
A generic ADI solver for 3D PDEs
in computational finance

Mike Giles

December 15, 2008

1 Model problem

The generic form of many 3D PDE’s in computational finance is

∂V

∂t
+ µ1

∂V

∂x1

+ µ2
∂V

∂x2

+ µ3
∂V

∂x3

+ σ2
1

∂2V

∂x2
1

+ σ2
2

∂2V

∂x2
2

+ σ2
3

∂2V

∂x2
3

+β1σ2σ3
∂2V

∂x2∂x3

+ β2σ3σ1
∂2V

∂x3∂x1

+ β3σ1σ2
∂2V

∂x1∂x2

= s V

which is solved backwards in time from some final conditions V (x1, x2, x3, T ) until
the initial time t = 0.

Using a standard ADI approach, each timestep can be approximated with
Crank-Nicolson time-marching, and the spatial terms can be factored to give
discrete equations of the form

A3A2A1∆V = LV n

with ∆V = V n−1 − V n. Here L is the approximation to the spatial operator, and
the matrices A1, A2, A3 each define a set of tri-diagonal equations along lines in
the three respective directions.

Thus, the CUDA implementation requires 4 phases:

1. Calculate the r.h.s. R = LV n and the matrices A1, A2, A3;

2. Solve A3Q = R;

3. Solve A2P = Q;

4. Solve A1∆V = P and add ∆V to V n.

1



Figure 1: Partition of 2D grid into blocks with overlapping halos

2 Approach for phase 1

As with a Jacobi iteration model problem reported previously, phase 1 is handled
through each CUDA block processing a BX×BY ×K column of the grid. Figure
1 illustrates the 2D partitioning in the i-j plane. This assumes that BX×BY is
much smaller than I×J so that this approach gives enough blocks to keep all of
the multiprocessors busy. Because of the i ± 1 and j ± 1 references, each block
has to read in the values at the neighbouring nodes (often referred to as “halo”
nodes) on all sides.

Because of the limited amount of shared memory per multiprocessor, each
block works with 3 k-planes of data at a time, so there is an outer loop over k,
inside which the implementation a) loads in plane k + 1, b) calculates and stores
new values for plane k.

In optimising the performance, the key concerns are to:

• ensure coalesced global loads/stores as far as possible to minimise the com-
munication time;

• ensure enough overlapping between active warps and/or active blocks to
hide the latency on global loads/stores;

• minimise the number of integer operations required for array indexing.

To achieve the highest bandwidth between the global graphics memory and
the multiprocessors, it is necessary for memory transfers to be coalesced, which
requires that the 16 threads in a half-warp access a contiguous vector of data
elements, with the offset for the beginning of the vector being a multiple of 16.

2



Figure 2: Layout of a block of size 32×8 plus halo

This is achieved to a large extent by using the layout indicated in Figure 2
for a block of size 32×8. The thin “pencils” indicate correctly aligned vectors
of length 16, which requires in general that the block size in the i-direction is
a multiple of 16, and one uses the CUDA routine cudaMallocPitch to allocate
memory with padding to ensure that each new row starts at the beginning of one
of the vectors. The interior of the block can be read into shared memory by a
number of coalesced loads, as can the y-halos above and below. The x-halos on
the right and left have to be read in with non-coalesced loads as they require
individual elements on different vectors.

3 Approach for phases 2, 3, 4

Unlike the situation in standard distributed-memory MPI implementations of ADI
algorithms, since all of the data is held in the device memory between each phase,
we are entirely free to use a different data partitioning for each phase.

Accordingly, the simplest approach is to assign each tridiagonal solution to a
single thread, so when solving in one direction the domain is partitioned in the
other two directions.

Full memory coalescence is achieved for the tri-diagonal solves in the y and z
directions; the current implementation does not achieve memory coalescence when
solving in the x-direction.

4 Prototype generic solver

One of the objectives of this exercise was to see the extent to which a generic
solver could be written to enable users to obtain the benefit of NVIDIA GPUs
without requiring any CUDA programming.

In the demo program, the file generic 3d test.cu is the only one which has to
be written by the user. In this file, the user supplies a routine model which calcu-
lates for any given coordinates the parameters µ, σ, β, s required by the solver. The
user’s program also calls the routine generic 3d GPU which performs the GPU
calculation, giving it through the argument list information on the computational
grid to be used, the timestep, etc.

3



5 Future developments

Although the current program has achieved its original goals of achieving good
performance (factor 25x speedup using a 9800GT card) in a generic solver which
can be used without any knowledge of CUDA programming, there are a number
of features which need to be added:

• Improve the memory coalescence in the tridiagonal solution in the x-direction;

• Add support for non-uniform grids;

• Add a Craig-Sneyd correction to improve the accuracy to second order;

• Add an option for Rannacher time-stepping, initially using two or more
timesteps of Backward Euler time integration to achieve a smoother solution;

• Add options for other boundary conditions in addition to the current b.c. which
assumes zero second derivative normal to each boundary;

• Add the capability of handling American and Bermudan options;

• Write some proper documentation.

4


