
Signal processing at scale -
GPUs enabling next generation radio telescopes

W. Armour
Associate Director

Oxford e-Research Centre, University of Oxford.

28th July 2017



Cutting Edge Radio Telescopes

MeetKAT -Sixty four, 13.5m dishes. A pathfinder for the Square Kilometre Array

Five hundred meter Aperture Spherical Telescope (FAST) - 500m radio telescope

Australian Square Kilometre Array Pathfinder (ASKAP) - 36 antennas each 12 meters in diameter

Murchison Widefield Array (MWA) -Fixed 128 array of 16-element dual-polarisation antennas

LOFAR (LOw Frequency ARray) - Low frequency array of dipole antennas

Canadian Hydrogen Intensity Mapping Experiment (CHIME) - five 100 x 20 meter cylinders



What is SKA?



What is SKA?

• SKA? 

• Square Kilometre Array

• What?

• SKA is a radio telescope

• Where? 

• SKA will be built in South Africa and 
Australia



What is SKA?

Three types of telescope:

• Dishes
• Mid frequency aperture arrays
• Low frequency aperture arrays 



What is SKA?

Wide frequency range from 50MHz to 20GHz – wavelengths 15 mm to 6 m.

Image source Wikipedia. Authors: NASA (original); SVG by Mysid

Great for lots of different science!



What is SKA?

Phase delays are applied to 
signals from individual 
antennas

Allowing many different 
observing beams to be placed 
on the sky at the same time



An example of a proposed SKA 

configuration

200km

A wide range of 
baselines 

Core

Station

Slide courtesy of Anne Trefethen



SKA Science?



SKA science

• How do galaxies evolve
– What is dark energy?

• Tests of General Relativity
– Was Einstein correct?

• Probing the cosmic dawn 
– How did stars form?

• The cradle of life 
– Are we alone?



SKA time-domain science

Pulsars –
Magnetized, 
rotating 
neutron stars. 
Emit  
synchrotron 
radiation from 
the poles, e.g. 
Crab Nebula

Quasars – Energetic region of a distant 
galactic core, surrounding a 
supermassive black hole

RRATS – Rotating Radio Transients. 
Short, bright irregular radio pulses. 
Discovered 2006 

Hester et al.

NASA and J. Bahcall (IAS)

Of order of 10 found in survey data. Very 
high DM implies extra-galactic(?) Unknown 
origin.



Size and Scale

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
Author:Lsmpascal

SUN

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
https://commons.wikimedia.org/wiki/User:Lsmpascal


Size and Scale

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
Author:Lsmpascal

Earth

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
https://commons.wikimedia.org/wiki/User:Lsmpascal


Pulsars

1-3 Solar Masses
10-20 Km Diameter
mS to S Pulse Period

PULSAR!



Pulsars

Image: Amherst College

Magnetic field is offset from rotational axis

• Act as cosmic lighthouses

• Extremely periodic

• Make great clocks!



Fast Radio Bursts

Credit: FRB110220 Dan Thornton (Manchester)

Extremely Bright

Extremely Dispersed 

=> Extra Galactic ?



SKA Signal 
Processing



SKA time-domain science - TDT

International team led by Oxford and Manchester



Time domain signal processing

search for fast radio 

bursts

output for further 

processing

receive and 

dedisperse data

search for periodic 

signals

Slide courtesy of Aris Karastergiou



SKA time-domain data rates

• 2000 beams on the sky
• 20,000 samples per second
• 4096 frequency channels per sample
• 4x8 bits per sample 

Most Costly computational operations in data processing pipeline…

De-dispersion ~ O(ndms * nbeams * nsamps * nchans )
Acceleration search ~ O(ndms * nbeams * nsamps * nacc * log(nsamps) * 1/tobs )

160GB/s of relevant data to analyse -
Approximately equal to analysing 50 hrs of HDTV 

every second. 



