Profiling & Tuning
Applications

CUDA Course
Istvan Reguly

ldentifying Performance Limiters

* CPU: Setup, data movement

* GPU: Bandwidth, compute or latency limited
* Number of instructions for every byte moved
* Algorithmic analysis gives a good estimate

* Actual code is likely different
* Instructions for loop control, pointer math, etc.
* Memory access patterns

* How to find out?
¢ Use the profiler (quick, but approximate)
¢ Use source code modification (takes more work)

Introduction

* Why is my application running slow?
* Work it out on paper
* Instrument code

* Profile it

* NVIDIA Visual Profiler
* Works with CUDA, needs some tweaks to work with OpenCL

* nvprof — command line tool, can be used with MPI
applications

Analysis with Source Code Modification

* Time memory-only and math-only versions
* Not so easy for kernels with data-dependent control
flow
* Good to estimate time spent on accessing memory or
executing instructions
* Shows whether kernel is memory or compute
bound

* Put an “if” statement depending on kernel
argument around math/mem instructions
* Use dynamic shared memory to get the same occupancy

Analysis with Source Code Modification Example scenarios

time

mem math full mem math full mem math full mem math full

Memory-bound Math-bound Well balanced Mem and latency
bound

Good overlap Good overlap Good overlap

between mem- between mem- between mem- Poor overlap,

math. Latency is math. math. latency is a

not a problem problem

NVIDIA Visual Profiler Meet the test setup I EARSESE

4 | 16| 26| 16| 4

1
7 (26|41 26| 7

* Collects metrics and events during execution * 2D gaussian blur with a 5x5 stencil 273
4 (16| 26| 16| 4

* Calls to the CUDA API * 4096”2 grid

* Overall application: 114|741

__global__ void stencil_vO(float *input, float *output,

* Memory transfers i) ; i
int sizex, int sizey) {

e Kernel launches

e Kernels const int x = blockIdx.x*blockDim.x + threadIdx.x + 2;
const int y = blockIdx.y*blockDim.y + threadIdx.y + 2;
* Occupancy if ((x >= sizex-2) || (y >= sizey-2)) return;
. - float accum = 0.0f;
* Computation efficiency for (int i = -2: i < 2: i++) {
* Memory bandwidth efficiency for (int j = -2; j < 2; j++) {

o accum += filter[i+2][j+2]*input[sizey*(y+]j) +
* Source-level profiling (x+i)1;
}

* Requires deterministic execution! tout o1 o] 1273 of
output[sizey*y+x] = accum .0f;

Meet the test setup Interactive demo of tuning process

* NVIDIA K40
* GK1108B
* SM3.5
* ECCon
* Graphics clocks at 745MHz, Memory clocks at 3004MHz

* CUDAS.0

nvcc profiling_lecture.cu -02 -arch=sm_35 -I. -lineinfo -DIT=0

Launch a profiling session First look

eoe X\ NVIDIA Viual prfir
Vew window fun_help
—
ﬂwsem u -\
) X\ Create New Session 01985 025 02035 02055 02075 0z1s o225 o5 02175 0225 ‘
Executable Properties hread 2256754464
Set executable properties Drver AR
 profiing Overhead (N I
01 esha kdom
-] ey
LS focal Jo|||FEEeE snEciEE. 7 wencpy 001
P - = compute
Toolkit/Script: |CUDA Toolkit 9.0 (/panfs/pan0l/system/software/arcus-b/gpu/cuda/9.0.176/bin/) Manage... ,v",m,“mm
e — ¥ 0.0% memset (0)
File: | Ja.out Browse... = Streams.

| — Defout Vemepy HioD [syncl
Working directory: |Enter working directory [optional] Browse... T. .

| imeline |
Arguments: |Enter command-line arguments | — ‘

»

Profile child processes hd | rocess "a.out” (22638) “
. . ~ Duration
Environment: Namgl Vel Add = 220416 ms 226

e ath | Analysis results

Determineyaur sppicatien's overal GPU
usage. This anaiyis equies an applicatin
meline 50 yaur sppicotion wil e un once o
Colect 1115 nek aready avaiabie .

