
Profiling & Tuning
Applications

CUDA Course
István Reguly

Introduction

• Why is my application running slow?
• Work it out on paper
• Instrument code
• Profile it
• NVIDIA Visual Profiler

• Works with CUDA, needs some tweaks to work with OpenCL
• nvprof – command line tool, can be used with MPI

applications

Identifying Performance Limiters

• CPU: Setup, data movement
• GPU: Bandwidth, compute or latency limited
• Number of instructions for every byte moved
• Algorithmic analysis gives a good estimate
• Actual code is likely different
• Instructions for loop control, pointer math, etc.
• Memory access patterns
• How to find out?

• Use the profiler (quick, but approximate)
• Use source code modification (takes more work)

Analysis with Source Code Modification

• Time memory-only and math-only versions
• Not so easy for kernels with data-dependent control

flow
• Good to estimate time spent on accessing memory or

executing instructions
• Shows whether kernel is memory or compute

bound
• Put an “if” statement depending on kernel

argument around math/mem instructions
• Use dynamic shared memory to get the same occupancy

Analysis with Source Code Modification
__global__ void kernel(float *a) {
int idx = threadIdx.x + blockDim.x+blockIdx.x;
float my_a;
my_a = a[idx];
for (int i =0; i < 100; i++) my_a = sinf(my_a+i*3.14f);
a[idx] = my_a;
}

__global__ void kernel(float *a, int prof) {
int idx = threadIdx.x + blockDim.x+blockIdx.x;
float my_a;
if (prof & 1) my_a = a[idx];
if (prof & 2)

for (int i =0; i < 100; i++) my_a =
sinf(my_a+i*3.14f);
if (prof & 1) a[idx] = my_a;
}

Example scenarios

tim
e

mem math full

Memory-bound

Good overlap
between mem-
math. Latency is
not a problem

mem math full

Math-bound

Good overlap
between mem-
math.

mem math full

Well balanced

Good overlap
between mem-
math.

mem math full

Mem and latency
bound

Poor overlap,
latency is a
problem

NVIDIA Visual Profiler

• Collects metrics and events during execution
• Calls to the CUDA API
• Overall application:

• Memory transfers
• Kernel launches

• Kernels
• Occupancy
• Computation efficiency
• Memory bandwidth efficiency

• Source-level profiling
• Requires deterministic execution!

Meet the test setup

• 2D gaussian blur with a 5x5 stencil
• 4096^2 grid

__global__ void stencil_v0(float *input, float *output,
int sizex, int sizey) {

const int x = blockIdx.x*blockDim.x + threadIdx.x + 2;
const int y = blockIdx.y*blockDim.y + threadIdx.y + 2;
if ((x >= sizex-2) || (y >= sizey-2)) return;
float accum = 0.0f;
for (int i = -2; i < 2; i++) {

for (int j = -2; j < 2; j++) {
accum += filter[i+2][j+2]*input[sizey*(y+j) +

(x+i)];
}

}
output[sizey*y+x] = accum/273.0f;
}

Meet the test setup

• NVIDIA K40
• GK110B
• SM 3.5
• ECC on
• Graphics clocks at 745MHz, Memory clocks at 3004MHz

• CUDA 9.0
nvcc profiling_lecture.cu -O2 -arch=sm_35 -I. –lineinfo –DIT=0

Interactive demo of tuning process

Launch a profiling session

Timeline

Summary

Analysis results

First look

Guide

The Timeline

Host side
API calls

MemCpy Compute

Analysis
Guided Unguided

Examine Individual Kernels

Lists all kernels sorted by total execution time: the higher the rank the higher the
impact of optimisation on overall performance

Initial unoptimised (v0) 8.25ms

Utilisation – Warp Issue Efficiency
& Pipe Utilisation

Both below 60%
-> Latency!

Let’s investigateMost of it is
memory ops

Latency analysis

Memory throttle -> perform BW analysis

Memory Bandwidth analysis

L1 cache
not used…

Global memory load efficiency 53.3%
L2 hit rate 96.7%

Investigate further…
Unguided

6-8 transactions per access – something
is wrong with how we access memory

Memory unit is utilized, but Global Load efficiency became even worse: 20.5%

Iteration 1 – turn on L1

Initial unoptimised (v0) 8.25ms
Enable L1 6.57ms

Quick & easy step:
Turn on L1 cache by using
-Xptxas -dlcm=ca

Cache line utilization

8

8

…..

32 bytes (8 floats)
L1 cache disabled:
-> 32B transactions
Min 4, Max 8 transactionsUnit of transaction

Cache line utilization

8

8

…..

128 bytes (32 floats) L1 cache enabled:
-> 128B transactions
-> 4*32B to L2
Min 16, Max 32 transactions

Each time a transaction requires more
than 1 128B cache line: re-issue

Unit of transaction

Cache line utilization

2

32

…..