SKA Compute Requirements

De-dispersion 
~ O(ndms * nbeams * nsamps * nchans )
= 6120 x 2000 x 20,000 x 4096
= 1,002,700,800,000,000
=> PetaFlop

Acceleration search 
~ O(ndms * nbeams * nsamps * nacc * log(nsamps) * 1/tobs )
= (6120 x 2000 x 8,388,608 x 96 x 23) / 534
=424,550,278,500,674
=> ½ PetaFlop

http://www.olcf.ornl.gov/titan/



SKA Time Domain Challenges

Data is too vast to store on site 
- Should we transport it of site?

Data is too vast to transport 
- Processing must happen close to the telescope

We don’t want to loose data
- Processing must happen in real-time

How do we put a computer capable of processing big-data streams 
in real-time in the desert

Connectivity, Power, Operation???



Real-time considerations for the SKA

We need advances in both computational and mathematical algorithms to 
achieve our goal of real-time processing.

“There’s more than one way to skin a cat…”



Advances in technology and Algorithms 
are needed

GPU programming using CUDA.

Low level CPU/Phi with Vector Intrinsics.

Multi/Many-core using OpenMP.

OpenCL for FPGAs.

MPI.

Numerical analysis.

Developing parallel algorithms.

Mathematics and Statistics expertise.

Modelling and Simulation.



Technological 



Work with leading HPC Companies…

GPUs – NVIDIA  P100 Pascal GPUs

Intel Xeon Phi

FPGAs – Stratix 5 and 10

.



Our first prototype hardware for SKA

Kate Steele, Jim Roache, Noam Rosen, Guy, Luigi… (Lenovo)
Caroline Bradley, Georgina Ellis (OCF)  Jeremy Purches, Kate Clark (NVIDIA)

512 GB DDR4 RAM
5x SATA SSD drives

2x Intel Xeon E5-2650L
1x NVIDIA P100 GPU

1x Arria 10 FPGA 

Hybrid GPU/FPGA compute node – Lenovo x3650 Server
De-risked by using COTs technology 

Uses low power CPUs, 1.2V DDR4 RAM and SSDs to try to reduce power consumption 



Also consider up-and-coming Technologies…

NVIDIA - TK1 / TX1 / TX2
Intel – Edison/Galileo
Arduino enabled: “open source” Hardware

TX2 + PCIe 3.0 switch with 
2x GPUs attached



Oxford Projects: ARTEMIS and Astro-Accelerate

Many-core accelerated modules to enable real-
time time-domain data processing. 

Support multiple architectures such as GPUs, 
FPGA, CPUs and Xeon Phi. 

End-to-end signal processing pipeline 
for FRBs.

Real-time data management and 
movement. 

Real-time discovery of events as they 
happen.

ARTEMIS: aris.karastergiou@astro.ox.ac.uk
Astro-Accelerate: wes.armour@oerc.ox.ac.uk

mailto:aris.karastergiou@astro.ox.ac.uk
mailto:wes.armour@oerc.ox.ac.uk


Foundational



Case study 1: Fourier Domain Acceleration Searching 
for the SKA

FDAS: Sofia Dimoudi (Oxford)
FFT:     Karel Adámek (Oxford)



The Double Pulsar

Attribution: Michael Kramer (Jodrell Bank Observatory, University of Manchester)

Extreme gravitational fields causes pulsars 
to be locked in highly accelerated orbits



Gravitational Waves 

http://www.eso.org/public/videos/eso1319a/ Author: ESO/L. Calçada

http://www.eso.org/public/videos/eso1319a/


Fourier Domain Acceleration Search 

Ransom, Eikenberry, Middleditch: AJ, Vol 24, Issue 3, pp. 1788-1809

Signals from binary systems can 
undergo a Doppler shift due to 
accelerated motion 
experienced over the orbital 
period.

Much like the sound of a siren 
approaching you and then 
speeding away. 

This can be corrected by using 
a matched filter approach.



