
Lecture 5: tensor cores,
libraries and tools

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 5 – p. 1/28

Tensor cores

Starting with the Volta generation of GPUs, NVIDIA
introduced “tensor cores” to greatly accelerate matrix
multiplication for Machine Learning.

WMMA = Warp Matrix Multiply and Accumulate

A single wmma instruction, executed by all threads in the
warp, performs a small matrix-matrix multiplication and
addition:

D︸︷︷︸
M×N

= A︸︷︷︸
M×K

∗ B︸︷︷︸
K×N

+ C︸︷︷︸
M×N

Volta GPUs only supported 16×16 matrices (M=K=N=16)
with A,B of type half (fp16) and C,D of type float (fp32).

Lecture 5 – p. 2/28

Tensor cores

The small matrices are referred to as “fragments” (because
they’re usually parts of larger matrices) and stored within
the warp’s threads in a way which is “opaque” (not visible to
programmer).

In the user’s kernel code, the warp

loads in the fragments from shared memory

performs the MMA matrix-multiplication-addition
instruction

stores the resulting fragment in shared memory

Lecture 5 – p. 3/28

Tensor cores
Part of the kernel code for C = A ∗ B for a single warp:

int M=16, N=16, K=16;

// Declare the fragments

wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::col_major> a_frag;

wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> b_frag;

wmma::fragment<wmma::accumulator, M, N, K, float> c_frag;

// Initialize the output to zero

wmma::fill_fragment(c_frag, 0.0f);

// Load the inputs

wmma::load_matrix_sync(a_frag, a, M);

wmma::load_matrix_sync(b_frag, b, K);

// Perform the matrix multiplication

wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

// Store the output

wmma::store_matrix_sync(c, c_frag, M, wmma::col__major);
Lecture 5 – p. 4/28

Tensor cores

New GPUs have wmma instructions for various datatypes.

Floating point variables have the form (−1)s ×m× 2e where
s is a sign bit, and m and e are the mantissa and exponent,
represented by a varying number of bits

more exponent bits = more range (from small to big)
more mantissa bits = more accuracy

11 52fp64 / double

8 23fp32 / float

5 10fp16 / half

8 7bfloat16

8 10tf32
Lecture 5 – p. 5/28

Tensor cores

In the latest Hopper GPUs, the wmma instructions support
the following combinations of types and matrix sizes:

A,B C,D M ×K ×N

half half 16×16×16, 32×8×16, 8×32×16

half float 16×16×16, 32×8×16, 8×32×16

bfloat16 float 16×16×16, 32×8×16, 8×32×16

tf32 float 16×16×8

double double 8×8×4

char int 16×16×16, 32×8×16, 8×32×16

My guess is that the wmma instructions take the same
amount of time for each of these combinations.

Lecture 5 – p. 6/28

Tensor cores

The wmma instructions do a small matrix product within a
single warp.

When doing a large matrix multiplication, you have to “tile”
the output, and then different warps process different tiles,
independently.


 ()


 =


() () () ()







()

()

()

()




Cij =
∑

k

AikBkj

Lecture 5 – p. 7/28

Tensor cores

To see how to implement tiling read
developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

but this is an example code, not optimal.

Doing it optimally is hard, and NVIDIA has also introduced
some tricky new features to improve performance
(asynchronous loading directly into shared memory).

In general, best to leave this to NVIDIA experts and use the
cuBLAS library!

Lecture 5 – p. 8/28

CUDA libraries

Originally, NVIDIA planned to provide only one or two
maths libraries, but over time these have steadily increased

CUDA math library
all of the standard math functions you would expect
(i.e. very similar to what you would get from Intel)

various exponential and log functions
trigonometric functions and their inverses
hyperbolic functions and their inverses
error functions and their inverses
Bessel and Gamma functions
vector norms and reciprocals (esp. for graphics)
mainly single and double precision – a few in half
precision

Lecture 5 – p. 9/28

CUDA libraries

cuBLAS

basic linear algebra subroutines for dense matrices
includes matrix-vector and matrix-matrix product
uses tensor cores by default for performance
user can specify the accuracy required (e.g. allowing
use of TF32 for floats)
routines called by either host or kernel (device API)
some support for a single routine call to do a “batch”
of smaller matrix-matrix multiplications
also support for using CUDA streams to do a large
number of small tasks concurrently

