)!/{2%(k!)?}, thus Py(0) = 1, P5(0) = —1/2, P4(0) = 3/8, ctc. Cy
is chosen to normalise ¢>x to a unit norm. It follows from (2.16), (2.21), and the fact that
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— ®off)

...... éz(f)
= &4(f)

30 35 40 45 50

FIGURE 3. Small window approximation to @,y (f) N =0, 1,2, from (3.17), (3.20) and (3.21), where

t = 0.05.
LY PXE)E = 1/(2n + 1), that
Cv = (4N + )2 4+ 0(%), (3.19)
hence,
-1 1
pan(0) = (4N + 1)‘/2(72',,)(3—)’?' +0(7%). (3.20)

To find pan(f), @2 is cxpanded to leading order in terms of the Legendre polynomials. It
is clear from (3.15) that pay is in fact a function of ft; moreover in practice one chooses
t inversely proportional to the recurrence frequency of interest (Kember & Fowler, 1993).
Therefore fr is assumed to be of O(1). Using elementary properties of the Legendre
polynomials and some algebra, eventually we find

N +2
N (=1)"13.5.. (4m—1) (,N_,::: ) sin 2nfe
Pan{f) = Cx z (2nfr)m 2nft

m=0

2 2
vt (=D"135. dm4 (N I+
AN =2m—1 cos2nfr
+ Z (ant)zmﬂ 2nft

m=0
Nz

(3.21)

and @>x(0) = 0 for N > 1. The transfer function to leading order, for projection on to ¢g

only, is

e

_ sin"(2nfr)
(DO(I) - Ws

equivalent to the large window result (3.11) when f° < 1, and, for projection on to ¢»

only,

(3.22)

(3.23)

oo(f) = 25 {sin(?.nfr) _,sin(2nf1) cos(21rft)}2

B 4 2nft (2nf1)} (2nfr)? ’
As N increases, P2y selects an approximately constant bandwidth (about 1/2t for N =0
and 1/7 for N = 1), centred at larger frequency but with a smaller peak amplitude. ®»y,
N =0,1,2 is depicted in figure 3 for 7 = 0.05. Approximating @,y at large N, away from
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FIGURE 4. Phase portrait of the Lorenz equaltions (see text), together with analytic (dotted) and
numerically (or ‘actual’ in the legend) computed filter ®g(f). The extent to which the transfer
functions arc different is due to the lack of resolution of the eigenfunctions provided with a dy, = 11
dimensional embedding.

f =0 (use (2.32), and the method of stationary phase (see, for example, Bender & Orszag,
1978, Chapter 6)) leads to

Pan(f) = -11:113 cos*(2nf1), (3.24)

for fr = 0(1), M = O(1). It can readily be shown that the transfer function cos’(2nft)
corresponds to a moving average filter of the form Xp(¢) = —l_—(X(r — 1)+ X(t + 1)), thus as
N — o, projection on to each pair of eigenfunctions indexed by 2N, 2N — 1 corresponds
to a two-point moving average weighted by 1/2N. To illustrate some aspects of the small
window limit, SSA is applied to the Lorenz system; x = a(y — x), y = rx — y — xz,
t=—bz+xy,a =10, b=28/3 r =28 and we work with y(t). These equations are
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integrated numerically (with a fourth order Runge Kutta method), using a time step
At = 0.01 and with the solution outputted at the same time step; y(t) is centre-embedded
over a window 1, = 2t = 0.1, with dg = 11. In figure 4, the low frequency cut-off filter
®o(f) (3.22), is compared 1o the same computed directly from the SSA of y(1), with
projection to the eigenfunctions py, associated with the two largest singular values. As
before with the Rossler equations, there is close agreement between Eq. (3.22) and &(f)
computed for the embedding of y(t), since the eigenfunctions approximate the Legendre
polynomials.