FDAS example

The two plots illustrate the effect of orbital 
acceleration.

The first plot shows a signal without 
acceleration, the signal is centred on its 
frequency and lies on the f-dot template 
corresponding to zero acceleration.

The second plot shows a signal with a 
frequency derivative, and has drifted from 
the original frequency by a number of bins. 

S. Dimoudi et.al. Submitted to ApJS.



FDAS on GPUs 

Use overlap-save algorithm to 
compute cyclic N-point 
convolution of template with 
signal segment.

Avoids the need for 
synchronisation because 
contaminated ends of 
convolved data are discarded.

S. Dimoudi et.al. Submitted to ApJS.



FDAS on GPUs using cuFFT

Using cuFFT means many 
transactions to device memory 
on the GPU (represented by 
grey arrows on the right of the 
diagram).

This causes the computation to 
be limited by global memory 
bandwidth.

So is slow. 

S. Dimoudi et.al. Submitted to ApJS.
PRACTICAL 5



Eliminating the bandwidth bottleneck

By writing our own custom I/FFT codes to work on shared memory we can 
perform  the FFT, pointwise multiply and scale, IFFT and edge rejection all 

in one kernel. 

S. Dimoudi et.al. Submitted to ApJS.



Performance gains on a P100

Results from our tests on a Tesla P100. In the SKA region of interest –
signal length 223, template size of 512 (solid line) and no interbinning (left graph) 

We achieve approximately a 2x speed increase (3x on K80). 

S. Dimoudi et.al. Submitted to ApJS.



Case study 2: Real-time de-dispersion for the SKA

M. Giles (Oxford)
Karel Adámek (Oxford)
Jan Novotný (Opava)
Byron Sinclair (Altera)
Andrew Ling (Altera)
Kate Clark (NVIDIA)
Tim Lanfear (NVIDIA)



What is dispersion

Chromatic dispersion is 
something we are all 
familiar with. A good 
example of this is when 
white light passes through a 
prism. 

Group velocity dispersion occurs when 

pulse of light is spread in time due to its 

different frequency components 

travelling at different velocities. An 

example of this is when a pulse of light 

travels along an optical fibre.



Dispersion by the ISM

The interstellar medium (ISM) is the matter that exists between stars in a galaxy.

In warm regions of the ISM (~8000K) electrons are free and so can interact with and effect radio waves that 
pass through it.

Haffner et al. 2003



The Dispersion Measure – DM



Experimental data…

Most of the measured signals live in the noise of the apparatus.f

t



Experimental data…

Most of the measured signals live in the noise of the apparatus.

Hence frequency channels have to be “folded”

f

t



De-dispersion…

Every DM is calculated to see if a signal is present.

• In a blind search for a signal many different dispersion measures are 
calculated.

• This results in many data points in the (f,t) domain being used 

multiple times for different dispersion searches.

• This allows for data reuse in a GPU algorithm.

t

f

All of this must happen in real-time i.e. The time taken to process all of our data 
must not exceed the time taken to collect it



ALTERA OpenCL

Byron Sinclair and Andrew Ling – ALTERA
Jayantha Roy, Prabu Thiagaraj and Ben Stappers (Manchester). 

• Worked on a SKA test case using OpenCL on Altera FPGAs.

• OpenCL code is a new implementation based on brute force pseudo-code.

• Code is portable between generations and families of FPGAs.



De-dispersion on NVIDIA GPUs

Produced algorithms for three generations of GPU

• Fermi generation: L1 Cache and Shared memory (with Mike Giles UOx)

• Kepler generation: Texture Cache, Shared memory (with Kate Clark and Tim 

Lanfear - NVIDIA).

• Maxwell generation: SIMD in word (with Kate Clark - NVIDIA).

• Pascal generation: Mixed precision instructions & Energy Efficiency (with Kate 

Clark - NVIDIA).



Intel algorithms

• Use OpenMP to spread work across cores.