128 bytes (32 floats) L1 cache enabled:
-> 128B transactions
-> 4*32B to L2
Min 4, Max 8 transactions

Unit of transaction

Iteration 2 – 32x2 blocks

Initial unoptimised (v0) 8.25ms
Enable L1 6.57ms
Blocksize 3.4ms

Memory utilization decreased 10%
Performance almost doubles
Global Load Efficiency 50.8%

Key takeaway

• Latency/Bandwidth bound
• Inefficient use of memory system and bandwidth
• Symptoms:
• Lots of transactions per request (low load efficiency)

• Goal:
• Use the whole cache line
• Improve memory access patterns (coalescing)

• What to do:
• Align data, change block size, change data layout
• Use shared memory/shuffles to load efficiently

Latency analysis

Latency analysis Latency analysis

Increase the block size so
more warps can be active at
the same time.

Kepler:
Max 16 blocks per SM
Max 2048 threads per SM

Occupancy – using all “slots”

Increase block size to 32x4

Issue
instruction

Next
instruction

Latency of
instruction

Warp 1

Warp 2

Warp 3

Warp 4

Scheduler

Illustrative only, reality is a bit more complex…

Iteration 3 – 32x4 blocks

Initial unoptimised (v0) 8.25ms
Enable L1 6.57ms
Blocksize 3.4ms
Blocksize 2 2.36ms

Up 10%
Full occupancy

Key takeaway

• Latency bound – low occupancy
• Unused cycles, exposed latency
• Symptoms:
• High execution/memory dependency, low occupancy

• Goal:
• Better utilise cycles by: having more warps

• What to do:
• Determine occupancy limiter (registers, block size,

shared memory) and vary it

Improving memory bandwidth

• L1 is fast, but a bit wasteful (128B loads)

• 8 transactions on average (minimum would be 4)

• Load/Store pipe stressed

• Any way to reduce the load?

• Texture cache

• Dedicated pipeline

• 32 byte loads

• const __restrict__ *

• __ldg()

Iteration 4 – texture cache

Initial unoptimised (v0) 8.25ms
Blocksize 2 2.36ms
Texture cache 1.53ms

Key takeaway

• Bandwidth bound – Load/Store Unit
• LSU overutilised
• Symptoms:
• LSU pipe utilisation high, others low

• Goal:
• Better spread the load between other pipes: use TEX

• What to do:
• Read read-only data through the texture cache
• const __restrict__ or __ldg()

Compute utilization could be higher (~78%)
Lots of Integer & memory instructions, fewer FP
Integer ops have lower throughput than FP
Try to amortize the cost: increase compute per byte

Load/store

Compute analysis
Instruction mix

Instruction Level Parallelism

• Remember, GPU is in-order:

• Second instruction cannot be issued before first
• But it can be issued before the first finishes – if there is no

dependency
• Applies to memory instructions too – latency much

higher (counts towards stall reasons)

Issue
instruction

Next
instruction

Latency of
instruction

Warp 1

a=b+c

d=a+e

a=b+c

d=e+f

Instruction Level Parallelism

for (j=0;j<2;j++)
acc+=filter[j]*input[x+j];

tmp=input[x+0]

acc += filter[0]*tmp

tmp=input[x+1]

acc += filter[1]*tmp

for (j=0;j<2;j++) {
acc0+=filter[j]*input[x+j];
acc1+=filter[j]*input[x+j+1];
}

tmp=input[x+0]

acc0 += filter[0]*tmp

tmp=input[x+1]

acc0 += filter[1]*tmp

tmp=input[x+0+1]

acc1 += filter[0]*tmp

tmp=input[x+1+1]

acc1 += filter[1]*tmp

#pragma unroll can help ILP
Create two accumulators
Or…

Process 2 points per thread
Bonus data re-use (register caching)

Iteration 5 – 2 points per thread

Initial unoptimised (v0) 8.25ms
Texture cache 1.53ms
2 points 1.07ms

Load/store

Key takeaway

• Latency bound – low instruction level parallelism
• Unused cycles, exposed latency
• Symptoms:
• High execution dependency, one “pipe” saturated

• Goal:
• Better utilise cycles by: increasing parallel work per

thread
• What to do:
• Increase ILP by having more independent work, e.g.

more than 1 output value per thread
• #pragma unroll

168 GB/s device BW

Iteration 6 – 4 points per thread

Load/store

Initial unoptimised (v0) 8.25ms
2 points 1.07ms
4 points 0.95ms

Checklist

• cudaDeviceSynchronize()
• Most API calls (e.g. kernel launch) are asynchronous
• Overhead when launching kernels
• Get rid of cudaDeviceSynchronize() to hide this latency
• Timing: events or callbacks CUDA 5.0+