< Back Next > Cancel Finish 4y Examine Individual Kemels

o

Capartunity for Improvement. Ths analss
Tequires ulzation daca from every kel s0
Yo

emance crtcal and tha have e most \

< — —— -

= Thread 2355184976
- Runtime API
- Driver API

T Profiling Overhead Y T
=] (0] Tesla ka0m
[=I Context 1 (CUDA)

The Timeline

0.095s 0ls 0.105s 01ls

"a.out" (87239)

cudaMemcpy cudaDeviceSynchronize

= 57 MemCpy (HtoD) Memcpy HtoD [sync]

[= compute [] stencil_vo(float*, float*, int, int
- 95.6% stencil vo(...
- 4.4% memset (0) []

[=| streams

- Default]

Memcpy HtoD [sync] stencil_vO(float*, float*, int, int

Host side | | MemCpy |
API calls

Examine Individual Kernels

Result

i Kernel Optimization Priorities
The following kernels are ordered by optimization importance based on execution time and achieved occupancy. Optimization of higher ranked kernel:
the list) is more likely to improve performance compared to lower ranked kernels.

Rank | Description

100 [1 kernel i float*, float*, int

Lists all kernels sorted by total execution time: the higher the rank the higher the
impact of optimisation on overall performance

Initial unoptimised (v0) 8.25ms

Analysis

| Guided |

y B Console"tm Settings"fm Details| B Conscle} T Settings} Cal Detailsl
i Export PDF Report |4/ Reset All [y Analyze All
VoteAnyKernell(unsigned int*, unsigned int*, int)
The guided analysis system walks you through the various — m
analysis stages to help you understand the optimization Kernel Performance Limiter Ll Q
opportunities in your application. Once you become familiar
with the optimization process, you can explore the individual
analysis stages in an unguided mode. When optimizing your Kernel Latency Ll Q
application it is important to fully utilize the compute and
data movement capabilities of the GPU. To do this you should
look at your application's overall GPU usage as well as the Kernel Compute iy Q
performance of individual kernels.
Kernel Memo LI
[y, Examine GPU Usage | ‘ ik iy Q
Determine your application's overall GPU usage. This analysis
requires an application timeline. so your application will be run ‘ Global Memory Access Pattern K ‘
once to collect it if it is not already available.
[l Examine Individual Kernels | ‘ Shared Memory Access Pattern) | & ‘
Determine which kernels are the most performance critical and that
have the most opportunity for improvement. This analysis requires Divergent Execution]]
utilization data from every kernel, so your application will be run
once to collect that data if it is not already available
Kernel Profile Al
[y, Delete Existing Analysis Information | ‘ iy ©
If the application has changed since the last analysis then the Application
existing analysis information may be stale and should be deleted
before continuing.
[, Switch to unguided analysis |

Utilisation — Warp Issue Efficiency
& Pipe Utilisation

Results

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla k
utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic or memory o
Achieved compute throughput andfor memory bandwidth below 60% of peak typically indicates latency issues.

Both below 60%
-> Latency!
70%
_g 60% I Memory operations
] o B Control-flow operations
% o Il Arithmetic operations
5 40% Il Memory (Load/Store Instruction U...
30%
20%
10% /
Compute ore Instruction Unit)
Most of it is Let’s investigate

memory ops

Latency analysis Memory Bandwidth analysis

Result:

i Memory Bandwidth And Utilization

o Analys's b Details & Console Se The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The

2 Exoort PO Report table also shows the utilization of each memory type relative to the maximum throughput supported by the mermory. More...
v iy, Expo 0
EHEXP P Transactions Bandwidth Utilization
Stall Reasons L1/shared Memory
_ Local Loads 0 0B/s
pipe other Local Stores 0 0Bys |
busy synchronization Shared Loads 0 0B/s
texture Shared Stores 0 08/s
Global Load 40894464 | 248.782GBfs | g h
he fi i lyzi individual constant memo S > < Ll cache
The first step in analyzing an individua ry Global Stores 2621440 | 16585GBfs |