• Use vector intrinsics to make use of the AVX units.

• Threads and vectors are arranged so that we gain maximum data re-use in L1 
cache.

• Each thread processes 4 dispersion measures (data blocks in L1 cache) and each 
AVX vector processes 8 or 16 time samples depending on whether we have Ivy 
Bridge (AVX256) or Xeon Phi (AVX512).

With Karel Adámek and Jan Novotný (Opava).



DDTR on 
CPUs and Phi



CPU code snippet…

• Process vectors of time, holding DM constant (no blocking).

// Declare a local array AVX vectors 

__m256 xmm[16]

// Loop over half of the 16 avx registers

for(i = 0; i < 8; i++) {

// Unaligned load of 8 floats into AVX register i

xmm[i] = _mm256_loadu_ps(input_buffer+shift+(i*SIMDWIDTH));

// Add the loaded (f,t) values = xmm[i], to the accumulator register xmm[i+8]

xmm[i + 8] = _mm256_add_ps(xmm[i], xmm[i + 8]);

}



Xeon Phi modifications

Xeon Phi Optimisation

No unaligned load so two cache lines must  be loaded and unpacked 

zmm[i] = _mm256_loadu_ps(input_buffer + (shift+(i*SIMDWIDTH)));

In CPU code must be changed for…

zmm[i] = _mm512_loadunpacklo_ps(xmm[i], input_buffer + (shift+(i*SIMDWIDTH));                
zmm[i] = _mm512_loadunpackhi_ps(xmm[i], input_buffer + shift+(i*SIMDWIDTH))+16);



De-dispersion for the SKA using Phi

Wes Armour, Mike Giles, Karel Adámek and Jan Novotný.  

Xeon Phi Optimisation

Intel results



Intel results

Code/Hardware Fraction of real-time

2x E5-2680 Serial (one core) 0.007 

2x E5-2680 OpenMP 0.050

2x E5-2680 OpenMP+Intrinsics 0.300

Xeon Phi 5110P OpenMP+Intrinsics 0.388

Here we see Phi is about 1.3x faster than two high end Xeons.
Because we wrote parameterised code with instrinsic instructions the port from 

the CPU to Phi was relatively painless.



DDTR on 
NVIDIA GPUs



Fermi L1 cache algorithm

DM

t

Thread block 
sizeRegion of DM space processed by 

thread block

• Each thread processes a varying 
number of time samples for a 
constant dispersion measure.

• This ensures frequency - time data is 
loaded into fast L1 cache.

• Using registers ensures very quick 
memory access.

Processing several DM’s per thread…



Optimising the parameterisation

The GPU block size of the new algorithm can take on any size that is integer multiples of 

the size of a “data chunk”…

DM DM

t
t

PRACTICAL 3



Fermi shared memory algorithm

Each dispersion measure for a given frequency channel needs a shifted time value.

f

t

Constant DM’s with varying time.

In practice a thread will process 
multiple time samples and a 
threadblock will also process 
neighboring DM trials to increase 
data reuse.

Incrementing all of the registers at 
every frequency step ensures a high 
data reuse of the stored frequency 
time data in the L1 cache or shared 
memory.

Exploiting fast shared memory…



Initial Fermi results compared to CPU code



Initial Fermi results 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500 3000 3500 4000

M
u

lt
ip

le
s 

o
f 

re
al

-t
im

e

Number of channels = total number of DMs with a maximum DM of 200

Comparison of different memory paths

L1 cached GPU Algorithm NVIDIA C2070

Shared Memory GPU Algorithm NVIDIA C2070



Initial Fermi results compared to CPU code

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

M
u

lt
ip

le
s 

o
f 

re
al

-t
im

e

Number of channels = total number of DMs with a maximum DM of 200

Comparison of different computing technologies

L1 cached GPU Algorithm NVIDIA C2070

Shared Memory GPU Algorithm NVIDIA C2070

Intel i7 2600K AVX (4 cores, 4.2 GHz)

