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Abstract. Analytic and numerical solutions are considered to a simple model prob-
lem which contains a surprisingly complicated solution structure. Asymptotic solutions
are sought when a parameter that appears as an exponent in the independent variable
is small, the solution then exhibiting a sudden change in slope over a region that is
exponentially thin. A straightforward approach using matched asymptotic expansions
immediately reveals inadequacies of this method due to the requirement of an outer so-
lution that needs to be evaluated beyond all orders in order to match to a suitable inner
solution. This behaviour is elucidated by studying first the asymptotic structure of the
solution using an exact integral. which explicitly reveals the need for the inclusion of
exponentially small terms in the expansions. It is then shown how a direct asymptotic
solution of the differential equation can be obtained by using Borel summation to eval-
uate the outer solution to exponential accuracy. Further, as a practical alternative, it
is shown how these exponentially improved approximations can be made when an exact
numerical solution is available and without recourse to the general term of the outer or
inner expansions.

1. Introduction. Exponential asymptotics, or asymptotics beyond all orders, is a
subject that has been very much in vogue since Berry’s development [1] of a uniform
asymptotic expansion to describe Stokes’s phenomenon. Berry built on earlier work by
Dingle [2], in which the concept of exponentially improved asymptotic expansions was
introduced. For an asymptotic expansion in powers of a small parameter ¢, the number
of terms N(e) is selected so that the first neglected term is minimal. The resulting error
in the expansion is typically exponentially small in ¢. By evaluating the exponentially
small error as a function of the phase, Berry was able to compute universal error function
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transitions in the asymptotic expansions of integrals exhibiting Stokes’s phenomenon,
such as that defining the Airy function.

Integrals of this type can also be defined as solutions of differential equations, and it
is an obvious question to ask whether it is possible to construct exponentially accurate
solutions directly from the differential equation. Reference [9] used matched asymptotic
expansions for differential equations to construct transition profiles as described above for
certain integrals. A more direct approach to a problem of this type is the pioneering work
by Kruskal and Segur [5], who derived exponentially small corrections in the solution of
a nonlinear problem by embedding the equation with a complex time variable, and then
finding correct inner and outer expansions near and far from a singularity of the equation.
However, their approach is unable to describe Berry’s delicate switching behaviour.

The problem we wish to consider here has certain features in common with these other
problems, but it is sufficiently novel that we have had to develop a different procedure to
deal with the solution. The purpose of our pedagogical presentation is to illustrate the
idea that these same procedures may have wide applicability in other similar problems.
In particular, we find that satisfactory matched asymptotic expansions for the solution
require one of the asymptotic expansions to be prescribed to all algebraic orders, and in
general this requires the use of Borel resummation (applied to sequences of operators) to
provide an exponentially improved series. This can be done straightforwardly as long as
the equation is quasi-linear, and the linear differential part of the equation has constant
coefficients. This restriction is no more serious than that in the majority of the examples
that have been studied in the literature. A review of the development of these recent
ideas is given in [10], and an indication of the different applications where exponentially
small terms occur is in the book {11].

The example problem we consider is

I -2, y(xo) = yo, (D

dy 1
where yo > 27¢ and zy < 0 are the ranges of interest for the initial condition, and
¢ is a small, positive parameter. The solution is analyzed for x > xg, wherein it is
monotonic decreasing. This model problem is derived in [3] as the canonical form of a
set of equations describing the physical problem of surging ice sheets (see also [4] and

[8))-
The exact solution to (1) can be written implicitly as
Yo ué‘
T =T d
z J‘0+/y 5ut — 1 u, (2)

and it is the asymptotic structure of this solution in the limit ¢ — 0% that will be of
interest. For this limit, the solution exhibits a sharp transition region, shown in Fig. 1,
separating the initial dominant behaviour in z = O(1), where y ~ (yo + zo — z), and
that for z > yo + xo, where y ~ 27'/¢. The aim here will be to show the necessity for an
asymptotic expansion capable of representing the above solution to exponential accuracy,
particularly through the sharp transition region, and subsequently we will show how such
an expansion can be generated directly from the differential equation.