dependency

kernel is to determine if the performance of

- Atomic 0 08/s _~ t d
the kernel is bqunded py comp_utatlon. :XGCUtéon Li/Shared Total 43515904 | 265.367 GBJs ‘ = = not used...
memory bandwidth, or instruction/memory ependency Medium Max
latency The results at ngh:(indicate Ehat instruction L2 Cache
the performance of kernel "stencil_v0" is fetch L1 Reads 62914560 | 248.782 GBJs
v L1 Writes 4194304 16.585 GBJs |
memory latency memory Texture Reads 0 08/s
throttle Atomic 0 0B/s |
[, Perform Latency Analysis Noncoherent Reads 0 08/s
Total 67108864 | 265.367 GBfs | - 1
idle Low Medium High Max
his kern 3
so you should first perform instruction and nnf ted Texture Cache
memory latency analysis to determine how it is selecte Reads 0 08/s r 1
limiting performance. dle Low High Max
Device Memory
i Perform Compute Analysis | Reads 3756909 | 14,856 GB/s
Writes 2904475 11.485 GBYs |
iy Perform Memory Bandwidth Analysis | Memory throttle -> perform BW anaIy5|s Total see13s4 | 26341G8fs || T o v
dle ow Medium gh
ECC Overhead 2451525 9.694 GB/s

Investigate further... Iteration 1 —turn on L1

90%
[Analysis 33 Details El Console Settings . Quick & easy Step.
= Results -
El “ BT .. :
EES | Slreset Al i anabee al] 5 e Turn on L1 cache by using
N N N =] | ® Global Memory Alignment and Access Pattern =
stencil_vO(float*, float*, int, int) = N S0% X dl =
Memory bandwidth is used most efficiently when each global memory load and store has proper alignment ant k] - ptan -alicm=cCca
Kernel Performance Limiter [/ Optimization: Select each entry below to open the source code to a global load or store within the kernel with 3
access pattern. For each load or store improve the alignment and access pattern of the memory access.
‘ Kernel Latency [V]
” Kernel Compute 9 ~ Line /File rofiling_lecture.cu - /magiles/irequly/cuda_course o
‘ Kernel Memory P 25 lobal Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transacti Compute Memon e Instruction Unit]
25 lobal Load L2 Transactions/Access = 6, Ideal Transactions/Access = 4 [3145728 L2 transacti v
25 lobal Load L2 Transactions/Access = 6, Ideal Transactions/Access = 4 [3145728 L2 transacti < Line /File | profiling_lecture.cu - /home/magiles/irequly/cuda_course
25 lobal Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transacti 25 Global Load L2 Transactions/Access = 20, Ideal Transactions/Access = 4 [10485760 L2 transactions for 524288 total e
‘ Shared Memory Access Pattern [V] 25 lobal Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transacti 25 Global Load L2 Transactions/Access = 18, Ideal Transactions/Access = 4 [9437184 L2 transactions for 524288 total exe
25 lobal Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transacti 25 Global Load L2 Transactions/Access = 20, Ideal Transactions/Access = 4 [10485760 L2 transactions for 524288 total e
‘ Divergent Execution 9| 25 lobal Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transacti 25 Global Load L2 Transactions/Access = 18, Ideal Transactions/Access = 4 [9437184 L2 transactions for 524288 total ex¢
Memory unit is utilized, but Global Load efficiency became even worse: 20.5%
6-8 transactions per access — something Global memory load efficiency 53.3%
is wrong with how we access memory L2 hit rate 96.7% Initial unoptimised (v0) 8.25ms

Enable L1 6.57ms

Cache line utilization

8

L1 cache disabled:
-> 32B transactions

L 4
L 4

32 bytes (8 floats)

nit of tran ion
Unit of transactio Min 4, Max 8 transactions

Cache line utilization

32

128 bytes (32 floats)
Unit of transaction

L1 cache enabled:
-> 128B transactions
->4*32Bto L2

Min 4, Max 8 transactions

Cache line utilization

8

L 4

L 4

128 bytes (32 floats)
Unit of transaction

L1 cache enabled:
-> 128B transactions
->4*32Bto L2

Min 16, Max 32 transactions

Each time a transaction requires more
than 1 128B cache line: re-issue

lteration 2 — 32x2 blocks

Utilization

Memory utilization decreased 10%
Performance almost doubles
Global Load Efficiency 50.8%

Compute Memory (Load/Store Instruction Unit)