Lecture 5 – p. 10/28

CUDA libraries

cuBLAS is a set of routines to be called by user host code:

helper routines:
memory allocation
data copying from CPU to GPU, and vice versa
error reporting

compute routines:
matrix-matrix and matrix-vector product
Warning! Some calls are asynchronous, i.e. the call
starts the operation but the host code then continues
before it has completed

cuBLASLt is a new lightweight version
cuBLASDx is a new (preview) device side version
cuBLASXt extends cuBLAS to multiple GPUs Lecture 5 – p. 11/28

CUDA libraries

cuFFT
1D, 2D, 3D Fast Fourier Transform

has most variations found in FFTW and elsewhere

like cuBLAS, routines called by user host code:
helper routines include “plan” construction
compute routines perform 1D, 2D, 3D FFTs
it supports doing a “batch” of independent
transforms, e.g. applying 1D transform to a 3D
dataset

Lecture 5 – p. 12/28

CUDA libraries

cuTENSOR
tensor linear algebra library
makes extensive use of new tensor cores

cuSPARSE
various routines to work with sparse matrices
includes sparse matrix-vector and matrix-matrix
products
also has solution of sparse triangular system
batched tridiagonal solver in cuBLAS not cuSPARSE

cuDSS
new (preview) Direct Sparse Solver library

Lecture 5 – p. 13/28

CUDA libraries

cuRAND
random number generation
XORWOW, mrg32k3a, Mersenne Twister and
Philox 4x32 10 pseudo-random generators
Sobol quasi-random generator (with optional
scrambling)
uniform, Normal, log-Normal, Poisson outputs
also device level routines for RNG within kernels

cuSOLVER:
key LAPACK dense solvers, 3 – 6x faster than MKL
sparse direct solvers, 2–14x faster than CPU
latest version uses iterative refinement with
low-precision tensor core operations

Lecture 5 – p. 14/28

CUDA libraries

CUB
collection of basic building blocks (e.g. sort, scan,
reduction) at three levels: device, thread block, warp

available from github.com/NVIDIA/cub

CUTLASS (CUDA Templates for Linear Algebra
Subroutines)

collection of CUDA C++ template abstractions for
implementing matrix-multiplication (GEMM)

available from github.com/NVIDIA/cutlass

AmgX
library for algebraic multigrid

available from developer.nvidia.com/amgx
Lecture 5 – p. 15/28

CUDA libraries

cuDNN
library for Deep Neural Networks

NCCL
NVIDIA Collective Communications Library

multi-GPU over both PCIe and NVlink

multi-node over NVIDIA/Mellanox NICs

nvGraph
Page Rank, Single Source Shortest Path, Single
Source Widest Path

Lecture 5 – p. 16/28

CUDA libraries

Thrust
high-level C++ template library with an interface
based on the C++ Standard Template Library (STL)
very different philosopy to other libraries; users write
standard C++ code (no CUDA) but get the benefits
of GPU parallelisation
also supports x86 execution
relies on C++ object-oriented programming; certain
objects exist on the GPU, and operations involving
them are implicitly performed on the GPU
I’ve not used it, but for some applications it can be
very powerful – e.g. lots of built-in functions for
operations like sort and scan
also simplifies memory management and data
movement Lecture 5 – p. 17/28

Useful header files

dbldbl.h available from
https://gist.github.com/seibert/5914108
Header file for double-double arithmetic for
quad-precision (developed by NVIDIA, but published
independently under the terms of the BSD license)

cuComplex.h part of the standard CUDA distribution
Header file for complex arithmetic – defines a class and
overloaded arithmetic operations.

helper math.h available with NVIDIA sample codes
Defines operator-overloading operations for CUDA
intrinsic vector datatypes such as float4

Lecture 5 – p. 18/28

Other libraries

Kokkos
another high-level C++ template library
developed in the US DoE Labs, so considerable
investment in both capabilities and on-going
software maintenance
I’ve not used it, but possibly worth investigating
for more information see
https://github.com/kokkos/kokkos/wiki
https://trilinos.org/packages/kokkos/