EXPONENTIAL ASYMPTOTICS WITH A SMALL EXPONENT 563

L) L M T 1] 1
— Exact Solution: y(x)
------ Outer: y,
tor ---- Inner: y,
Inner: Y,
08| J
06} .
\
\
\
N .
04 AN .. -
N\ .
AY .
N\
\,
\
\
N\
\\
\\
\
N\
\, .
N\ . -
02t N .
N\ ..
\ ‘.o
N\,
N\,
N,
\,
\\
N\,
\\\
N\,
\\\
0.0 - 1 A 1 N [ 4 x a L L \\. l- L
1.0 -0.8 0.6 -0.4 -0.2 0.0 0.2 0.4
X

F1G. 1. Illustration of the numerical solution of (1), together with
the two-term expansions of y1(x) and y2(€), depicted for ¢ = 1/6 and
the initial condition xo = —1,y9 = 1. The sharp transition region is
apparent at x = O(¢g). The error made by y2(€) with a second-order
approximation to the shift A(1/6) = 1/6 is substantial. Also shown
is the two-term expansion of y2(£), but with the shift A(1/6) =~ 0.3
found numerically, and y2(£€) has been relabelled as Ya(€) for clarity.
The improvement in Ya(&) over y2(£) is clear.

The difficulties inherent in providing a matched asymptotic expansion for this problem
should be understood first, and are most easily illustrated by showing why a straightfor-
ward approach is inadequate. An outer expansion in regular powers of ¢ that satisfies
the initial condition is

vi(z) = (Yo +xo—2) +e{(yo + xo — ) In(yo + o — ) — yolnyy + x — x0) + 0(52)-
(3)
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The expansion for y,(x) is invalid when € In{yo + 2y — ) = O(1), and an inner region
£ = O(1) is introduced with the scalings

£ =—cln[A(e) —z],  yo = exp(§/e)y, (4)

where the function A(e) is a shift required to enable matching with the outer solution.
The expansion of y2(£) is given by

p2(€) = (2 - €°) +ect[-1 + (2 - €9)] + O(e?), (5)
and the shift A(e) correct to second order is
A(g) = (yo + zo) +e(yo — yo In Yo) + 0(62). (6)

In terms of the outer variables, the inner region is exponentially thin and, moreover,
the solution is exponentially small. Thus, the first sign of difficulty arises as the shift
A(e) needs to be exponentially accurate, if it is to be of practical use. Following [2],
this requires calculation of the general term in the expansion for A(e), and then the
resumming of the divergent tail of the expansion beyond its minimum term, to yield the
leading-order exponentially small correction term.

To examine the effect of the shift A(e), the numerical solution of (1), with zy =
~1,90 = 1, and € = 1/6, is depicted in Fig. 1 along with the two-term expansions of
y1(z) and yo(€). Although y2(€) and A(e) are specified to second order, the error made
by y2(€) in Fig. 1 is substantial. This is most noticeable in the inner solution, which is
clearly shifted from the exact solution. Numerical calculation of A(¢), using (55), shows
that in fact A(1/6) = 0.3. This point is further illustrated in Fig. 1, where the two-
term expansion of y»(£) is depicted, where A(1/6) = 0.3 is used in (4) (rather than its
value of 1/6 given by (6)), and this shifted inner expansion is denoted by Y>(£) to avoid
confusion. The improvement in Y,(€) over y»(£) is plain. Nevertheless, the error made
by Y(€) is still significant, and this is particularly evident within the region of overlap
between Y3(€) and (z), for negative values of x of O(e).

The inner expansion (5) breaks down as £ — In2 and this suggests a third region
X = O(1) with the scalings

X =25 (A(e) —z), s =2"%y. (7)
The following expansion is obtained:
Yo(X
w(X) = ¥ax) + 2 (& = 2 ) m¥o) + 062, ®)
where Yp(X) satisfies
Co
2X = w'e” dw, (9)
In Yo (X)

and the constants ¢y, ¢ are to be determined by matching with the inner solution (5). At
this point, further difficulty arises as the full inner expansion of the series (5) is required
to match to the first term in (8) as discussed in [3]. Consequently, the constant ¢y, which
represents an origin shift for the function Y5(X), cannot be determined by matching to
the algebraic inner expansion (5).
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For algebraic convenience, and ease of discussion in subsequent sections, the change
of variables

z
¢ = -, z=y ¢ 10
. y (10)
is introduced, so that (1) becomes
d 1 .
¢ — EZE-Z:- = ;_—2 with ¢(Zn) = ¢q, (11)

where zgp = y, . ¢o = To/yo, and 0 < zy < z < 2. This form is linear in ¢(z), and the
exact solution (2) can be written as

