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Part One

SQUARE KILOMETRE ARRAY

A brief introduction to



What is SKA?
/ >tation What is SKA?

. SKA is a ground based radio telescope that
« . will span continents.

What does SKA stand for?

Square Kilometre Array, so called because it
will have an effective collecting area of a
square kilometre.

Core
Where will SKA be located?

SKA will be built in South Africa and
Australia.

Example of
proposed SKA
configuration

Graphic courtesy of Anne Trefethen



What is SKA?
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Wavelength

SKA is a ground based telescope. This means that it is most sensitive to the radio range of
frequencies. The radio range of frequencies that can be observed from here on Earth is very
wide, specifically SKA will be sensitive to frequencies in the range of 50MHz to 20GHz
(wavelengths 15 mm to 6 m). This makes SKA ideal for studying lots of different science cases.

Image source Wikipedia. Authors: NASA (original); SVG by Mysid



What is SKA?

SKA will have the ability to use all of
its antennas to produce images of
the radio sky in unprecedented
accuracy and detail.

It will also be able to use
combinations of antennas to perform
multiple observations of different
regions of the sky at the same time.

In this scenario data from each beam
can be computed in parallel.




SKA science

SKA will study a wide range of science cases
and aims to answer some of the fundamental
guestions mankind has about the universe we
live in.

* How do galaxies evolve
— What is dark energy?

* Tests of General Relativity
— Was Einstein correct?

*  Probing the cosmic dawn
— How did stars form?

e The cradle of life
— Are we alone in the Universe?




SKA time domain - signal processing
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Time Domain Team

The time domain team is an
international team led by Oxford
and Manchester.

It aims to deliver an end-to-end
signal processing pipeline for
time domain science performed
by SKA (see right).

Seareh for fast radio bursts
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Image courtesy of Aris Karastergiou



SKA time domain - signal processing

Our work focussed on vertical
prototyping activities.

We delivered accelerated algorithms
for many-core technologies, such as
GPUs to perform the processing steps
within the signal processing pipeline
with the aim of achieving real-time
processing for the SKA.
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Seareh for fast radio bursts

Seanchiion perodicsignals

Image courtesy of Aris Karastergiou



SKA time domain science - Pulsars

Pulsars are magnetized, rotating
neutron stars. They emit
synchrotron radiation from the
poles, e.g. Crab Nebula.

Their magnetic field is offset
from the axis of rotation as such
(as observed from here on Earth,
they act as cosmic lighthouses.

They are extremely periodic and
so make excellent clocks!

Hester et al.

© 2004 The Trustees of Amherst College. www.amherst.edu/|
~gsgreenstein/ progs/ anima tions/ pulsar_beacon/|

Image: Amherst College




Pulsars — size and scale

Pulsars are typically 1-3 Solar masses in
size, they have a diameter of 10-20
Kilometres and a pulse period ranging
from milliseconds to seconds.

Meaning that they are very small, very
dense and rotate extremely quickly.
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https://commons.wikimedia.org/wiki/File:Planets_and_sun_size _comparison.jpg (Author: Lsmpascal)



https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
https://commons.wikimedia.org/wiki/User:Lsmpascal

Frequency

SKA time domain science - FRBs

v

Time

Fast Radio Bursts (FRBs), were first
discovered in 2005 by Lorimer et al.

They are observed as extremely bright
single pulses that are extremely
dispersed (meaning that they are likely
to be far away, maybe extra galactic).

Now hundreds of FRBs have been
observed or found in survey data. They
are of unknown origin, but likely to
represent some of the most extreme
physics in our Universe.

Hence they are extremely interesting
objects to study.

Credit: FRB110220 Dan Thornton (Manchester)



SKA time domain - data rates

The SKA will produce vast amounts of data. In
the case of time-domain science we expect the
telescope to be able to place ~2000 observing
beams on the sky at any one time (there are
trivially parallel to compute).

