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Objective

There are many situations in which we want to estimate the average
value of some random quantity

In general, we

start with a random sample ω (which might correspond to
a set of random numbers)

usually compute some intermediate quantity U

then evaluate a scalar output f (U)

ω → U → f (U)

The objective is then to compute the expected (or average) value

E[f (U)]
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Basics
In some cases, the random inputs are discrete: X has value xi with
probability pi , and then

E[f (X )] =
∑
i

f (xi) pi

In other cases, the random inputs are continuous random variables:
X has probability density p(x) if P(X ∈ (x , x+dx)) ≈ p(x) dx
and then

E[f (X )] =

∫
f (x) p(x) dx

In either case, if a, b are random variables, and λ, µ are constants,

E[a + µ] = E[a] + µ

E[λ a] = λ E[a]
E[a + b] = E[a] + E[b]
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Basics
The variance is defined as

V[a] ≡ E
[
(a − E[a])2

]
= E

[
a2 − 2aE[a] + (E[a])2

]
= E

[
a2
]
− (E[a])2

It then follows that

V[a + µ] = V[a]
V[λ a] = λ2V[a]

V[a + b] = V[a] + 2Cov[a, b] + V[b]

where
Cov[a, b] ≡ E

[
(a − E[a]) (b − E[b])

]
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Basics
X1 and X2 are independent continuous random variables if

pjoint(x1, x2) = p1(x1) p2(x2)

We then get

E[f1(X1) f2(X2)] =

∫ ∫
f1(x1) f2(x2) pjoint(x1, x2) dx1 dx2

=

∫ ∫
f1(x1) f2(x2) p1(x1) p2(x2) dx1 dx2

=

(∫
f1(x1) p1(x1) dx1

)(∫
f2(x2) p2(x2) dx2

)
= E[f1(X1)] E[f2(X2)]

So, if a, b are independent, Cov[a, b]=0 =⇒ V[a+b] = V[a] + V[b]

More generally, the variance of the sum of independent r.v.’s is the
sum of their variances.
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Random Number Generation

Monte Carlo simulation starts with random number generation,
usually split into 2 stages:

generation of independent uniform (0, 1) random variables

conversion into random variables with a particular distribution
(e.g. Normal)

Very important: never write your own generator, always use a
well validated generator from a reputable source

python

MATLAB

Intel MKL (Math Kernel Library)
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Uniform Random Variables
Pseudo-random generators use a deterministic (i.e. repeatable)
algorithm to generate a sequence of (apparently) random numbers on
(0, 1) interval.

What defines a good generator?
a long period – how long it takes before the sequence repeats
itself 232 is not enough (need at least 240)
various statistical tests to measure “randomness” – well
validated software will have gone through these checks

For information see
Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

Matlab information
www.mathworks.com/moler/random.pdf

Wikipedia information
en.wikipedia.org/wiki/Random number generation
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Normal Random Variables

N(0, 1) Normal random variables (mean 0, variance 1) have the
probability density function

p(x) =
1√
2π

exp(− 1
2
x2) ≡ ϕ(x)

If X is a N(0, 1) Normal random variable, then its CDF (Cumulative
Distribution Function) is defined as

P[X < x ] =

∫ x

−∞
ϕ(x) dx ≡ Φ(x)

Many maths software libraries include the function Φ(x), along with
sin, cos, exp, log and others. In python it is norm.cdf from scipy.stats
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Normal Random Variables

The Box-Muller transformation method takes two independent
uniform (0, 1) random numbers y1, y2, and defines

x1 =
√

−2 log(y1) cos(2πy2)

x2 =
√

−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random variables, and
independent:

pjoint(x1, x2) = p(x1) p(x2)
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Inverse CDF

An alternative uses the cumulative distribution function Φ(x).

If X is a N(0, 1) random variable, then Y = Φ(X ) is a uniform (0, 1)
random variable.