1/¢ 2 d -1/
qﬁ(z):o()(i) +Zl/€ M, O<zp Lz (12)
20 20 (w—2)

20

16

14 r

12

10

$(z)

0.8 1.0 1.2 14 1.6 1.8 2.0 22

Fic. 2. The numerical solution of the transformed problem in (11)
for ¢(z) is depicted using the same parameters and condition as in
Fig. 1, i.e., e = 1/6 with zy = 1,¢9 = —1.
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To fix ideas, the numerical solution in Fig. 1 is shown in Fig. 2 in terms of the
transformed variables ¢ and z. The sharp transition is now near z = 2.

The asymptotic structure of the solution in terms of ¢ and z has been given, to leading
order, in (3], but they were unable to compute the exponentially small corrective terms
which, as we have intimated above, are crucial for a practically useful approximation.
Reference (8] studied the structure of the solution using exact series solutions (cf. (15)
below), which truncate when € = 1/n, where n is an integer. In order for us to reclaim the
exponentially small terms, we proceed in the following section to compute the asymptotic
structure by using resummation techniques applied to the exact integral form of the
solution. We then attempt, in Sec. 3, to recover this form of the solution directly from
the differential equation.

2. Exponentially small corrections to Laplace integrals. We obtain asymptotic
approximations to (12) using Laplace’s method. A key observation in the application of
Watson’s lemma to Laplace-type integrals is that exponentially small remainder terms
typically arise through both the resumming technique alluded to carlier, and also the
constant finite limits of integration. The latter arise in (12) from the variable limit z
and the constant limit zy. To facilitate their calculation, the solution (12) for ¢o(z) is
equivalently written as

1/¢
. 4 )
o) = (2) " ou= 1))+ 102) (13)
where /(z2) denotes the Cauchy principal value integral
>* d(w~V/¢)
O
()= 2 f SE (14)

In what follows, it is assumed that 2y and ¢¢ are O(1), and this will be seen to be without
loss of generality. To derive an asymptotic expansion of /(z), for small, positive ¢, (14)
is repeatedly integrated by parts, to give

n
n! z

as ¢ — 0. (15)

The series in (15) is left in this useful form, but in principle (15) would be further
expanded for small, positive £ and the latter is the form encountered when proceeding
from the differential equation in Sec. 3.

To develop an exponentially accurate approximation to /(z), (15) is truncated after
N + 1 terms, and written as

I(z) = F(z) + Sn(2), (16)

where

N e'n! 2z
P& = ) i Ge T ooy ()
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is a Poincaré series and Sy (2) is the remainder, which may be expressed in the integral
form

1/ eN(N + 1) [® w«tNdw
N VE

Sn(z) = ﬂf’:.(je—l) . (w=2)N+Y (18)

Interest lies in the form of the leading-order approximation to Sy (z). for small. positive
g, which we obtain by applying the procedure enunciated in {9]. Using this convenient
integral form. the remainder satisfies

dSn(z) _ —eMUN 4 2N

Syv(z)-¢ = —- 19
v(z) dz Il;‘T,(]E— 1) (z-2)V+2 (19)
the right-hand side of which can be shown to be minimal at
| = 9
1w=g(1—é+§(1*z)+0(e )) - (20)

Using this value of N in the right-hand side of (19), and expanding for small, positive ¢,

_dSn(z) T z FANLA
Sn(z) —ee—p— = V 2¢ 2—2(2) ' (21)

Integrating (21). a first-order approximation to the remainder is

gives to first order

2

Sv(z) = [G(z,€) + H(€)] (5) e (22)