The telescope will take 20,000 samples per
second for each of those beams and then it
will measure power in 4096 frequency
channels for each time sample. Each of those
individual samples will comprise of 4x8 bits,
although we are only really interested in one
of the 8 bits of information.

Doing the math tells us that we will need to
process 160GB/s of relevant data. This is
approximately equal to analysing 50 hours of
HD television data per second.

The most costly computational operations in
data processing pipeline are

~ * * *
DDTR O(ndms Npeams r‘samps r‘chans)

FDAS ~ O(ndms * Npeams * r\samps * Nacc * Iog(nsamps) * 1/tobs)

Requiring ~2 PetaFLOP of Compute!




SKA time domain — data challenges

Because we would like to monitor
interesting and exotic events as they occur
we need to process data in real-time (or as
near to as possible).

So storing the data and processing later
isn’t feasible. The data rates mean
transporting data offsite would be
challenging and costly.

So processing must happen close to the
telescope. But how do we put a computer
capable of processing big-data streams in
real-time close to the telescope?

Connectivity, power, operation all pose
significant problems.

T ,muu|umm||||u|u|'1i|iinim I



Part Two

AstroAccelerate — A case study



AstroAccelerate

AstroAccelerate is a GPU enabled
software package that focuses on
achieving real-time processing of
time-domain radio-astronomy data.
It uses the CUDA programming
language for NVIDIA GPUs.

The massive computational power
of modern-day GPUs allows the
code to perform algorithms such as
de-dispersion, single pulse
searching and Fourier Domain
Acceleration Searching in real-time
on very large data-sets which are
comparable to those which will be
produced by next generation radio-
telescopes such as the SKA.

Pull requests Issues Marketplace Explore

AstroAccelerateOrg / astro-accelerate @ Unwatch > 12 o Unstar | 7 Yrork 2
Code Issues 5 Pull requests 2 Projects 0 ER Wiki Insights Settings
Home Ll e |
wesarmour edited this page on 15 Jun - 3 revisions

Sak w Pages

Oxford T
Home
Re OXFORD

32 bit Implementation

/
T
T~ Dedispersion kernel parameter
. ! 7 ! E E H E optimisation

Fourier Domain Acceleration
Search

Past and Present Contributors to
AstroAccelerate

RFI Mitigation

Welcome to the AstroAccelerate wiki!

The Input File and How to Use
AA

Introduction
Add a custom sidebal
AstroAccelerate is a many core accelerated software package for processing time domain radio-

astronomy data. In our git repo you will find: o
Clone this wiki locally

1. A standalone code that can be used to process filterbank data. https://github. con/astroace | [
2. A library that can be used to enable GPU accelerated single pulse processing (SPS) or Fourier

- ;
Domain Acceleration Searching (FDAS). (I clone in Desktop

https://github.com/AstroAccelerateOrg/astro-accelerate



AstroAccelerate - Signal Processing

Radio Frequency Interference Mitigation

Harmonic Sum

f1b.car” binary format="

Execution speedup
Execution speedup
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ed Performance

Every DM is calculated to see if a signal is present

Summary of the performance increases in our DDTR
GPU algorithm over a 6 year period starting November
2012
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AstroAccelerate - Features

57487 36894 51917+ 00,00002
frb.dat" binary format="%float%float%float%float" u 1:2:3 + «+

AstroAccelerate has the following features...
* Zero DM and basic RFI Mitigation

- DDTR

* Single Pulse Search

* Fourier Domain Acceleration Search

* Periodicity search with harmonic sum

57487 36894 51917 +00,00002
frb.dat" binary format="%float %float%float%float" u 1:2:3 + +
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Case study 1: Real-time de-dispersion
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Whatisdispersion?

Group velocity dispersion occurs
when pulse of light is spread in
time due to its different frequency
components travelling at different
velocities. An example of this is
when a pulse of light travels along
an optical fibre.

: Refractive
. 1S il v WohOrdw fowpmion]  Proile
something we are all familiar Mode \_ .
with. A good example of this A ﬁ.}? b
is when white light passes T m—-‘-ﬂ”"{ ]
through a prism. —rrrrerer——



Dispersion by the ISM

The interstellar medium (ISM) is the matter that exists between stars in a galaxy.