Intel Xeon X7550 SSE (x4 = 32 cores, 2.7GHz)



Exploiting Shared Memory

Problem with shared memory algorithm

For realistic telescope frequencies/bandwidths and interesting values for the DM trials we 
need long shared memory lines or need to use a reduced number of accumulators

This causes the performance to drop towards our cache algorithm

However we can work around this: Time Binning…



Time binning…

Signal
Δt

Δf

Signal

Δt'

Δf

t

DM

Has the effect of 
reducing the 
amount threads 
that are needed 
to process a 
region of (DM,t) 
space.

Utilizes the CPU and GPU at the same 
time (analyze previous de-dispersed 
data or bin on CPU).



Kepler texture cache algorithm

DM

t

Thread block 
sizeRegion of DM space processed 

by thread block
• The read-only data cache is simple 

to use with the provided __ldg(); 
intrinsic.

• This allowed for simple re-use of 
the L1 Fermi algorithm with 
minimal code alterations.

The Kepler architecture (GK110) introduced a read-only data cache. The 
requirement on data being the data must be guaranteed read-only for the 
duration of the kernel (since the read-only data cache is incoherent with respect 
to writes).

Produced a 25-30% speedup in some cases



Kepler shared memory algorithm

Kepler introduced shared memory that has 8 byte banks. If your code 

makes 64 bit transactions to shared memory, has the correct access 

pattern and correct data alignment then it is possible to get 2x shared 
memory bandwidth….

For the shared memory code this meant packing data as float2. However the 
shift that each thread calculates and uses to increment its accumulator isn’t 
known when the data is packed. 

Solution: Make each thread calculate two time values: ti,ti+1 and then pack the 
data in an interleaved (even/odd),(odd/even) format…



Kepler shared memory algorithm

float2[] = [t0,t1][t1,t2][t2,t3][t3,t4][t4,t5][t5,t6] …
float2[] = [  0  ][  1  ][  2  ]

(t0,t1) (t1,t2) (t2,t3) (t3,t4) (t4,t5) (t5,t6)

For thread with an even shift (lets say 2)…

ti= t2

ti+1= t3 (t0,t1) (t1,t2) (t2,t3) (t3,t4) (t4,t5) (t5,t6)

For thread with an odd shift (lets say 3)…

ti= t3

ti+1= t4

Now each thread computes the correct two time values and at double data rate

Data is now correctly aligned 
for 64 bit access



Comparison of Fermi to Kepler

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

M
u

lt
ip

le
s 

o
f 

re
al

-t
im

e

Number of channels = total number of DMs with Maximum DM = 100

Comparison of Fermi (C2070) to Kepler (GTX 680) GPUs
Initial results

Shared Memory GPU GTX 680

Shared Memory GPU C2070

Wide

Linear (Shared Memory GPU GTX 680)

Linear (Shared Memory GPU C2070)



Comparison of Kepler data paths

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
s

Number of Accumulators

Data from three kernels using different memory paths

smem (L2 on)

smem (L2 off)

L1 (L2 on)

L1 (L2 off)

__ldg() (L2 on)

__ldg() (L2 off)



Profiling the Kepler GTX 780Ti



Maxwell shared memory algorithm

• To simplify algorithm design and programming Maxwell returned to using 

4 byte banks. This means an effective reduction in the shared memory 

bandwidth.

• The Maxwell architecture is more energy efficient – very important when 

trying to put HPC in a very inhospitable environment (as is the case for 

SKA).

• However the reduction in shared memory bandwidth isn’t good for a 

code that is limited by shared memory bandwidth.

Solution? At the start of the talk I mentioned that SKA data will be 8 bits per 
sample. Try to exploit this to increase the shared memory bandwidth. Use the 
same data access scheme as Kepler with ushort2 or add either a pairing function 
or combine values…



Maxwell shared memory algorithm

Store data in a zero/odd/zero/even interleaved fashion

In a 32 bit word we split the information into 4 lots of 8 bits.

| 0 | data odd | 0 | data even | ….