< Line /File | profiling_lecture.cu - fhome/mailes/ireguly/cuda_course

25
25
25

lobal Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transactions for 524288 total exec

Global Load L2 Transactions/Access = 7.5, Ideal Transactions/Access = 4 [3932160 L2 transactions for 524288 total ex

Global Load L2 Transactions/Access = 8, Ideal Transactions/Access = 4 [4194304 L2 transactions for 524288 total exec

Initial unoptimised (v0) 8.25ms
Enable L1 6.57ms
Blocksize 3.4ms

Key takeaway Latency analysis

Stall Reasons

* Latency/Bandwidth bound memary

dependency

texture
synchronization
other

execution
dependency

* Inefficient use of memory system and bandwidth

* Symptoms: pve
usy
* Lots of transactions per request (low load efficiency) constant instructon
hd Goa|: I;:Fet:ted

¢ Use the whole cache line
* Improve memory access patterns (coalescing)

memory
* What to do: throttle ¥ Occupancy i
* Align data, change block size, change data layout Achieved & 4L7%
. . Theoretical i 50%
* Use shared memory/shuffles to load efficiently Ur:::r e i

Latency analysis Latency analysis

Optimization: Increase the number of threads in each block to increase the number of warps that can execute on each SM. More...

‘Var\able ‘ Achieved ‘ Theoretical Device Limit Frid Size:[128,2048,1] (262144 blocks)Block Size: [31
Occupancy Per SM
Active Blocks 16 16 I ——
0 2 4 6 8 10 12 14 16 .
RS SAGD - ‘ @ e ——,————— Increase the block size so
0 9 18 27 36 45 54 a3 b tiVe at
Active Threads 1024 2048 *Fﬂ more warp.s can be ac
0 512 02 2048 the same time.
Occupancy 41.7% 50% 100% . - e .
0% 25% 50% 75% 100%|
W
Sl Kepler:
)
Threads/Block 64 1024 —_—— o 7 To2a Max 16 blocks per SM
]
Warps/Block 2 ‘ 32 _————— Max 2048 threads per SM
Block Limit 32 16 S o
0 2 4 6 8 10 12 14 16

Occupancy — using all “slots”
Issue Latency of Next
instruction instruction instruction

Warp 1 \ IIIIIIIIIIIIVIIII
wero2 [HHHHNEEEEEER RN
waros [HEHENEEEEEER"REEEN

waro s [HHHENEREEEERER NN

Increase block size to 32x4

Scheduler

lllustrative only, reality is a bit more complex...

Key takeaway

* Latency bound - low occupancy
* Unused cycles, exposed latency
* Symptoms:
* High execution/memory dependency, low occupancy

* Goal:
* Better utilise cycles by: having more warps

* What to do:

* Determine occupancy limiter (registers, block size,
shared memory) and vary it

Utilization

lteration 3 — 32x4 blocks

Up 10%

Il Memory operations

I Control-flow operations

I Arithmetic operations

Il Memory (Load/Store Instruction U...

¥ Occupancy

Theoretical
Compute Memory (Load/Store Instruction Unit)

Initial unoptimised (v0) 8.25ms
Enable L1 6.57ms
Blocksize 3.4ms

Blocksize 2 2.36ms

Improving memory bandwidth

* L1 is fast, but a bit wasteful (128B loads)
* 8 transactions on average (minimum would be 4)

* Load/Store pipe stressed
* Any way to reduce the load?

Full occupancy

100%

* Texture cache
* Dedicated pipeline
* 32 byte loads
* const __restrict__ *

 __ldg()

Utilization Level

lteration 4 — texture cache

100%

80% High

50% Med

40%

= h I .
Com emory (Texture) Load/Store Arithmetic

Control-Flow Texture

Utilization

Texture Cache

Reads 65536000 |1,382.851 GB/s | S ‘
Idle Low Medium High Max
Initial unoptimised (v0) 8.25ms
Blocksize 2 2.36ms
Texture cache 1.53ms

Compute analysis

Stall Reasons

execution
dependency

Instruction mix

instruction
fetch

not

memory selected
dependency memory
throttle

constant

Execution Count (% of total)

pipe
busy
other

synchronization

FP32 FP64 Integer Control-Flow Load/store

Compute utilization could be higher (~78%)