Haffner et al. 2003

In warm regions of the ISM (~8000K) electrons are free and so can interact with and affect radio waves that
pass through it.



The dispersion measure - DM

The time delay, Az, between the detection of frequency f,, and f,, is given by:

1 1
fl?)w fhztgh

Where Cpy is the dispersion constant. DM is the dispersion measure:

d
DM = [ nedl
0

This is the free electron column density between the radio source and observer.

We can measure At and f and so can study DM



Experimental Data

f Most of the measured signals live in the noise of the apparatus.




Experimental Data

Most of the measured signals live in the noise of the apparatus.

Hence frequency channels have to be “folded”

0.10
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0 200 400 G600 200
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De-dispersion

f Every DM is calculated to see if a signal is present.

In a blind search for a signal many different dispersion measures are calculated.

This results in many data points in the (f,t) domain being used multiple times for
different dispersion searches.

This allows for data reuse in a GPU algorithm.

All of this must happen in real-time i.e. the time taken to process all of our data must
not exceed the time taken to collect it



De-dispersion Transform

Our DDTR is an implementation of
incoherent brute force de-dispersion.

L for (i = @; i < SNUMREG; i++)
1. We brute force optimise the tuneable

parameters of the code, such as the local = o;
thread block size and number of unroll = ( i * 2 * SDIVINT );
registers used. for (j = @; j < UNROLLS; J++)
{
2. It utilises GPU shared memory and stage = *(int*) &F_line[J][( shift[j] + unroll )];
typically achieves 60-80% of peak local += stage;
throughput. ’ _
local kernel one[i] += (local & OxQBROFFFF);
local_kernel_two[i] += (local & ©xFFFFeee0) >> 16;
3. It uses SIMD in word to process }

multiple time samples per machine
word for data less than or equal to 16
bits.

https://github.com/AstroAccelerateOrg/astro-accelerate/blob/master/lib/device_dedispersion_kernel.cu



De-dispersion Transform —

1. tuning

Each thread processes a tunable
number of time samples, each de-
dispersion trial associated with one
time sample is stored in a GPU
register.

Along with this the number of time
samples per thread block and the
number of de-dispersion trials (which
is where data reuse comes from) are
tuned.

Finally the code performs a tunable
number of SIMD in word operations
which are periodically unloaded to a
floating point accumulator.

Region of DM space Thread
processed by thread block
block size

DM

t t

Optimising the parameterisation

https://github.com/AstroAccelerateOrg/astro-accelerate/blob/master/lib/device_dedispersion_kernel.cu



De-dispersion Transform —

2. shared memory

Exploiting registers and fast shared memory...

/

Constant DM’s with varying time.

In practice a thread will process
multiple time samples and a thread
block will also process neighboring
DM trials to increase data reuse.

Incrementing all of the registers at
every frequency step ensures a high
data reuse of the stored frequency
time data in the L1 cache or shared
memory.



De-dispersion Transform —

2. time binning

One issue with using a shared
memory based algorithm is that for
high DM trials (those that represent
distant objects, forming long broad
curves in our input frequency-time
data) we need to store increasing
lengths of constant frequency
varying time data in shared memory.

This ultimately limits the highest DM
trial that can be searched at full time
resolution.

To overcome this we’ve added a
time binning (scrunching) kernel
that decimates data in time. This has
the effect of decreasing time
resolution and allows us to search to
arbitrary high DM trials.

A
Af
v
< At >
Signal
U t
A Has the added advantage
Af of reducing the amount
\% threads that are needed
<« At' — to process a region of
Signal (DM,t) space, speeding

up the code.



De-dispersion Transform —

3. SIMD in word

We exploit the fact that one frequency-
time sample of SKA data will be 8 bits.

We pack the data in such a way so that
we can perform two de-dispersion trials
per integer operation.

We convert the unsigned char to an
unsigned short and pack as ushort2, we
mask this as an int and add ints.