) = S—Jﬁ\/g[sin“l(z - 1), (23)

and H(e) = O(z %/?) since by choice, Sy is the minimal term in the expansion (17).
The source of the exponentially small correction H(e)(z/2)!/% is the rewriting of the
quadrature in (12) in terms of two integrals, both with upper limits at infinity. This

where

(1'(2,

m

procedure then shows that

I(z) ~ F(z) + [G(z,€) + H(e)] (%)”5 ase — 0. (24)

Using (24) in (13) gives the expression

2z e

1/¢ e
(D(:) ~ l(_ﬁ(] - 1“(2())] (;—(—)) + [G(Z,E) - G(Z(),E)] (%) - + F(Z), (25)

where it is noted that the term H (e) does not appear through cancellation. Further, this
last expression indicates the presence of three gauges: transcendentally large terms of
order (z/29)"/*. algebraic terms of order €", and transcendentally small terms of order
(z/2)17¢.

Clearly, (25) becomes invalid near z = 2 and an inner region is required. To obtain
an expansion of ¢(z) valid near z = 2, the transformation v = (z/2)!/¢ is introduced
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together with the definitions J(u) = 7(2uf) and ¢(u) = $(2u) so that (13) may be
written as
2 1 /e
d(u) = u (28) [0 — 1{z0)} + J(u), (26)

where

J(u) = %l/ P dr. (27)
=

nu et — 1

We evaluate an asymptotic approximation for J(u) using Laplace’s method. Expanding
the integrand for € <« 1, we obtain

u [Te " By,e? Inu)™
Ju) ~ o f (h—‘+ ZZ . (28)

mu T n m!

w-l om0

where B,,, are the Bernoulli numbers. Thus, near z = 2, we have

£

o 1/¢
‘I’(U) ~ (L) [(f)() — l Z() ] - Z(), ) - [‘[(E)] u

20

x 2n-1

u [ Bane?"~Hinu)™
+§; —dr_f+422 . (29)

e T n m!

n=l =0

The unknown constant, H(¢), does not cancel in this formula for ¢(u) and must be evalu-
ated. We might suppose that, in analogy to the procedure we followed in approximating
the outer solution (25), a resummation of the asymptotic series in (29) would yield a
cancelling term, but a little thought shows that this is not the case. In fact, if the upper
limit in (27) is replaced by L/e, where L is O(1), then the asymptotic expansion (28) is
unaltered; the implication is that the series itself cannot be used in this way. This failure
is especially significant since it occurs in spite of our knowledge of the general term in
both inner and outer expansions. Therefore, we wish to develop a procedure to evaluate
“exponentially accurate” approximations to the solution in both inner and outer regions.
The ability to do this requires sacrifice. First, we provide a methodology using Borel
summation, which (unfortunately) requires a formal (if not explicit) expression for the
general term. Second, we suggest a method which works directly from the differential
equation, and which does not require the general term: the cost here is that matching
of the inner and outer expansions must be done using an exact numerical solution of the
equation.

3. Matched asymptotic expansions. Considering the differential equation in the
form (11), an expansion for small, positive ¢ leads to the outer expansion

1 £z
z—2 (z = 2)?

o(z) = + 0(e?). (30)

which in general does not satisfy the initial condition ¢(2¢) = ¢o. The obvious approach
to satisfy the boundary condition is to introduce a boundary layer variable r = (z/z)'/¢,
r > 1, as considered by [3]. However, this leads to an unsatisfactory outer expansion
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insofar as the resulting added term to the series is transcendentally large, it being propor-
tional to the homogeneous solution of (11). This causes formal difficulty in the expansion,
similar to that in 7], since the algebraic terms in (30) are then relatively exponentially
small. A remedy is to subtract a multiple of the homogeneous solution to (11), and to
define
2 1/e
®) =02~ A(Z) (31)

20
so that ®(z) satisfies

dd(z) 1
(z) —ez dz 2z -2 (32)
and the shift A = ¢y — ®(zp) is chosen to enable the asymptotic expansion of ®(z) to

satisfy the initial condition. The expansion for ®(z) is the same as that in (30), namely

1 EZ 2 e
®(2) = " PED)E + O(e”), (33)
and thus A is then
1
A=gg— L N, TR (34)

20 — 2 (Z() - 2)2
where (34) is asymptotic to A for small, positive €. Reference to Sec. 2 indicates that
A = ¢p — I(29) from (13), ®(z) = I{z) from (15), where this comparison requires the
expansion of the product term in the denominator of (15) for small, positive ¢.