Hence, can start with a uniform (0, 1) random variable Y and define
X by

X = Φ−1(Y )

Φ−1(y) is approximated in software in a very similar way to other
functions like cos, sin, log, exp. In python it is norm.ppf from
scipy.stats
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Normal Random Variables
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Monte Carlo estimate
If we have a sequence fn of N independent samples of f ,
the average

f = N−1
N∑

n=1

fn.

is the Monte Carlo estimate of the expected value E[f ]

It is an unbiased estimate, since for each n,

E[fn] = E[f ] =⇒ E
[
f
]
= E[f ]

We also have

V[ f ] = N−2V

[
N∑

n=1

fn

]
= N−2

N∑
n=1

V[fn] = N−1V[f ]
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Central Limit Theorem

The Central Limit Theorem says that if the variance σ2 ≡ V[f ]
is finite, then the error

eN(f ) = f − E[f ]

is approximately Normal in distribution for large N , i.e.

eN(f ) ∼ σN−1/2 Z

where Z is a N(0, 1) random variable
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Central Limit Theorem

If Z is a N(0, 1) random variable, then due to symmetry

P[|Z | < s] = 1− P[|Z | > s] = 1− 2P[Z < −s] = 1− 2Φ(−s)

Table of probabilities for different s:

s 1.0 2.0 3.0 4.0
Prob 0.683 0.9545 0.9973 0.99994

Hence, with probability 99.7%, |eN(f )| < 3σN−1/2

=⇒ E[f ] ∈ (f − 3σN−1/2, f + 3σN−1/2)

This is the confidence interval for E[f ]
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Estimated Variance

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(
fn − f

)2
= f 2 − ( f )2

where

f = N−1
N∑

n=1

fn, f 2 = N−1
N∑

n=1

f 2n

σ̃2 is a slightly biased estimator for σ2; an unbiased estimator is

σ̂2 = (N−1)−1
N∑

n=1

(
fn − f

)2
=

N

N−1

(
f 2 − ( f )2

)
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Finance Applications

Geometric Brownian motion for a single asset:

ST = S0 exp
(
(r − 1

2
σ2)T + σWT

)
WT is N(0,T ) random variable, so can put

WT =
√
T Z

where Z is a N(0, 1) random variable.

We are then interested in the price of financial options which can be
expressed as

V = E [f (ST )]

for some “payoff” function f (S).
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Finance Applications

For the European call option,

f (S) = exp(−rT ) max(S−K , 0)

while for the European put option

f (S) = exp(−rT ) max(K−S , 0)

where K is the strike price

For numerical experiments we will consider a European call with
r=0.05, σ = 0.2, T =1, S0=110, K =100.

The analytic value is known for comparison.
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Finance Applications

MC calculation with up to 106 paths; true value = 17.663

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

N

E
rr

o
r

 

 

MC error

lower bound

upper bound

Mike Giles Intro to Monte Carlo methods 18 / 25



Finance Applications

The upper and lower bounds are given by

Mean± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies within
these bounds.
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SDEs in Finance

In computational finance, stochastic differential equations are used
to model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .
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SDEs in Finance

Stochastic differential equations are just ordinary differential
equations plus an additional random source term.

The stochastic term accounts for the uncertainty of unpredictable
day-to-day events.

The aim is not to predict exactly what will happen in the future,
but to predict the probability of a range of possible things that
might happen, and compute some averages, or the probability
of an excessive loss.

This is really what is known more generally as Uncertainty
Quantification – the finance industry has been doing it for a long
time because they have so much uncertainty.
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SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for stock
prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r) dt + σ
√
r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +
√
V S dW1

dV = λ (σ2−V ) dt + ξ
√
V dW2

with correlation ρ between dW1 and dW2
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SDEs in Finance
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Generic Problem

Stochastic differential equation with general drift and volatility terms:

dSt = a(St , t) dt + b(St , t) dWt

Wt is a Wiener variable with the properties that for any q<r<s<t,
Wt−Ws is Normally distributed with mean 0 and variance t−s,
independent of Wr−Wq.

In many finance applications, we want to compute the expected value
of an option dependent on the terminal state P(ST )

Other options depend on the average, minimum and/or maximum
over the whole time interval.
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Euler discretisation

Given the generic SDE:

dSt = a(St) dt + b(St) dWt , 0< t<T ,

the Euler discretisation with timestep ∆t is:

Ŝn+1 = Ŝn + a(Ŝn)∆t + b(Ŝn)∆Wn

where ∆Wn are independent Normal random variables with mean 0,
variance ∆t.

This will be our second model application in the course.
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