Lecture 7: tackling a new application

Prof. Mike Giles
mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford e-Research Centre
Initial planning

1) Has it been done before?

- check CUDA SDK examples
- check CUDA user forums
- check gpucomputing.net
- check with Google
Initial planning

2) Where is the parallelism?

- efficient CUDA execution needs thousands of threads
- usually obvious, but if not
 - go back to 1)
 - talk to an expert – they love a challenge
 - go for a long walk
- may need to re-consider the mathematical algorithm being used, and instead use one which is more naturally parallel – but this should be a last resort
Initial planning

Sometimes you need to think about “the bigger picture”

Already considered 3D finite difference example:

- lots of grid nodes so lots of inherent parallelism
- even for ADI method, a grid of 128^3 has 128^2 tri-diagonal solutions to be performed in parallel so OK to assign each one to a single thread
- but what if we have a 2D or even 1D problem to solve?
Initial planning

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:
- different initial data
- different model constants

This adds to the available parallelism
Initial planning

2D:

- 64KB of shared memory == 16K `float` so grid of 64^2
could be held within shared memory
- one kernel for entire calculation
- each block handles a separate 2D problem; almost
certainly just one block per SM
- for bigger 2D problems, would need to split each one
 across more than one block
- separate kernel for each timestep / iteration
Initial planning

1D:
- can certainly hold entire 1D problem within shared memory of one SM
- maybe best to use a separate block for each 1D problem, and have multiple blocks executing concurrently on each SM
- but for implicit time-marching need to solve single tri-diagonal system in parallel – how?
Initial planning

Parallel Cyclic Reduction (PCR): starting from

\[a_n x_{n-1} + x_n + c_n x_{n+1} = d_n, \quad n = 0, \ldots N-1 \]

with \(a_m \equiv 0 \) for \(m < 0, m \geq N \), subtract \(a_n \) times row \(n-1 \), and \(c_n \) times row \(n+1 \) and re-normalise to get

\[a^*_n x_{n-2} + x_n + c^*_n x_{n+2} = d^*_n \]

Repeating this \(\log_2 N \) times gives the value for \(x_n \) (since \(x_{n-N} \equiv 0, x_{n+N} \equiv 0 \)) and each step can be done in parallel.

(Practical 7 implements it using shared memory, but if \(N \leq 32 \) so it fits in a single warp then on Kepler hardware it can be implemented using shuffles.)
Initial planning

3) Break the algorithm down into its constituent pieces

- each will probably lead to its own kernels
- do your pieces relate to the 7 dwarfs?
- re-check literature for each piece – sometimes the same algorithm component may appear in widely different applications
- check whether there are existing libraries which may be helpful
Initial planning

4) Is there a problem with warp divergence?

- GPU efficiency can be completely undermined if there are lots of divergent branches
- may need to implement carefully – lecture 3 example:
 - processing a long list of elements where, depending on run-time values, a few involve expensive computation:
 - first process list to build two sub-lists of “simple” and “expensive” elements
 - then process two sub-lists separately

- … or again seek expert help
5) Is there a problem with host <-> device bandwidth?

- usually best to move whole application onto GPU, so not limited by PCIe bandwidth (12GB/s)
- occasionally, OK to keep main application on the host and just off-load compute-intensive bits
- dense linear algebra is a good off-load example; data is $O(N^2)$ but compute is $O(N^3)$ so fine if N is large enough
Heart modelling

Heart modelling is another interesting example:

- keep PDE modelling (physiology, electrical field) on the CPU
- do computationally-intensive cellular chemistry on GPU (naturally parallel)
- minimal data interchange each timestep
Initial planning

6) is the application compute-intensive or data-intensive?

- break-even point is roughly 40 operations (FP and integer) for each 32-bit device memory access (assuming full cache line utilisation)

- good to do a back-of-the-envelope estimate early on before coding \Rightarrow changes approach to implementation
Initial planning

If compute-intensive:
- don’t worry (too much) about cache efficiency
- minimise integer index operations – surprisingly costly (this changes with Volta which has separate integer units)
- if using double precision, think whether it’s needed

If data-intensive:
- ensure efficient cache use – may require extra coding
- may be better to re-compute some quantities rather than fetching them from device memory
- if using double precision, think whether it’s needed
Initial planning

Need to think about how data will be used by threads, and therefore where it should be held:

- registers (private data)
- shared memory (for shared access)
- device memory (for big arrays)
- constant arrays (for global constants)
- “local” arrays (efficiently cached)
Initial planning

If you think you may need to use “exotic” features like atomic locks:

- look for SDK examples
- write some trivial little test problems of your own
- check you really understand how they work

Never use a new feature for the first time on a real problem!
Initial planning

Read NVIDIA documentation on performance optimisation:
- section 5 of CUDA Programming Guide
- CUDA C Best Practices Guide
- Kepler Tuning Guide
- Maxwell Tuning Guide
- Pascal Tuning Guide
Programming and debugging

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps particularly important for GPU / parallel computing because debugging can be hard!

Above all, you don’t want to be sitting in front of a 50,000 line code, producing lots of wrong results (very quickly!) with no clue where to look for the problem
Programming and debugging

- plan carefully, and discuss with an expert if possible
- code slowly, ideally with a colleague, to avoid mistakes but still expect to make mistakes!
- code in a modular way as far as possible, thinking how to validate each module individually
- build-in self-testing, to check that things which ought to be true, really are true

(In my current project I have a flag \texttt{OP_DIAGS}; the larger the value the more self-testing the code does)

- overall, should have a clear debugging strategy to identify existence of errors, and then find the cause
- includes a sequence of test cases of increasing difficulty, testing out more and more of the code
Programming and debugging

When working with shared memory, be careful to think about thread synchronisation.