The outer expansion breaks down as z — 2. An appropriate inner variable is

2z 1/5 .
u=(3) (35)
and then (32) becomes
dP(u) 1
S == = Sy (36)
A regular expansion in powers of € may be written in the form
o -1 1
B(u) = Cle)u + — ][ C_dr-:+0(), (37)
2e Inu T 4

where C(¢) is to be determined by matching to the outer expansion. This inner expansion,
valid for v = O(1), breaks down when |lnu| = O(e~!). Therefore, to perform the
matching, we introduce an intermediate variable  defined by u = e~"/¢, withe € n <« 1
in the overlap region. In terms of the intermediate variable, the outer solution (33) takes
the following form in the overlap region:

1 1 €
B =5 -1 gt (38)
whilst the inner expansion becomes
-nle (X o-T 1
B(u) = Cle)e /¢ + = ][ dr — = + O(e). 39
W) =Cee + 5 | a0 (39)

To match (38) and (39), the integral in (39) is expanded for ¢ < n <« 1 by repeated
integration by parts. It is then found that the two expansions do match algebraically
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in the overlap region and this can be carried out to all algebraic orders (all powers
of £). The constant C is, however, undetermined, since the exponential term in (39) is
transcendentally small. This is the same problem which we described in the introduction.
It is tempting, but incorrect, to follow [7] and simply put C = 0, on the basis that there
are no corresponding exponential terms in the outer expansion. This is dangerous, since
the algebraic outer expansion may conceal exponentially small correction terms that can
be evaluated by resummation. We now suggest two ways in which this problem can be
surmounted.
3.1. Borel resummation. Suppose that the series

(o) = 3 4 (40)

n!

=0

converges for small e. and define

l./-f
B(e) =/ e “y(es)ds (41)
0
where L > 0 is arbitrary but fixed; then
B~ ae" ase—0. (42)
n =0

Since ¥ is defined as a series, so also is B, and it is the Borel resummation of ¢». The
proof of this is straightforward, and is Watson’s lemma in reverse. The important point
is that if a function is only defined by its asymptotic expansion, then we can equivalently
define it through the Borel resummation of its asymptotic expansion. Furthermore, the
abilitv to prescribe L enables us to be specific about exponentially small terms in the

function.
First we extend Borel resummation to differential operators. If
= a,(sD)"
wleD) = i Sl .
(e D) Z‘o — (43)
and
L)z
B(eD) = / e “y(esD)ds, (44)
0
then
B(eD)f(n) ~ Y _a,(eD)"f(n) ase—0, (45)
n=0

where D denotes d/dn.
To apply this in the present case, we use the variable 7 introduced above, i.e.,

z =2, (46)

so that (11) is (for @ defined by (31))
-1

(47)
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The outer solution is then constructed from the formal inverse
D~ —— —eD)" 4
nZﬂ( e (48)

The construction of the general term is, at the least, awkward, but the necessity for doing
this will now be bypassed. If we define

x<
_ (_aD)n . ,—tD
=2 g = (19)
n=0
then Borel resummation implies that
l Il/':- 1
o~ —= DR P — 5
2/(: e ’e g (50)
Now e *P f(n) = f(n — h), so that
1 fHe esds
~ —— 4 R -
the principal value of the integral is included in the case L > 5, and in fact it is convenient
to choose L = 0o. Thus
1 [ e *ds
b~ —= —_— 52
= (52
and
A =0y — P(no) (83)

from (31) where zyp = 2¢~". Note that the arbitrariness of L is equivalent to the
arbitrariness of H in Sec. 2.
If (52) is now expanded for small 7, we obtain the form of the outer solution in the
overlap region as
1 [T e f®ds 1