Once a single trial nears the maximum
allowable value for a ushort we store
the value in a floating point
accumulator. This has the effect of
increasing the speed of the code and
also it’s precision.

Recorded telescope data (t, = 8 bits) is stored in
global as a uchar array

char[] = [ty t,tytstytsts...]

This is converted to ushort when loaded though the
texture pipe (doubling the size of the array stored
because it is now interleaved with 8 bits of zeros

ushort[]=[0t, 0t,0t, 0t;, 0t, 0t Ot ..]

Masking this with an int allows us to add two
samples per one instruction issued.



De-dispersion Transform —
3. SIMD in word

In reality we have to odd/even interleave the

data to ensure correct byte alignment within ushort2[] = [0 t,,0t,][0 t,,0 t,][0 t,,0 t,][0 t;,0 t,]...
shared memory banks (4 bytes wide).

to,t) (t,,t) (L,,t5) (t5,1,) (t,,te) (ot
For thread with an even shift (lets say 2)... (torty) {tot) (tts) (t3.8a) (ta ts) (85 %)

tia=1

(to,ty) (tty) (1) (t5,ts) (tats) (ts,te)
For thread with an odd shift (lets say 3)... Ol sl Al sl e

t=t,

v

v

tu=1

Now each thread computes the correct two time values and at double data rate



Utilization Level

De-dispersion Transform - results

100%

90%

High

Med

Utilization
o

20%
10%

Load/Store Texture Half Single Compute

Memory (Shared)

Shared Memory

[l Memory operations
B control-flow operations
B Arithmetic operations
Bl memory (Shared)

Shared Loads 43769001212 7,976.627 GB/s

Shared Stores 5655113738 1,030.609 GB/s

Shared Total 49424114950 9,007.236 GB/s m
Idle Low Medium High Max

Results showing the shared memory utilisation, which is this codes limiting factor. We
achieve 75% of peak throughput, limited by load/store.

The total shared memory bandwidth throughput achieved on a TITAN V is 9 TB/s.



Energy used in KJ

De-dispersion Transform - results

Energy used (KJ) by a GPU when performing Summary of the performance increases in our DDTR GPU algorithm
the DDTR algorithm for a single SKA beam over a 6 year period starting November 2012
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These two plots demonstrate how we have reduced power consumption and increased performance for the
DDTR algorithm over a six year period.

The bule star indicates the performance of our initial (optimised) code running on current hardware.
Demonstrating how invested effort algorithm optimisation over a long period can deliver significant gains.



De-dispersion Transform —
cost / benefit analysis

But is it worth the effort?

Estimated runtime for DDTR in the PSS pipeline (conservative 25%)
Estimate of speed increase compared to initial code ~17x

» Total PSS pipeline acceleration ~ 4x
So to deliver the science in the same wall clock time you’d need 4x the GPU capacity.
Even if you're prepared to wait 4x longer... Energy efficiency has increased by 14x
Very rough estimate of PSS OpEx saving ~ £1M
Estimate of total effort ~ 1.0FTE for four years ~ £250K (FEC)

Hence a £750K saving in OpEx costs alone (this is a conservative estimate).

(You can’t just go out and buy this at a later date. Domain expertise in both radio astronomy data
processing and many-core acceleration are needed)



Conclusions — Comparisons of GPUs

Technology

Kepler
(K80)

Pascal
P100

Volta V100

Volta Titan
\Y

Fraction of real-
time

Watts per beam
(Average)

Cost per beam
(capital,
accelerator
only)

Cost per beam
(2 year survey,
GPU only, based
on 1KWh
costing £0.2)

1.035

127W

£3K?

~£430

2.5

76 W

£4K?