Iterative filtering

The transfer function &®(f) depends on Cy(z), and so it may be of interest to iteratc the
filtering process by filtering the filtered series, ctc.. Indeed, it has been found (Fowler et
al., 1994) that such iterations can apparently lead to convergent sequences, and it is part
of the aim of this paper to examine what such sequences are convergent to. One hope
is that they may improve noise reduction. To examine this, the approximate forms for
pr derived in §2 arc used to compute approximations for @(f) in the limits of large and
small window width.
The power spectrum of the filtered signal is determined by the map

where it is understood that at each iterate, the filtered serics Xy is renormalised to have
zero mean and unit variance. An iterated sequence of power spectra can be defined where
PY(f) represents the nth form in the sequence. Ideally, the sequence would converge to
the spectrum of the true signal, but in fact continued iteration of the filter reduces the
signal substantially. This can be illustrated in the small window limit, where projection on
to the first eigenfunction is given by @o(f) in (3.22) so that each iterated transfer function
is approximately ®o(f), and thus

sin®"(2nf1)
" (2nfr)3"

where K, is constant. Continued iteration of the filter picks out the 0-th frequency, and
leads (in this approximation) to the substantial reduction of the signal. More generally,
the maxima of @y will lead to the filter picking out a nonzero frequency. Nevertheless,
a few iterations can produce successive improvements in the filtered series. An example
of this is for the filtering of Gaussian noise added to a single dynamical system. For
example, the Lorenz equations possess a decreasing and continuous power spectrum, and
essentially require the specification of a low pass filter.

To illustrate this, consider y(¢) taken from a numerical solution of the Lorenz equations
(described above). Gaussian noisc of zero mean and variance 16 is added to each outputted
data point, and this corresponds to a signal to noise ratio (the ratio of standard deviation
of signal to that of the noise) of about two. The noisy y(t) is centre-embedded, over an
optimal window (the methodology of optimization is explained by Kember & Fowler
(1993)), with 7, = 2t = 0.36, and dg = 37. Figure 5 shows the effect of iterating the
filter using the same embedding definition and projecting on to the dp = 3 singular

PU(f) = K PO (3.26)
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FiGURE 5. Lorenz time series (see text) plus added white noisc of variance 16 (about a quarter of
the variance of the clean signal), normalised to have variance one and mean zero; labelled X o,
The diagram illustrates the original noisy series X‘®, and the results of successive iterates X,
j =1,2,3,4, along with their phasc portraits (shown beside cach series), constructed with a lag of

0.18.
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FiGure 6. Prediction errors of the residual series of the first four passes of the iterative procedure
of Figure 5, using a nearcst neighbour lincar predictor (see text), as a function of prediction time
step ahead. The evolution of slope at pass three indicates predictability, and hence the loss of signal
in the filter.

directions associated with singular values above the noise floor of the singular spectrum
(the methodology is described in Broomhead & King (1986)). It is clear that the iterative
procedure provides an apparently convergent sequence of filtered series, which seem to
improve and this is particularly apparent in the phase portraits. As mentioned above, the
repeated application eventually starts stripping more signal than noise. To evaluate this
more objectively, Figure 6 shows the prediction crror of the residual series at each iterate.
The prediction error is evaluated as a function of the prediction step ahead within the
embedded phase space, by using a nearest neighbour method (Sugihara & May, 1990).
Specifically, an L step-ahead predictor of a predictee point in the embedded phase space
is formed by first locating dr + 1 nearest (in the Euclidean sense) predictee neighbours
taken from a training set. The predictor is then set equal to the simple average of the
predictee neighbours taken L steps into the future. The mean, absolute, prediction error
(MAPE) at L steps ahecad, is the mcan, absolute difference between the predictors and
the observed predictees L steps ahead (about 1000 predictions were made for each value
of L). The result in Figure 6 indicates that the sccond iterate removes noise but that the
third iterate removes signal, as the residual on the third iterate has some predictability.
This suggests halting the procedure after two iterates.

A practical difficulty with the filtering procedure followed above is the specification
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Figure 7. Time series of the solution of the forced Duffing equation, its power spectrum, and
embedded phase portrait (x(s) is plotted vertically against x(¢ — 1.5)) (top row). Below are the plots
of the filtered and residual time series, their spectral transfer functions and their phase portraits,
also using a lag of 0.15. (See text for details.)