• Cache config 16/48 or 48/16 kB L1/shared (default
is 48k shared!) on Kepler
• cudaSetDeviceCacheConfig
• cudaFuncSetCacheConfig
• Check if shared memory usage is a limiting factor

Checklist
• Occupancy

• Max 2048 threads or 16 blocks per SM on Kepler

• Limited amount of registers and shared memory

• Max 255registers/thread, rest is spilled to global memory

• You can explicitly limit it (-maxregcount=xx)

• 48kB/16kB shared/L1: don’t forget to set it

• Visual Profiler tells you what is the limiting factor

• In some cases though, it is faster if you don’t maximise it
(see Volkov paper) -> Autotuning!

Verbose compile

• Add –Xptxas=-v

• Check profiler figures for best occupancy

ptxas info : Compiling entry function '_Z10fem_kernelPiS_' for 'sm_20'
ptxas info : Function properties for _Z10fem_kernelPiS_

856 bytes stack frame, 980 bytes spill stores, 1040 bytes spill loads
ptxas info : Used 63 registers, 96 bytes cmem[0]

Checklist

• Precision mix (e.g. 1.0 vs 1.0f) – cuobjdump
• F2F.F64.F32 (6* the cost of a multiply)
• IEEE standard: always convert to higher precision
• Integer multiplications are now expensive (6*)

• cudaMemcpy
• Introduces explicit synchronisation, high latency
• Is it necessary?

• May be cheaper to launch a kernel which immediately exits

• Could it be asynchronous? (Pin the memory!)

Auto-tuning

• Several parameters that affect performance
• Block size
• Amount of work per block
• Application specific

• Which combination performs the best?
• Auto-tuning with Flamingo
• #define/read the sizes, recompile/rerun combinations

Auto-tuning Case Study

• Thread cooperation on sparse matrix-vector
product
• Multiple threads doing partial dot product on the row
• Reduction in shared memory

• Auto-tune for different matrices
• Difficult to predict caching behavior
• Develop a heuristic for cooperation vs. average row

length

Autotuning Case Study

1 2 4 8 16 32

10
−4

10
−3

10
−2

Number of cooperating threads

R
u

n
 t

im
e

(s
ec

o
n

d
s)

atmosmodd (2.63)

crankseg_2 (14.89)

shallow_water1 (2.00)

webbase−1M (1.76)

cant (8.01)

Conclusions
• Iterative approach to improving a code’s

performance
• Identify hotspot
• Find performance limiter, understand why it’s an issue
• Improve your code
• Repeat

• Managed to achieve a 8.5x speedup
• Shown how NVVP guides us and helps understand

what the code does
• There is more it can show…

References: C. Angerer, J. Demouth, “CUDA Optimization with NVIDIA
Nsight Eclipse Edition”, GTC 2015

Rapid code development
with Thrust

Thrust

• Open High-Level Parallel Algorithms Library
• Parallel Analog of the C++ Standard Template

Library (STL)
• Vector containers
• Algorithms

• Comes with the toolkit
• Productive way to use CUDA

Example Productivity

• Containers
• host_vector
• device_vector

• Memory management
• Allocation, deallocation
• Transfers

• Algorithm selection
• Location is implicit

Productivity

• Large set of algorithms
• ~100 functions
• CPU, GPU

• Flexible
• C++ templates
• User-defined types
• User-defined operators

Algorithm Description

reduce Sum of a sequence

find First position of a value in a sequence

mismatch First position where two sequences
differ

count Number of instances of a value

inner_product Dot product of two sequences

merge Merge two sorted sequences

Portability
• Implementations
• CUDA C/C++
• Threading Building Blocks
• OpenMP
• Interoperable with anything CUDA based

• Recompile

• Mix backends

nvcc -DTHRUST_DEVICE_SYSTEM=THRUST_HOST_SYSTEM_OMP

Interoperability

• Thrust containers and raw pointers
• Use container in CUDA kernel

• Use a device pointer in thrust algorithms (not a vector
though, no begin(), end(), resize() etc.)

thrust::device_vector<int> d_vec(...);
cuda_kernel<<<N, 128>>>(some_argument_d,

thrust::raw_pointer_cast(&d_vec[0]));

int *dev_ptr;
cudaMalloc((void**)&dev_ptr, 100*sizeof(int));

thrust::device_ptr<int> dev_ptr_thrust(dev_ptr);
thrust::fill(dev_ptr_thrust, dev_ptr_thrust+100, 0);

Thrust

• Constantly evolving
• Reliable – comes with the toolkit, tested every day

with unit tests
• Performance – specialised implementations for

different hardware
• Extensible – allocators, back-ends, etc.

Thrust documentation
http://thrust.github.io/doc/modules.html