Lots of Integer & memory instructions, fewer FP
Integer ops have lower throughput than FP

Try to amortize the cost: increase compute per byte

Key takeaway

* Bandwidth bound — Load/Store Unit
* LSU overutilised
* Symptoms:

* LSU pipe utilisation high, others low

* Goal:
* Better spread the load between other pipes: use TEX

* What to do:
* Read read-only data through the texture cache
* const __restrict__or __Idg()

Instruction Level Parallelism

Issue Latency of Next
instruction instruction instruction

\ W
wro1 | ENEEEEEEEEEE EEEE

* Remember, GPU is in-order:
a=b+c a=b+c

d=a+e d=e+f
* Second instruction cannot be issued before first

¢ But it can be issued before the first finishes — if there is no
dependency

* Applies to memory instructions too — latency much
higher (counts towards stall reasons)

Instruction Level Parallelism

for (j=0;j<2;j++) {
accO+=filter[j]l*input[x+j];
accl+=filter[jl*input[x+j+1];
}
tmp=input [x+0]
tmp=input [x+0+1]
accO += filter[0]1X&mp
+= filter[0Q]*tmp

for (j=0;j<2;j++)
acc+=filter[jl*input[x+j];

tmp=input [x+0]
acc += filter[0Q]*tmp
tmp=input[x+1] tmp=input[x+1]
tmp=input [x+1+1]
accO += filter[1l]*tmp
accl += filter[1]*tmp

acc += filter[1]*tmp

#pragma unroll can help ILP
Create two accumulators
Or...

Process 2 points per thread
Bonus data re-use (register caching)

Key takeaway

* Latency bound - low instruction level parallelism
* Unused cycles, exposed latency
* Symptoms:

* High execution dependency, one “pipe” saturated

e Goal:

* Better utilise cycles by: increasing parallel work per
thread

* What to do:

* Increase ILP by having more independent work, e.g.
more than 1 output value per thread

* #pragma unroll

Utilization

lteration 5 — 2 points per thread

Execution Count (% of total)

11

Compute Memory (Texture Instruction Unit) FP32 FP64 Integer Control-Flow Load/store

Initial unoptimised (v0) 8.25ms
Texture cache 1.53ms
2 points 1.07ms

Iteration 6 — 4 points per thread

Execution Count (% of total)

168 GB/s device BW

FP32 FP64 Integer Control-Flow Load/store
Initial unoptimised (v0) 8.25ms
2 points 1.07ms

4 points 0.95ms

Checklist

* cudaDeviceSynchronize()
* Most API calls (e.g. kernel launch) are asynchronous
* Overhead when launching kernels
* Get rid of cudaDeviceSynchronize() to hide this latency
* Timing: events or callbacks CUDA 5.0+
* Cache config 16/48 or 48/16 kB L1/shared (default
is 48k shared!) on Kepler
* cudaSetDeviceCacheConfig

* cudaFuncSetCacheConfig
* Check if shared memory usage is a limiting factor

Verbose compile

* Add —Xptxas=-v

ptxasinfo : Compiling entry function '_Z10fem_kernelPiS_' for 'sm_20'
ptxas info : Function properties for _Z10fem_kernelPiS_

856 bytes stack frame, 980 bytes spill stores, 1040 bytes spill loads
ptxas info : Used 63 registers, 96 bytes cmem[0]

* Check profiler figures for best occupancy

Checklist

* Occupancy
* Max 2048 threads or 16 blocks per SM on Kepler

* Limited amount of registers and shared memory
* Max 255registers/thread, rest is spilled to global memory
* You can explicitly limit it (-maxregcount=xx)
* 48kB/16kB shared/L1: don’t forget to set it

* Visual Profiler tells you what is the limiting factor

* In some cases though, it is faster if you don’t maximise it
(see Volkov paper) -> Autotuning!

Checklist

* Precision mix (e.g. 1.0 vs 1.0f) — cuobjdump
* F2F.F64.F32 (6* the cost of a multiply)
* |[EEE standard: always convert to higher precision
* Integer multiplications are now expensive (6*)

* cudaMemcpy
* Introduces explicit synchronisation, high latency

* Is it necessary?
* May be cheaper to launch a kernel which immediately exits
* Could it be asynchronous? (Pin the memory!)