Lecture 5 – p. 19/28

Other libraries

MAGMA
a new LAPACK for GPUs – higher level numerical
linear algebra, layered on top of cuBLAS

open source – freely available from
https://icl.utk.edu/magma/

OpenMM
http://openmm.org/

open source package to support molecular
modelling at Stanford

Lecture 5 – p. 20/28

Other libraries

Fast multipole methods for N-body problems:
ExaFMM by Yokota and Barba:
http://www.bu.edu/exafmm/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes

-the-tortuous-progress-of-computational-research/

FMM2D by Holm, Engblom, Goude, Holmgren:
http://user.it.uu.se/∼stefane/freeware
software by Takahashi, Cecka, Fong, Darve:
onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf

new solver within GROMACS:
www.mpinat.mpg.de/634623/Kohnke 2021 IJHPCA.pdf

not clear to me which of these is still
developed/maintained

Lecture 5 – p. 21/28

Other libraries

OP2 and OPS
high-level frameworks for unstructured (OP2) and
multi-block (OPS) codes
uses CUDA on GPUs, OpenMP on CPUs, and MPI
for message-passing on multiple systems
all implementation details are hidden from “users”,
so they don’t have to know about
CUDA/OpenMP/MPI programming
originally developed in Oxford; development
continued now by Gihan Mudalige (Warwick) and
Istvan Reguly (PPCU in Budapest)
code available on https://op-dsl.github.io/

Lecture 5 – p. 22/28

Tools
Debugging using NVIDIA Compute Sanitizer:

compute-sanitizer --tool memcheck
detects array out-of-bounds errors, and mis-aligned
device memory accesses

compute-sanitizer --tool racecheck
checks for shared memory race conditions:

Write-After-Write (WAW): two threads write data to
the same memory location but the order is uncertain
Read-After-Write (RAW), Write-After-Read (WAR):
one thread writes & one reads, with uncertain order

compute-sanitizer --tool initcheck
detects reading of uninitialised device memory

compute-sanitizer --tool synccheck
detects incorrect use of syncthreads and related
intrinsics Lecture 5 – p. 23/28

Tools
Other languages:

CUDA Fortran: available from NVIDIA

Python:
https://developer.nvidia.com/cuda-python
https://numba.pydata.org/

MATLAB: can call kernels directly, or use OOP like
Thrust to define MATLAB objects which live on the GPU
https://www.mathworks.com/solutions/gpu-computing.html

Mathematica: similar to MATLAB?
https://reference.wolfram.com/language/CUDALink/tutorial/Overview.html

R:
https://developer.nvidia.com/blog/accelerate-r-applications-cuda/

http://www.r-tutor.com/gpu-computing

Lecture 5 – p. 24/28

Tools

OpenACC (“More Science, Less Programming”):

like Thrust, aims to hide CUDA programming by doing
everything in the top-level CPU code

programmer takes standard C/C++/Fortran code and
inserts pragmas saying what can be done in parallel
and where data should be located

https://www.openacc.org/

OpenMP 5.0 is similar but newer:

pushed strongly by Intel

https://www.openmp.org/wp-content/uploads/

20210924-OpenMP-update-for-DOE.pdf

Lecture 5 – p. 25/28

Tools

Integrated Development Environments (IDE):

Nsight Visual Studio edition – NVIDIA plug-in for
Microsoft Visual Studio
developer.nvidia.com/nsight-visual-studio-edition

Nsight Eclipse edition – IDE for Linux systems
(now distributed as plug-ins for standard Eclipse)
developer.nvidia.com/nsight-eclipse-edition

these come with editor, debugger, profiler integration

Lecture 5 – p. 26/28

Tools

NVIDIA Nsight Compute CLI profiler ncu:

standalone software for Linux and Windows systems

uses hardware counters to collect a lot of useful
information

I think only 1 SM is instrumented – implicitly assumes
the others are behaving similarly

lots of things can be measured, but a limited number of
counters, so it runs the application multiple times if
necessary to get full info

see practical 3 for an example of its use

can also visualise output using ncu-ui
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

Lecture 5 – p. 27/28

Summary

significant effort to develop general purpose libraries or
frameworks, to enable users to get the benefits without
being CUDA experts

too much going on for one person (e.g. me) to keep
track of it all

NVIDIA maintains webpages with links to CUDA
libraries and tools:
developer.nvidia.com/gpu-accelerated-libraries
developer.nvidia.com/tools-ecosystem

the existence of this ecosystem is a key part of CUDA’s
success

Lecture 5 – p. 28/28