(I)N_E r)—es—z'“’ (54)

which matches directly to (38) (via w = s — n/e in the integral) provided that we choose
C = 0. Note that if L were chosen to be finite, then we would find C # 0.
The integral (52) is taken as the outer solution and then the shift A is defined by

o0 -8
e *ds
A= o+ ][ eds 55
®o 2= zget (55)
We do not provide an illustration comparing approximate with exact solutions, becausc
they are indistinguishable; in the present case the approximation method reproduces the
exact solution as the outer approximation. However, if we had chosen L to be finite,
then this would not have been the case.
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3.2. FEvaluating exponentially small terms. The above procedure relies on being able
to construct the exponentially accurate Borel resummed integral (52); this requires com-
putation, at least in principle, of the general term of the outer solution, which for more
complicated differential equations may well not be available. What we require is a prac-
tical way of computing exponentially accurate approximations without the general term
of the outer (33) and inner (37) expansions. We can do this by applying the resumming
procedure in the overlap region. The thinking behind this idea is that the exponential
corrective term Sy (z) in (23) increases as z — 2, and is thus maximal in the overlap
domain. Below we find by direct computation that this term decreases again in the inner
region. Therefore. we can hope that inclusion of this term. computed in the overlap
region, actually provides a uniformly accurate corrective term over the whole domain;
this assertion appears to be borne out by comparison with numerical results.

In terms of the overlap variable, (32) is

d®(n) 1

Y = ) £
() +e - 2o (56)
We define ¢ to be the solution of the singularly forced part of (56). that is,
! dy(n) I -
and then write
() = v(n) +0(n) + Hle) exp(—n/e). (58)
where we can take 0(y) as
1 o 2n—1 _l m Bz €2n m-—lnm
Nny) = -~ . it
(o) 1 Z Z n m! (59)

n-] m=(

The series (59) defines ¢ as an analytic function of 7, so that the (divergent) asymptotic
expansion for v,
1 & nlen
ym~=-z= ) —, (60)
217 n=0 A
provides the exponential term that we seek. We truncate the expansion (60) after N
terms, and write ¥(n) = F(n) + Ry(n), where

N-1
) 1 nle®
F(n)=-5- ~ (61)
nn
n=l()
is a Poincaré series and the remainder Ry (n) then satisfies
dR eV NI
Ruv(n) + 28800 _ (62)

dn - N+
Following the same procedure as in Sec. 2, we note that the right-hand side of (62) is

minimal at

N = @—§+0@0 (63)

mlv—-
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Using this value of N in (62) and expanding for small, positive ¢, we obtain to leading

dRN(n) _ n —-n/c
Rn(n) +¢€ dn = 261)6 . (64)

Comparison of (64) to the differential equation for Sy(z) from (21), written in terms of
n and expanded for ¢ < n < 1, shows that the series for ¥(n) docs indeed generate the
first-order exponentially small correction within the overlap region. Integrating, we find
that

order

2 v T L g T T
—— exact
aoa 2 term outer
----— 2 term outer+TST
2 term inner
l -
ot i
B3 -
N
"]
2k 4
3 4
4 F _
A 1 " (] A i A 1 " 1 e
0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fic. 3. The numerical solution of the transformed problem in (32)
for ®(z) is depicted for € = 1/6, over the interval 0 < z < 2 where
the overlap region is approximately 0.7 € z < 1.7. Also shown is
the two-term outer expansion for ¢(z) from (33), the two-term inner
expansion of ®(u) from (37), and the exponentially small corrected
overlap solution @®(n) from (66). The improvement in ¢ within the
overlap region is dramatic. ®(u) is exponentially accurate as ex-

pected.
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— exact
e 2 term outer $(z)
1or -——- 2 term outer $(z)+TST
- inner ¢(u)
00k i . 1 . N . ' . 1 . L . " ! b
1.0 0.8 0.6 0.4 -0.2 0.0 0.2 0.4

Fi1G. 4. The results in Fig. 3 are portrayed in terms of the original
variables y and x to enable comparison to the results in Fig. 1. In-
spection of Figures 1 and 4 indicates that Y3(£) is the counterpart
of ®#(z). Thus, Ry(n) is the numerically significant, exponentially
small correction to Y2(€) in Sec. 1, and the improvement in Ya(€) is
dramatic.