Very important!

Forgetting a

__syncthreads();

may produce errors which are unpredictable / rare — the worst kind.

Also, make sure all threads reach the synchronisation point — otherwise could get deadlock.

Reminder: can use cuda-memcheck --tool racecheck to check for race condition
Programming and debugging

In developing laplace3d, my approach was to

- first write CPU code for validation
- next check/debug CUDA code with printf statements as needed, with different grid sizes:
 - grid equal to 1 block with 1 warp (to check basics)
 - grid equal to 1 block and 2 warps (to check synchronisation)
 - grid smaller than 1 block (to check correct treatment of threads outside the grid)
 - grid with 2 blocks
- then turn on all compiler optimisations
Performance improvement

The size of the thread blocks can have a big effect on performance:

- often hard to predict optimal size \textit{a priori}
- optimal size can also vary significantly on different hardware

optimal size for \texttt{laplace3d} with a 128^3 grid was
- 128×2 on Fermi generation
- 32×4 on later Kepler generation

at the time, the size of the change was a surprise

we’re not talking about just 1-2\% improvement, can easily be a factor $2 \times$ by changing block size
A number of numerical libraries (e.g. FFTW, ATLAS) now feature auto-tuning – optimal implementation parameters are determined when the library is installed on the specific hardware.

I think this is going to be important for GPU programming:

- write parameterised code
- use optimisation (possibly brute force exhaustive search) to find the optimal parameters
- an Oxford student, Ben Spencer, developed a simple flexible automated system to do this – can try it in one of the mini-projects
Performance improvement

Use profiling to understand the application performance:
- where is the application spending most time?
- how much data is being transferred?
- are there lots of cache misses?
- there are a number of on-chip counters can provide this kind of information

The CUDA profiler is great
- provides lots of information (a bit daunting at first)
- gives hints on improving performance
Going further

In some cases, a single GPU is not sufficient

Shared-memory option:
- single system with up to 16 GPUs
- single process with a separate host thread for each GPU, or use just one thread and switch between GPUs
- can also transfer data directly between GPUs

Distributed-memory option:
- a cluster, with each node having 1 or 2 GPUs
- MPI message-passing, with separate process for each GPU
Going further

Keep an eye on what is happening with new GPUs:

- **Pascal came out in 2016:**
 - P100 for HPC with great double precision
 - 16GB HBM2 memory → more memory bandwidth
 - NVlink → 4×20GB/s links per GPU

- **Volta came out in 2017/18:**
 - V100 for HPC
 - 32GB HBM2 memory
 - roughly 50% faster than P100 in compute, memory bandwidth, and 80% faster with NVlink2
 - special “tensor cores” for machine learning (16-bit multiplication + 32-bit addition for matrix-matrix multiplication) – much faster for TensorFlow
Going further

Two GPU systems:

- NVIDIA DGX-1 Deep Learning server
 - 8 NVIDIA GV100 GPUs, each with 32GB HBM2
 - 2×20-core Intel Xeons (E5-2698 v4 2.2 GHz)
 - 512 GB DDR4 memory, 8TB SSD
 - 150GB/s NVlink interconnect between the GPUs

- NVIDIA DGX-2 Deep Learning server
 - 16 NVIDIA GV100 GPUs, each with 32GB HBM2
 - 2×24-core Intel Xeons (Platinum 8168)
 - 1.5 TB DDR4 memory, 32TB SSD
 - NVSwitch interconnect between the GPUs
Joint Academic Data science Endeavour

- funded by EPSRC under national Tier 2 initiative
- 22 DGX-1 systems (with older Pascal P100s)
- 50 / 30 / 20 split in intended use between machine learning / molecular dynamics / other
- Oxford led the consortium bid, but system sited at STFC Daresbury and run by STFC / Atos
- in operation for a year now

There is also a GPU system at Cambridge.
Going further

Intel:
- latest “Skylake” CPU architectures
 - some chips have built-in GPU, purely for graphics
 - 4–22 cores, each with a 256-bit AVX vector unit
 - one or two 512-bit AVX-512 vector units per core
 - on new high-end Xeons
- Xeon Phi architecture
 - Intel’s competitor to GPUs, but now abandoned

ARM:
- already designed OpenCL GPUs for smart-phones
- new 64-bit Cavium Thunder-X2 has up to 54 cores, being used in Bristol’s new “Isambard” Cray supercomputer
Going further

My current software assessment:

- CUDA is dominant in HPC, because of
 - ease-of-use
 - NVIDIA dominance of hardware, with big sales in games/VR, machine learning, supercomputing
 - extensive library support
 - support for many different languages (FORTRAN, Python, R, MATLAB, etc.)
 - extensive eco-system of tools

- OpenCL is the multi-platform standard, but currently only used for low-end mass-market applications
 - computer games
 - HD video codecs
Final words

- it continues to be an exciting time for HPC
- the fun will wear off, and the challenging coding will remain – computer science objective should be to simplify this for application developers through
 - libraries
 - domain-specific high-level languages
 - code transformation
 - better auto-vectorising compilers
- confident prediction: GPUs and other accelerators / vector units will be dominant in HPC for next 5-10 years, so it’s worth your effort to re-design and re-implement your algorithms