of an optimal window (or equivalently of a recurrence time) and a robust means to
find this. The literature contains various methods to establish optimal windows based
on the analysis of singular values (Broomhead & King, 1986), computation of mutual
information (Fraser & Swinney, 1986), and measures of ‘spreadedness’ of the attractor in
the embedding phase space (Buzug & Pfister, 1992; Liebert & Schuster, 1991; Kember &
Fowler, 1993). Two different possible strategies for selecting the window are illustrated,
and to test the algorithm further, the forced Duffing equation X + ax + x> — x = bsinz,
a = b = 0.4, which has a more complicated power spectrum than the Lorenz system, is
analysed. This equation is numerically integrated with a time step 4t = 0.3 and outputted
at the same time step. Gaussian noise with zero mean and variance ¢° = 0.0625 is added
to x(t) which yields a noisy time series with a signal to noisc ratio of about four to one
(top series in Figure 7). The Duffing equation possesses a recurrence time 7 = 30. x(1)
is centre embedded over an optimal window 1, = 2t = T/2 = 15, with dg = 50. Figure
7 shows the effect of projecting on to the first ten singular directions (dp = 10) that
correspond to the ten largest singular values, all of which are above the noise fiocor of
the singular spectrum. The spectral transfer functions of the filtered and residual series in
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FiGure: 8. The result of iterating the filter, as described in the text, for the forced Duffing equation
with a sub-optimal window. The top row shows the original series, spectrum and phase plot, and
the oncs below show successively the time series, iaccumulated spectral transfer function and phase
plots of the first, second and third iterates. The accumulated spectral transfer functions are found

by forming P(f)/PY(f) (PL(f) is the power spectrum of XU,

Figure 7 (found by dividing the filtered and residual power spectra, respectively, by the
original power spectrum) indicate a low pass filter with a cut-off at about f = 0.35. In this
case, further iteration (not shown) does not lead to any improvement since the choice of
low pass filter is optimal; and this is precisely because the window was selected to cater
for the basic recurrence of the signal.

A more robust and useful method is to build the appropriate choice of window length
into the filtering approach. The basic idea is to iterate a filter taken from a sub-optimal
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(shorter) window where the effect of each linear filter is evaluated using predictability
{as described in the Lorenz example above) of the dynamics of the residual series after
filtering. Specifically, the procedure, in two parts, is as follows. Step one: a shorter window
low pass filter @(f) is found. To do this, the noisy Duffing series considered above is
centre embedded over a window 7,, = 3, with dg = 11. Inspection of the first few singular
vectors indicates that they approximate the Legendre polynomials (naturally, since the
window 7, = 3 is much smaller than half the recurrence time T /2 = 15) and hence this
is a shorter window. To determine the filter to be iterated, the projection dimension dp is
reduced until the residual series begins to show improved predictability, and this occurs,
in this example, at dp = 4. Hence, a dp = 4 projection is used to define a short window,
low pass filter @(f). Step two: having derived ®(f), iterate this filter (as described in the
Lorenz example) until the residual serics at each iterate begins to show some predictability
{not shown), and this occurs at the third iterate. The accumulated transfer function of
the filtered series at each iterate, ¢"(f) = P‘{,")(f )/ P‘{f”( f), is shown in Figure 8, and these
indicate a low pass filter with a cut-off at f ~ 0.4, and this approximates the same in
Figure 7. The series (Figure 8), and in particular the phase portraits, also subjectively
indicate that similar results to those in Figure 7 have been achieved after the second
iterate.

4 Conclusions

The analysis of SSA presented here suggests that it is equivalent to a linear spectral
filter, but with the important qualification that local information is maintained due to
projection to a moving window. Although the filter is data-adaptive, the basis functions
which specify the spectral dependence of the filter are determined by the correlation
structure of the time series and the length of the moving window. When such filters are
iterated, it has been found that the resulting sequence of filtered serics can show some
initial improvement in the quality of the filter, as measured by the lack of predictability
of the successive residuals, thus apparently giving an improved characterisation of the
uncontaminated signal, at least when white noise is added. However, continued iteration
cventually leads to decimation of the signal, and moreover the results are very dependent
on the choice of window used, since effectively the filters act as local band pass filters.
Thus, for example, pure white noise can be filtered to produce apparently cyclic signals
and this iterative filter is therefore best used when there is (at least one) clearly identifiable
recurrence time.

It has also been shown, both thcoretically and in practical demonstration, that widely
different results can be obtained by end and centre projection. More gencrally, the choice
of embedding style, embedding dimension, projection location, and projection dimension
have a significant effect on the nature of the resulting filter.

