
Notes on DAG software

Mike Giles

December 30, 2013

1 User guide

From the user’s point of view, there are just two functions, a host routine
dag setup and an inline device function dag new task.

int* dag setup(int ntasks, int *input ptrs, int *input deps)
This host routine is used to define a DAG by specifying the input dependen-
cies in standard CSR (compressed sparse row) format. It returns a pointer to
a GPU device array which the user must pass through to the CUDA kernel.

ntasks number of tasks in the DAG

input ptrs array of length ntasks+1; the first ntasks elements give the
starting index in input deps for each task, and the final ele-
ment gives the length of the array input deps (which is also
the index of the first element after the end of input deps)

input deps input dependencies for tasks

int dag new task(int* dag, int task id)
This device function updates the internal DAG info in response to the task
which has just been completed, and then determines the next task to be exe-
cuted. It returns 1 if there is a new task, and 0 if there are none remaining.

dag array pointer generated by dag setup

task id on input, the ID of the previous task executed (-1 if there
was none); on output, the ID of the next task to be executed.
IMPORTANT: this must be a shared memory variable

1



Table 1: Input dependencies (tasks which must be executed earlier because
they supply the inputs) and output dependencies (tasks which must be exe-
cuted later because they rely on the outputs) for the test application.

input output
tasks dependencies dependencies
0 2
1 3, 4
2 0 4, 5
3 1 5
4 1, 2
5 2, 3

It is best to look at the test application to fully understand the inputs
for dag setup, and the use of the two routines. The input dependencies of
its DAG are given in the second column of Table 1. In the code, these input
dependencies are represented using the standard CSR format by:

int input ptrs[] = {0, 0, 0, 1, 2, 4, 6};
int input deps[] = {0, 1, 1, 2, 2, 3};
For example, input ptrs[4]=2 and input ptrs[5]=4 so input deps[2],

input deps[3] give the input dependencies 1, 2 for task 4.

The host routine dag setup returns the device array pointer dag which is
then passed into the user’s kernel, my dag kernel. Note that in my dag kernel

the variable t which holds the task ID is declared to be a shared memory
variable, and it is initialised to -1. The main loop in the kernel is very simple,
with the while loop continuing for as long as dag new task returns the value
1 to indicate that there is another task to be executed.

NOTE: I could easily modify dag setup so that it uses the output depen-
dencies rather than the input dependencies, or alternatively accepts a list of
dependencies (the “edges” of the graph) each defined by a pair of tasks (the
“vertices” of the graph).

2



2 Implementation

When there are nt tasks and ndeps dependencies, the dag array has the
following components:

• dag[0] – number of tasks nt

• dag[1] – atomic counter for tasks launched so far

• dag[2] – atomic counter for next empty scheduled task slot

• dag[3]-dag[nt+2] – list of scheduled tasks

• dag[nt+3]-dag[2*nt+2] – unsatisfied input dependencies

• dag[2*nt+3]-dag[3*nt+3] – index for output dependencies

• dag[3*nt+4]-dag[3*nt+3+ndeps] – list of output dependencies

The basic idea is that tasks are scheduled for execution once all of their
input dependencies have been satisfied. Some tasks have no input depen-
dencies, and so they are immediately put into the scheduled task list by the
initialisation in dag setup. For the others, the number of unsatisfied input
dependencies is decremented by one each time one of their input tasks is
completed, and when it reaches zero the task is scheduled.

The output dependencies are stored in dag in the standard CSR format,
with an index for each task into the list of output dependencies.

The steps in the host routine dag setup are:

• create a list of dependencies (expressed as pairs of tasks) and sort by
input task to obtain an ordered list of output dependencies.

• initialise atomic counters to zero, and set all elements of the scheduled
task list to -1 to indicate there are no scheduled tasks

• for each task, set the number of unsatisfied input dependencies, and if
it is zero add the task to the scheduled task list and increment dag[2]

• set the output dependency info in dag

• transfer the DAG info to the GPU and return the pointer to the GPU
device array

3



The first part of the device function dag new task is executed only if
there has been a previous task executed, in which case it loops over the
task’s output dependencies and for each one

• decrements the input dependency counter

• if it is now zero, it schedules the task for execution, and increments
dag[2]

The second part of dag new task increments the atomic counter dag[2]
to find the next task for execution in the scheduled task list. If there is a
task, it checks whether it has a valid non-negative ID. If it doesn’t, then it
means that a task has not yet been scheduled in that slot, and so it loops
until one is scheduled. It then sets the task ID, and returns a 0 or 1 value
depending whether or not there is a task to be executed.

4