~£265

2.88

~70W

£250

~£245

Maxwell Maxwell Pascal
(980) (Titan X) (Titan XP)
2.3 3.3 6.1

~61W ~64W ~43W
£200 £240 ~£200
~£213 ~£224 ~f151

8.1

~24W

~£420

~£84

12.5

13w

~£530

~£45

10.9

10w

~£270

~£35

Improvement between generations comes from a combination of advances in both the

hardware and algorithm



Case study 2: Fourier Domain Acceleration
Searching for the SKA

Sofia Dimoudi, Karel Adamek, Jack White, Mike Giles
(Oxford)
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Light curve and slow motion picture of the solitary pulsar located in the centre of the Crab Nebula.

Image taken with a photon counting camera on the 80cm telescope of the Wendelstein Observatory, Dr. F. Fleischmann, 1998

63109984

By Astrofrank - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid



Binary pulsars and gravitational waves

o 0:00 4l BB webm360P | MENU

http://www.eso.org/public/videos/eso1319a/ Author: ESO/L. Calcada



http://www.eso.org/public/videos/eso1319a/

Fourier Domain Acceleration Search - FDAS

Signals from binary systems can @%}
undergo a Doppler shift due to
accelerated motion experienced
over the orbital period.

Much like the sound of a siren
approaching you and then
speeding away.

1000

This can be corrected by using a
matched filter approach.

00

Integration time (s)
5

Pulse phase (bins) Pulse phase (bins)

Ransom, Eikenberry, Middleditch: AJ, Vol 24, Issue 3, pp. 1788-1809

By Charly Whisky 18:20, 27 January 2007 (yyy) - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1606823



FDAS Example

The two plots illustrate the effect of
orbital acceleration.

The first plot shows a signal without
acceleration, the signal is centred on its
frequency and lies on the f-dot template
corresponding to zero acceleration.

Frequency Derivative (bins)

The second plot shows a signal with a
frequency derivative, and has drifted
from the original frequency by a
number of bins.

Frequency Derivative (bins)

Frequency offset (bins)



Fourier Domain Acceleration Search

M/2 -M/2 +1

U | filter: h <> H
|\ oy
R
|
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. . . o a ; b ; c ; Input signal
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| T |
: .. : \ Lol ! ;
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. .. ......................... v E
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Y
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Z ] |Frc
= Result(b)c/// {: }

\ J

L
A

=
o
4 Result(c) lcé;
. .

A
)

Out(a) Out(b) Out(c) Output signal

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory: https://dl.acm.org/doi/10.1145/3394116

For more info: Kundur: https://www.comm.utoronto.ca/~dkundur/course info/real-time-DSP/notes/8 Kundur Overlap Save Add.pdf



https://www.comm.utoronto.ca/~dkundur/course_info/real-time-DSP/notes/8_Kundur_Overlap_Save_Add.pdf
https://dl.acm.org/doi/10.1145/3394116

Fourier Domain Acceleration Search

Using cuFFT means many
transactions to device memory
on the GPU (represented by
grey arrows on the right of the
diagram).

This causes the computation to
be limited by global memory
bandwidth (the lowest common
denominator on a GPU).

This means that a cuFFT based
implementation is very slow.

Input r
M Templates g

:
$

=N Complex Mul / scale M x N blocks

.

Inverse FFT M x N blocks

9

jtit ity 8t 8

Reject edges / calculate power

N blocks

M x N blocks
complex

M x N blocks
complex

M x N blocks
floats

“f — f* plane



Fourier Domain Acceleration Search

Templates array

Input Array

GPU threads Execution iterates over array blocks

o W oW W

GPU threads

Complex
Multiply

Each thread loops over templates for each input element Output Array
GPU threads 1 Complex multiplication result for each template

By writing our own custom I/FFT codes to work on shared memory we can perform the FFT,
pointwise multiply and scale, IFFT and edge rejection all in one kernel.