So we have two data samples per 32 bit word.

By summing the 32 bit integers we achieve two additions for the price of one.

We can accumulate sums up to 16 bits of information before the upper and lower 
half of the integer have to be “unloaded” to a 32 bit float

PRACTICAL 9



Profiling the Maxwell GTX 980 

Note: Although Maxwell has less effective shared memory bandwidth we achieve a 
greater percentage of peak - 85% compared to Kepler's 65%



De-dispersion on NVIDIA GPUs

0 0.5 1 1.5 2 2.5 3 3.5

k40

k80

780 Ti

980

Titan X

Number of SKA beams

The number of beams that can be de-dispersed by a given GPU

Changing from the 
Kepler to Maxwell 

generation of GPUs 

gives a 3x
performance 

increase. 

The Titan X can 
process over 3 SKA 

beams at once

Kate Clark (NVIDIA), J. Novotny (Opava), W. Armour (OeRC, UOx)



GPUs vs FPGAs 
?



Altera results

This comparison is done using a reduced de-dispersion search. 2500 dm trials with 
no decimation in time. This has been done to make for a clean and easy 

comparison.

Technology Stratix V Arria 10 NVIDIA Titan
X

Fraction of real-time 1.38 2.17 4.45

Watts per beam 
(Average)

21.7 W ~10 W 21.1 W

Cost per beam 
(capital, accelerator 
only)

~£5K ~£5K ~£180

Cost per beam (2 
year survey, GPU 
only, based on 1KWh 
costing £0.2)

~£76 ~£38 ~£74



Where are we 
now?

Pascal



The last four generations…

0

2

4

6

8

10

12

01/04/12 18/10/12 06/05/13 22/11/13 10/06/14 27/12/14 15/07/15 31/01/16 18/08/16 06/03/17 22/09/17

N
o

rm
al

is
ed

 P
er

fo
rm

an
ce

 (
n

o
rm

al
is

at
io

n
 p

o
in

t 
N

o
v 

2
0

1
2

)

Summary of the performance increases in our DDTR GPU algorithm over a 4 year period starting 
November 2012

Bandwidth Compute DDTR Moores Law



Beam A

Beam B

Beam C

NVIDIA Profiler 
output from a run on 

a Tesla P100 GPU

The input data for Beams A, B 
and C is 9.63 Seconds of data 
collected by the telescope. 
9.63(S)/0.000064(S)
= 150500 time samples 
(each having 4096 channels)

This shows 50 full resolution FDAS trials 
being performed from a pervious 
pointing:
2^23 samples using 96 templates.
NO HARMONIC SUM 

3x Beams SPS = 5.85 S 50x FDAS = 3.2 S

3x Beams of SPS using 9.63S input chuncks and 50 FDAS trials.
Total Processing taking about 9 seconds -> Faster than real-time.

Given that each observation is 
about 536 seconds long this 
means that it is possible to 

perform 536/9.7 x 50 = 2750 full 
resolution FDAS trials while 

performing SPS on 3x beams.
Current work indicates that the 
harmonic sum will (at most) half 
this -> 450 FDAS trials per beam

Where we are…



What about the Power?

As GPUs evolve so 
does their energy 

efficiency

This plot shows that 
the NVIDIA Titan X is 

4x more energy 
efficient than the 
NVIDIA K40 when 
performing DDTR

Kate Clark (NVIDIA), J. Novotny (Opava), M. Giles, W. Armour (OeRC, UOx)

Improvement between generations comes from a combination of advances in both the 
hardware and algorithm



What about the Power?