Auto-tuning

* Several parameters that affect performance
* Block size
* Amount of work per block
* Application specific

* Which combination performs the best?

* Auto-tuning with Flamingo
* #define/read the sizes, recompile/rerun combinations

Autotuning Case Study

107
2
el
=
o
3]
5]
1]
~ -3
Q10 'k
£
3=
=]
=]
~ _.| —8—atmosmodd (2.63)
g A& —6— crankseg_2 (14.89)
. a-" . - B -shallow_waterl (2.00)
107 S - © - webbase—1M (1.76)
- a —&—cant (8.01)
T | |
12 4 8 16 32

Number of cooperating threads

Auto-tuning Case Study

* Thread cooperation on sparse matrix-vector
product
* Multiple threads doing partial dot product on the row
* Reduction in shared memory

* Auto-tune for different matrices
* Difficult to predict caching behavior

* Develop a heuristic for cooperation vs. average row
length

Conclusions

* |terative approach to improving a code’s
performance
* |dentify hotspot
* Find performance limiter, understand why it’s an issue
* Improve your code
* Repeat

* Managed to achieve a 8.5x speedup

* Shown how NVVP guides us and helps understand
what the code does

* There is more it can show...

References: C. Angerer, J. Demouth, “CUDA Optimization with NVIDIA
Nsight Eclipse Edition”, GTC 2015

Rapid code development
with Thrust

Example

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

#include <cstdlib>

int main(void)

{
// generate 32M random numbers on the host
thrust: :host_vector<int> h_vec(32 << 20);
thrust::generateCh_vec.begin(), h_vec.end(), rand);

// transfer data to the device
thrust: :device_vector<int> d_vec = h_vec;

// sort data on the device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

return @;

Thrust

Library (STL)
* Vector containers
* Algorithms

Comes with the toolkit

Productivity

* Containers
* host_vector
* device_vector

* Memory management
* Allocation, deallocation
* Transfers

* Algorithm selection
* Location is implicit

Open High-Level Parallel Algorithms Library
Parallel Analog of the C++ Standard Template

Productive way to use CUDA

/7 allocate host vector with two elements
thrust: :host_vector<int> h_vec(2);

// copy host data to device memory
thrust: :device_vector<int> d_vec = h_vec;

// write device values from the host
d_vec[0] = 27;
d_vec[1] = 13;

// read device values from the host

int sum = d_vec[0] + d_vec[1];

/7 invoke algorithm on device

thrust: :sort(d_vec.begin(), d_vec.end());

Productivity Portability

* Implementations
* CUDA C/C++

* Large set of algorithms * Threading Building Blocks

g T T — ; Openip

* CPU, GPU reduce Sum of a sequence * Interoperable with anything CUDA based

find First position of a value in a sequence (] Recompile
° FIeXi b|e mismatch First position where two sequences
differ

* G+t templates count Number of instances of a value ° M|X baCkends

* User-defined types inner_product | Dot product of two sequences

* User-defined operators [merge Merge two sorted sequences nvec -DTHRUST_DEVICE_SYSTEM=THRUST_HOST_SYSTEM_OMP

thrust: :omp: :vector<float> my_omp_vec(100);
thrust::cuda: :vector<float> my_cuda_vec(100);

Interoperability Thrust

* Thrust containers and raw pointers * Constantly evolving

* Use container in CUDA kernel . . .
_ _ * Reliable — comes with the toolkit, tested every day
thrust::device_vector<int> d_vec(...);

cuda_kernel<<<N, 128>>>(some_argument_d, with unit tests

thrust::raw_pointer_cast(&d_vec[0]));
* Performance — specialised implementations for

* Use a device pointer in thrust algorithms (not a vector different hardware

though, no begin(), end(), resize() etc.) * Extensible — allocators, back-ends, etc.

int *dev_ptr;
cudamalloc((void**)&dev_ptr, 100*sizeof(int));

thrust::device_ptr<int> dev_ptr_thrust(dev_ptr);
thrust::fil11(dev_ptr_thrust, dev_ptr_thrust+100, 0);

Thrust documentation

http://thrust.github.io/doc/modules.html