Karel Adamek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory.
ACM Trans. Archit. Code Optim. 17, 3, Article 18 (August 2020). https://doi.org/10.1145/3394116



https://doi.org/10.1145/3394116

Execution speedup

Fourier Domain Acceleration Search

2.6

2.2

2.0¢

—
o

1.41| Input Length S~ . 141 Input Length
— o2l A NEEEN — o
12H — 2% BN 120 — g2
—— 223 s 223
Y07 35729 65 81 97 113 120 145 161 177 193 200 225 241 257 19533 49 65 81 97 113 129 145 161 177 193 209 225 241 257

Number of templates

Execution speedup

24

no
N

n
=}

-
o)

-
o

Number of templates

Initial results from our tests on a Tesla P100. In the SKA region of interest —
signal length 223, template size of 512 (solid line) and no interbinning (left graph)

Further optimisation achieved approximately a 3.5x speed increase on a V100

Sofia Dimoudi et al 2018 ApJS 239 28 https://iopscience.iop.org/article/10.3847/1538-4365/aabe88

Karel Adamek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory.
ACM Trans. Archit. Code Optim. 17, 3, Article 18 (August 2020). https://doi.org/10.1145/3394116



https://doi.org/10.1145/3394116
https://iopscience.iop.org/article/10.3847/1538-4365/aabe88

FDAS further optimisation

Jack’'s work has focused on
implementing mixed precision for
FDAS.

By reducing the precision in the
convolution part of the algorithm
(where FFTs can be shorter and we
have far smaller accumulated
errors) we are able to double the
bandwidth throughput for the
convolution parts of the code.

{ SETUP )

\

/ INPUT (;

Time series

Reduced/increased
precision

Real FFT

Y

Single precision

¥

overlapping segments
to N contiguous blocks

Complex Signal

”l

/7

Array of K filters

Cast to single
precision

l Mz B _MeMR B
FFT N blocks
l ClL
Complex Multiply i
N blocks x K filters
[ N x K blocks
Y complex
IFFT N x K blocks
l | N xKblocks
complex

Reject Edges

Calculate Power

v/
-/OUTPUT/
F-FDOT plane




FDAS further optimisation

Jack used bfloat16 (16 bits) for the
convolution part of FDAS. This is
because it has the same range as
float (fp32) so there is no need to
scale numbers, and due to the fact
that the exponent is the same as
fp32 we are easily able to type
convert between the two (on GPUs
the SFU performs type conversion
and it is a limited resource).

Single precision - IEEE 754

. EEMMMMMMMMMMMM
. . MMMMMMMMMMM
Sign Exponent
X8

bfloat16 (Brain floating point) - Google Brain

EEEMMMMMMM

Sign Exponent
X8

Half precision - IEEE 754

EEEEMMMMMMMMMM

Sign Exponent
X5



FDAS further optimisation
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Jack White et al 2023 ApJS 265 13 https://iopscience.iop.org/article/10.3847/1538-4365/acb351/meta
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FDAS Energy optimisation

For a bandwidth bound
algorithm it makes no sense to
have the GPU cores running as
quickly as they can.

The reason is that your
memory cannot deliver data to
them quickly enough to utilise
all of the computation that
they can perform.




FDAS Energy optimisation
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K. Adamek, et al in IEEE Access https://ieeexplore.ieee.org/abstract/document/9330509
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FDAS Energy optimisation

We can use NVML to change the
clock speed of the processing
cores to slow them down.

This has the advantage of
reducing the energy that the
GPU uses.

By combining mixed precision
with reduction in core clock
frequency we are able to
achieve speed increase and
energy savings.
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https://arxiv.org/pdf/2211.13517.pdf

A final word on measurement

Often nvidia-smi is used to
establish values of physical
parameters of the GPU whilst
it is executing code.

If you have workloads with
short duration kernels this
might not be the best thing
to do...

200 1 = nvidia-smi Power Draw Reading
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Figure |: nvidia-smi can report drastically different power draw for the same CUDA Kernel, ranging from 80W to
200W. This is because nvidia-smi does not fully capture the power information on some GPUs. The figure shows
a CUDA program that runs for 325ms on an A100 GPU. The kernel is executed 4 times, and the green dotted line
indicates the beginning of each iteration.

Jim Yang et. al. (to appear in SC24 proceedings) https://arxiv.org/abs/2312.02741
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