Much has been made recently of the applicability of SSA to the analysis of data sets of
climatic, geophysical significance, with the particular aim of identifying oscillatory trends
in the data (Elsner & Tsonis, 1991; Plaut er al., 1995), and this work has been critically
appraised by Allen & Smith (1996). In a similar vein, Pilgram et al. (1995) and Mineva &
Popivanov (1996) seek to dynamically characterise EEG signals in spite of the qualitative
criticisms of SSA by Palus & Dvorak (1992) which we have quantified here. Our results
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reaffirm that applications of SSA should be treated with some degree of caution, since for
cxample it is possible to enhance low frequency components in signal filtering, and this
could lead to the apparent detection of spurious low frequency dynamics (or trends) in
what may simply be a red noise process.

As a recommendation, we consider that purely data-driven analyses of the type discussed
here require a ‘control’ or ‘benchmark’ sysiem, against which hypotheses can be tested.
Typically, this will be some form of model, and we therefore term the combined process
nonlinear modelling.

Appendix

Instead of a centred window for each t, a backward window can be defined as the interval
(t—21,t) and 21 = 7,, is the window length. Each value X (1) of the time series is associated
with a local window X (¢ — s), where s € (0,21). To define the eigenvalue problem in term
of the centred window formalism, set p(t) = @(t + 1), so that

Ap=ip (Al)
can be written, with t = —t + ¢,

ib(E) = /0 " Cy(€ — utuydu, (A2)

2t

and ¢ = 0 and ¢ = 2t correspond to the endpoints of the backward window. Writing
Cx /2t = ¢, the limit as T — 20 of the eigenvalue problem is

Ap = /ox (¢ — w)yg(u)du, (A3)

and this problem can be solved using the Wiener-Hopf technique (Carrier et al., 1966).
¢(¢) is defined for & > 0; its definition is extended by putting ¢ = 0 for ¢ < 0, thus

oL

HE) + Jp(E) = ] (& — wyp(updu, (A4)

where h = 0 for ¢ > 0, but h is to be determined for ¢ < 0. Taking Fourier transforms of
(A.3) gives (with ¢(f) = [, ¢(S)e*™/ede, etc)

(f' - /..)(}4. = il_. (A 5)

The transforms (and this equation (A 5)) are defined for real values of f, but they can
be extended to complex f. Since ¢ = 0 for £ < 0, the transform ¢ will be analytic in an
upper half plane Im f > 0, and the transform notation is written as ¢ to indicate this.
Similarly, the transform of I is i and is analytic in Im f < 0. However, ¢ may have
(isolated) singularities on the real axis.

The aim is now to choose functions G4(z) (the notation indicating G, and G_ are
respectively analytic in Im z > 0 and < 0), so that

A—=8f) = G(f)/G-(f) for f €R, (A6)

since then G, ¢, = —G_h_, and, presuming there is a common strip of analyticity, G,
then extends to an entire function which is dctermined by conditions at infinity. Now
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note that ¢ is real and positive for real f, by the Wiener-Khintchin theorem. It is also
symmetric in f. Also ¢ > 0 as f — .
Suppose firstly that 2 > ¢ for all real f; then 4 > 0 and we define functions L. via

In L, —1In L_=In[(Z—2¢())/4], (A7)
for which a solution is
1% In[(4 = 2(f))/A)df
z)= — A8
L(z) exp[mf_l =z (AB)
(the integral exists, since ¢(f) — 0 at o), and L(ar) = 1. Thus /. —¢ = 2L, /L_,
so that /LT¢+ = —L_h_. Now it is expected that ¢+, b > 0 as z - o« (being

Fourier transforms). Therefore, since Ly — 1, the analytic continuation of Ly¢y is zero
everywhere, and thus $+ = 0. It follows that if £ > ¢(f) everywherc, then ¢ = 0. We
therefore suppose that &(f) = ~ at real values +f,, 1, ... +f,.

Consider for example the case that ¢(0) > 4, which will typically apply if n is odd.
Define the polynomial

pf) =[] =1 (A9)

i=1
then g(f) = [4 — ¢(f))/p(f) is of one sign (positive) for all real f. Therefore, In[g(f)] is
well-defined for all real f. However, the integral corresponding to (A 8) does not cxist.

