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Objective

There are many situations in which we want to estimate the average
value of some random quantity

In general, we

@ start with a random sample w (which might correspond to
a set of random numbers)

@ usually compute some intermediate quantity U

@ then evaluate a scalar output f(U)

w = U — f(U)

The objective is then to compute the expected (or average) value

E[f(U)]
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Basics

In some cases, the random inputs are discrete: X has value x; with
probability p;, and then

E[F(X)] = 3 () p

In other cases, the random inputs are continuous random variables:
X has probability density p(x) if P(X € (x,x+dx)) =~ p(x) dx
and then

BIF(X)) = [ F(x) px) dx

In either case, if a, b are random variables, and A, iz are constants,

Ela+u] = Ela]+ p
E[Xxa] = XE|[4]
Ela+ b] = Ela] + E[b]
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Basics

The variance is defined as
E|(a—E[])]

- E[a2—2aE[a]+(E[a])2]
= E[&°] - (E[a])*

Vial

It then follows that
Via+pu] = Vg
V[ha] = AV[a]
Vla+ b] = V]a] +2Cov|a, b] + V[b]

where

Covla, b) = E [ (2 — Ela]) (b~ E[8))]
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Basics
X1 and X5 are independent continuous random variables if

Pioint (X1, X2) = p1(x1) p2(x2)
We then get

E[A(X1) H(X2)] = //fl(X1) (x2) Pjoint (X1, X2) dxq dx,
= [ [ ) ) pi) pale) e

_ </ f(x) pi(x1) dxl) (/ f(x2) pa(x2) dX2)

= E[A(X)] E[f(X2)]
So, if a, b are independent, Cov|a, b]=0 = V[a+b] = V][a] + V[b]

More generally, the variance of the sum of independent r.v.'s is the

sum of their variances.
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Random Number Generation

Monte Carlo simulation starts with random number generation,
usually split into 2 stages:

@ generation of independent uniform (0, 1) random variables

@ conversion into random variables with a particular distribution
(e.g. Normal)

Very important: never write your own generator, always use a
well validated generator from a reputable source
@ python

e MATLAB
o Intel MKL (Math Kernel Library)
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Uniform Random Variables

Pseudo-random generators use a deterministic (i.e. repeatable)
algorithm to generate a sequence of (apparently) random numbers on
(0,1) interval.

What defines a good generator?
@ a long period — how long it takes before the sequence repeats
itself 232 is not enough (need at least 2%°)
@ various statistical tests to measure “randomness” — well
validated software will have gone through these checks

For information see
@ Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm
e Matlab information
www.mathworks.com/moler/random. pdf
@ Wikipedia information

en.wikipedia.org/wiki/Random number_generation
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Normal Random Variables

N(0, 1) Normal random variables (mean 0, variance 1) have the
probability density function

p(x) = —— exp(— 1) = (x)

V2r

If X is a N(0,1) Normal random variable, then its CDF (Cumulative
Distribution Function) is defined as

PIX < x] = / " b(x) dx = 0(x)

Many maths software libraries include the function ®(x), along with
sin, cos, exp, log and others. In python it is norm.cdf from scipy.stats
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Normal Random Variables

The Box-Muller transformation method takes two independent
uniform (0, 1) random numbers yy, y», and defines

x; = —2log(y1) cos(2my,)
Xp = —2log(y1) sin(2my»)

It can be proved that x; and x, are N(0, 1) random variables, and
independent:

Pioint (X1, X2) = p(x1) p(x2)

Mike Giles Intro to Monte Carlo methods 9/25



Inverse CDF

An alternative uses the cumulative distribution function ®(x).

If X is a N(0,1) random variable, then Y = ®(X) is a uniform (0, 1)
random variable.