\/271'_1') —n/e (65)

RN(")=_ 63/2 € »

where the constant of integration can be taken as zero, in view of the as yet unspecified
constant H(e) in (58) above. Hence, within the overlap region, the solution ®(n) is taken
to be

1 1 € V2nn

&) ~ |-— — = — IR ?/Te_"/s + H(e)e "<, (66)
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which is composed of a Poincaré serics in € contained within the square brackets, together
with the leading-order exponentially small terms.

Determination of the free constant i (€) cannot be done within the scope of these
Poincaré cxpansions. We use a form of numerical matching, by choosing H (e) to be
the value that minimizes the mean squared deviation of the difference between the ex-
act (numerically determined) solution ®(n) and the cxponentially corrected Poincaré
series of (66). within the overlap region. which is arbitrarily assigned to be the interval
037 <1504

In Fig. 3. the two-term expansions of ¢(z) (33) and ®d(u) (37) are depicted along with
the numerical solution over 0 < z < 2 for € = 1/6. Using the procedure outlined above,
we find that H(1/6) ~ 0.625v2m/e*?. The exponentially corrected solution ®(7) in
(66) is also depicted in Fig. 3. The overlap domain is the formal range 1/6 < < 1, or
approximately 0.7 <« z <« 1.7, and in this region ®(n) represents a dramatic improvement
over ¢(z). In this example, the approximation for ®(u) is in fact (and exceptionally)
exponentially accurate since the one-term approximation to ®(u) is identical to ¥(5). To
enable a comparison to be made with the original problem in Sec. 1, the results in Fig. 3
are shown in terms of the original variables y and x, and these results are shown in Fig.
4. A qualitative inspection of Figures 1 and 4 indicates that Y,(€) is the counterpart of
®(z), while y3(£) (not shown in Fig. 1) is the same for ®(u). There is no counterpart for
y1(x). The exponentially corrected ®(n) is a dramatic improvement over Y,(£) near the
sharp transition.

4. Discussion. The initial motivation in studying this problem was to understand
the origin of the sudden switch in solution behaviour at moderate values of &; limited
success in this venture in [3] was tempered by the inability to construct satisfactory
asymptotic expansions, because the calculation of matching constants between an inner
and an outer solution required solution of the outer problem beyond all algebraic orders
of £. In this paper we have explored this issue, and by comparison with an integral form
of the exact solution, we have illuminated two ways in which the required exponentially
accurate outer solution can be constructed.

In other problems of this type, it is common to construct exponentially accurate
solutions through knowledge of the general asymptotic term in the Poincaré expansion;
our desire is to be able to extract this information directly, without explicit knowledge
of the general term, and in this paper, we have shown how to do this to a limited extent.

One method can be used where a formal asymptotic expansion can be written in
operator-theoretic notation. In that case, the use of Borel sutnmation for operators allows
a formally equivalent asymptotic expansion to be written in the form of a Laplace-type
integral, which allows explicit prescription of exponentially small terms arising from the
integral limits.

Our other method uses the fact that the exponential correction that we seek is maximal
in the overlap between inner and outer solutions, where a simplified problem can be
solved. This is analogous to Kruskal and Segur’s study ([5] and [6]) of the geometric model
of crystal growth, where the exponentially small terms are identified as arising through
the solution of the differential equation in the vicinity of a pole of the unperturbed
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(¢ = 0) solution. In their case, the singularity is complex, whereas for our example,
the singularity is on the real axis, and it is this which causes the solution to have an
explicit boundary layer structure (in Kruskal and Segur’s case, there is an analogous
switching region similar to the error function switch that occurs in integral expansions
as Stokes’s lines are crossed, although Kruskal and Segur were not able to analyse this
in their problem).

We have not. completely fulfilled our aim of constructing exponentially accurate solu-
tious direct from the differential equation, but we have shown how certain ingredients
for doing this are present in our example. In the future it is hoped to extend the insights
gained with other similar problems, to elucidate a more general matching procedure
which can be used directly.

Acknowledgment. We thank Emmanucle Schiavi for pointing out an error in our
original description of Borel summation.
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