Therefore,
o | * [ =&ONSf —z)"(f —20)" | df
Le) = exp [zm / i { ) } f- :] o A

is defined where zj is an arbitrary complex number with Im zg > 0. If ! —iy, [+ iy, ¢ > 0,
are defined to be the branches of In(f — zo) and In(f — Zp) then the logarithm in (A 10)
tends to zero as f — +oc, and the integral exists. Moreover, L(oc) = 1, and

[A = NS — z0)"f — Z0)"
Ap(f) ’

Ly/L-=

(All)

it follows that

ipLydby [(f [_ ),,] = —L_h_(f — zo)", (A12)
and thus either side defines an entire function, a polynomial by Liouville’s theorem, and
hence (since L — 1, h — 0 at ) of degrec n — 1. It therefore follows that

= Z0)"pu—1(f)

;I’(f)L+(f) )
where p,._; is an arbitrary polynomial of degree n — 1.

The inversion contour must be indented above the zeroes of p (since (} is analytic in

Im f > 0), thus
. (f — Z0)"pu_1(f)e™2"F2df
= , Al4
0= | L (A19
where C is the real axis indented upwards at +f;. To compute the integral, the contour is
completed in the lower half-plane, and to do this, (A 11) is used to continue the integrand

$+(f) = (A13)
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there, and thus

(&) = pri(f)e~ I df

T Je GO ==l L)
where C is the union of the upwardly-indented real axis and the limit of a large semi-circle
fl=R,Im f <0,as R - .

The evaluation of (A 15) depends on the singularities of [~ — &(f)]™'. On the real axis,
these are f = +f;, whence

(A 15)

n
b= AT (A 16)
k=-n
k40
where A_; = A, if ¢ is real (as can be assumed). Note that, from (A.10), L_ = (z—z¢) "y _,
Ly = (z — Z)"y4. where 3, are analytic in Im = # 0, so that (A 15) is independent of z¢
and 3y (as it must be). There are n independent solutions, corresponding to the coeflicients
of p,—i(f). If ¢ = 4 for some complex f in Imf < O, then for each such f = f*, ¢
has a corresponding term proportional to exp[—2rif ] = exp[—2nf; &) exp[2rifré], if
f° = fr —if;. Thus, in gencral, the (real) eigenvalues are given by

.. L.
..=f)= 5-Cx(f) (A17)
2t
(just as in (2.5)), and the corresponding eigenfunctions are
¢ =sin(2nfé + v) + exp[—O0(S)]. (A18)

where the phase is fixed, and the exponential term is an end correction when ¢ = 0 and
is exponentially small when & = 2¢ > 1. If A — ¢ & O, for all complex f, then there is no
end correction.

As an example, consider the autocorrelation function for a red-noise process, with
variance one:

Cx() =e¢™", (A19)

where a > 0. Clearly

a
and there is an cigenvalue 2 for all 0 < 2 < 1/7a, and since the only two roots of ¢ = 4
are the real values

o= (A 20)

-

f=t— i—ll/—+f (A21)
"~ T2n | ita - -

there is no end-correction, n = | (so p,—; = A = constant), and the eigenfunctions are
given by

e—2nifédf
=A . A2
O =A e E=anT — ol (A22)
In this case, from (A 22) and (A 21),
i—f) = ﬁ)"’ 5 (A23)
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where p= f> — f? and fy = a/2m, so that L satisfies
Ly _ U —.Zo)(f—?o) . (A 24)
L. (f=ifo)lf +ifo)
It is easiest to take zo = ify, so that L =1 and (A22) is
: =2rif¢
¢ M-S

p=A4

Calculating the residucs,

111 o -ming L L [ _ifo —znmc]
b= ).[2(l+fl)c +2(1 fl)e

-1/2
=A lcos(an.é) + {ﬁ - 1} sin(2n f.g’)] , (A 26)
where 4 = —A//. See also Carrier et al. (1966, p. 388f).

The expression (A 26) can be loosely compared with the results of Vautard & Ghil
(1989). Given that the result above applies for © — oo, we sce that the eigenfunction is
a lincar combination of the even and odd cigensolutions (2.11a) and (2.12a) of Vautard
and Ghil. However, the point is that their analysis uses a centred window, which allows
both solutions corresponding to the same eigenvalue, whereas the use (as here) of a back
projection gives only one eigensolution for each eigenvalue. This distinction is clear in the
continuous limit we study, although it will inevitably be less so in the practical, discrete
implementation of SVD.

In summary, the eigensolution structure for end projection differs from that of centred
windows in the phase specification (and the possible exponential end correction at & = 0),
These differences allow for the possibility that the cigenfunction expansion (1.6) converges
at the end points, i.e. for s = +1, although this point is not pursued here.
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