Hence, can start with a uniform (0, 1) random variable Y and define
X by
X = oY)

®~1(y) is approximated in software in a very similar way to other
functions like cos, sin, log, exp. In python it is norm.ppf from
scipy.stats
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Normal Random Variables
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Monte Carlo estimate

If we have a sequence f, of N independent samples of f,
the average

N
F=N"') f
n=1
is the Monte Carlo estimate of the expected value E[f]

It is an unbiased estimate, since for each n,
E[f,] =E[f] = E[f]=E[f]

We also have

N

2 M

n=1

V[f]=N2V

N3 I = N
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Central Limit Theorem

The Central Limit Theorem says that if the variance 0% = V|[f]
is finite, then the error

en(f) = f — E[f]
is approximately Normal in distribution for large N, i.e.
en(f) ~oNY2Z7

where Z is a N(0, 1) random variable
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Central Limit Theorem
If Zis a N(0,1) random variable, then due to symmetry

P[Z| <s]=1-P[|Z| >s]=1—-2P[Z < —s] =1 — 2&(—s)

Table of probabilities for different s:

s 1.0 2.0 3.0 4.0
Prob | 0.683 | 0.9545 | 0.9973 | 0.99994

Hence, with probability 99.7%, |en(f)| < 30 N~1/2
—  E[f] € (f —30N"Y2 f +30N"1/?)
This is the confidence interval for E[f]
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Estimated Variance

Given N samples, the empirical variance is

N
2N (T =P (7)
n=1
where N N
F=NT'> £  P=N'YF
n=1 n=1
o2 is a slightly biased estimator for o%; an unbiased estimator is

52 = (N—1)" XN: (f,—7)" = % (7 - (7))

n=1
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Finance Applications

Geometric Brownian motion for a single asset:

St =50 exp ((r - %az)T + 0o WT)

W+ is N(0, T) random variable, so can put
Wr=VTZ

where Z is a N(0, 1) random variable.

We are then interested in the price of financial options which can be
expressed as
V = E[f(57)]

for some “payoff” function f(S).
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Finance Applications
For the European call option,

f(S) =exp(—rT) max(S—K,0)
while for the European put option

f(S) =exp(—rT) max(K—S,0)

where K is the strike price

For numerical experiments we will consider a European call with
r=0.05, 0=02 T=1, 5=110, K=100.

The analytic value is known for comparison.
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Finance Applications

MC calculation with up to 10° paths; true value = 17.663
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Finance Applications

The upper and lower bounds are given by

Mean =+ 3—0

N

so more than a 99.7% probability that the true value lies within
these bounds.
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SDEs in Finance

In computational finance, stochastic differential equations are used
to model the behaviour of

@ stocks

@ interest rates
exchange rates
weather

o
o
@ electricity/gas demand
@ crude oil prices

o
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SDEs in Finance

Stochastic differential equations are just ordinary differential
equations plus an additional random source term.

The stochastic term accounts for the uncertainty of unpredictable
day-to-day events.

The aim is not to predict exactly what will happen in the future,
but to predict the probability of a range of possible things that
might happen, and compute some averages, or the probability
of an excessive loss.

This is really what is known more generally as Uncertainty

Quantification — the finance industry has been doing it for a long
time because they have so much uncertainty.
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SDEs in Finance

Examples:

@ Geometric Brownian motion (Black-Scholes model for stock
prices)
dS=rSdt+oSdW

@ Cox-Ingersoll-Ross model (interest rates)
dr =a(b—r)dt+o+/rdW
@ Heston stochastic volatility model (stock prices)

dS = rSdt+VVSdw,
AV = A(o®=V)dt+£VV dW,

with correlation p between dW; and dW,
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SDEs in Finance

multiple Geometric Brownian Motion paths

asset value

years
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Generic Problem

Stochastic differential equation with general drift and volatility terms:
dSt - a(St, t) dt + b(st, t) th

W, is a Wiener variable with the properties that for any g<r<s<t,
W;— W; is Normally distributed with mean 0 and variance t—s,
independent of W,—W,.

In many finance applications, we want to compute the expected value
of an option dependent on the terminal state P(St)

Other options depend on the average, minimum and/or maximum
over the whole time interval.
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Euler discretisation

Given the generic SDE:
dst - a(St) dt —+ b(St) th, O< t< 7_7
the Euler discretisation with timestep At is:

Sni1 = Sp+ a(Sp) At + b(5,) AW,

where AW, are independent Normal random variables with mean 0,
variance At.

This will be our second model application in the course.
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