0

50

100

150

200

250

300

350

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9
1

4
5

1
6

1

1
7

7
1

9
3

2
0

9

2
2

5
2

4
1

2
5

7

2
7

3
2

8
9

3
0

5
3

2
1

3
3

7

3
5

3
3

6
9

3
8

5
4

0
1

4
1

7

4
3

3

4
4

9
4

6
5

4
8

1
4

9
7

5
1

3

5
2

9
5

4
5

5
6

1
5

7
7

5
9

3

6
0

9
6

2
5

6
4

1

6
5

7
6

7
3

6
8

9

G
P

U
 E

n
er

gy
 D

ra
w

 in
 W

at
ts

Time (needs scaling into seconds)

Power draw in Watts for different GPU energy caps (Titan XP)

125

150

175

200

225

250

275

300



Energy needed to process one observation

14

15

16

17

18

19

20

21

22

23

100 120 140 160 180 200 220 240 260

En
er

gy
 r

eq
u

ir
ed

 t
o

 p
ro

ce
ss

 o
n

e 
SK

A
 o

b
se

rv
at

io
n

 (
5

4
0

 s
ec

o
n

d
s)

 in
 K

J

GPU Power Cap in Watts

Total energy required to process one SKA observation in KJ against GPU power cap in 
Watts (Titan XP)



What about the Power?

0

20

40

60

80

100

120

01/04/12 18/10/12 06/05/13 22/11/13 10/06/14 27/12/14 15/07/15 31/01/16 18/08/16 06/03/17 22/09/17

En
er

gy
 u

se
d

 in
 K

J

A plot of the energy used (KJ) by a GPU when performing the DDTR algorithm for a single SKA 
beam



Conclusion: comparison of GPUs

Technology Kepler 
(K40)

Kepler 
(K80)

Kepler 
(780Ti)

Maxwell 
(980)

Maxwell
(Titan X)

Pascal    
(Titan XP)

Pascal
P100

Fraction of 
real-time

1.035 2.5 2.88 2.3 3.3 6.1 8.1

Watts per 
beam 
(Average)

127W 76 W ~70W ~61W ~64W ~43W ~24W

Cost per 
beam (capital, 
accelerator 
only)

£3K? £4K? £250 £200 £240 ~£200 £500?

Cost per 
beam (2 year 
survey, GPU 
only, based 
on 1KWh 
costing £0.2)

~£430 ~£265 ~£245 ~£213 ~£224 ~£151 ~£85

Improvement between generations comes from a combination of advances in both the 
hardware and algorithm



Conclusions

GPU technologies enable us to process multiple SKA beams in real-time. 

Equivalent to searching 50 hours of HDTV data every second.

This will allow us  to search our universe for undiscovered exotic objects like FRBs 
and test Einstein's Theory of General Relativity.



Acknowledgments and Collaborators
University of Oxford

Mike Giles (Maths)               

Aris Karastergiou (Physics) 

Chris Williams (Physics)          

Steve Roberts (Engineering) 

Sofia Dimoudi (OeRC)

Nassim Ouannoughi (OeRC)

Karel Adamek (OeRC)

Jayanth Chennamangalam (Physics)         

University of Manchester                     

Ben Stappers

Mike Keith

Prabu Thiagaraj 

Jayanta Roy

Mitch Mickaliger 

Astro-Accelerate: http://www.oerc.ox.ac.uk/projects/astroaccelerate
ARTEMIS : http://www.oerc.ox.ac.uk/projects/artemis

University of Bristol

Dan Curran (Electrical Engineering)

Simon McIntosh Smith (Electrical Engineering) 

ASTRON

Cees Bassa

Jason Hessels

University of Opava

Jan Novotny

NVIDIA

Kate Clark

Tim Lanfear

Tom Bradley

ALTERA

Byron Sinclair

Andrew Ling

Steve Casselman

Max Plank

Ewan Barr 

http://www.oerc.ox.ac.uk/projects/astroaccelerate
http://www.oerc.ox.ac.uk/projects/artemis


Jobs…

1x PDRA position working on CUDA GPU algorithms

1x RA positon working on C++ library 

Thank you!


