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Solution Adaptive Mesh Re�nement UsingAdjoint Error AnalysisJens-Dominik M�uller�,Mihael B. GilesyOxford University Computing LaboratoryOxford, United Kingdom OX1 3QDA solution adaptive mesh re�nement method for unstrutured meshes is presented.The sensor is based on a smoothed estimate of the residual error, weighted by the theadjoint variables orresponding to the integral funtional of most engineering interest.The diÆulties in obtaining a smooth representation of the residual are disussed, andpreliminary results are presented for two-dimensional invisid subsoni and transonitestases.Solution adaptive mesh re�nement methods re�neor dere�ne the mesh loally aording to some errorriterion. Many pratial algorithms have been devel-oped for the Euler and Navier-Stokes equations on avariety of grid types.3, 4, 11{13, 15, 24 However, adapta-tion sensors are most often still based on �rst or seondderivatives of one or more ow variables. These sim-ple sensors have various problems. Firstly, the seletedsensor may not be a suitable hoie for the ow�eld orthe integral funtional one is interested in. E.g. a ve-loity di�erene sensor may exhibit large values dueto the gradients of a boundary layer, even though it issuÆiently resolved, while the veloity di�erenes in amore interesting vortial separation struture are lesspronouned. Seondly, the fat that these sensors arenot weighted, or are only rudely limited geometrially,leads to wasted re�nement in areas where errors arepresent but not relevant. E.g. a shear layer shed froman airfoil will be onveted downstream of its trailingedge. At one or two hord lengths from the trailingedge a poor resolution of the shear layer does not inu-ene the ow around the airfoil signi�antly and neednot be resolved. Thirdly, these sensors sometimes donot onverge for disontinuities. E.g. a shok will be-ome steeper and steeper with re�nement and requireall the re�nement resoures available, while there maybe more important features to resolve. This an a-tually lead to seemingly grid-onverged solutions thatare inorret.23Reently, great progress has been made in usingadjoint methods for a posteriori error estimation of hy-perboli, onvetion-di�usion, inompressible Navier-Stokes and ompressible Euler equations.2, 5, 6, 10, 17{22The use of adjoint methods is based on the fat thatin many alulations it is the error in integral out-�Res. OÆer, email: jdm�omlab.ox.a.ukyProfessor, email: giles�omlab.ox.a.ukCopyright  2001 by J.-D. M�uller, M.B. Giles. Published by the AmerianInstitute of Aeronautis and Astronautis, In. with permission.

put quantities suh as the lift and drag whih is ofmost engineering onern. The adjoint solution at eahnode an be viewed as the linearised e�et of a unitsoure term on the hosen funtional. In error analy-sis, this soure term orresponds to the residual error,whih measures the extent to whih the approximatenumerial solution does not satisfy the original di�er-ential equation. Thus, the adjoint solution gives theweighted e�et of this residual error on the funtionalof interest. Where the adjoint variables are very small,large residual errors will have little e�et on the fun-tional and so the grid need not be adapted. On theother hand, where the adjoint variables are very large,even small residual errors may have a signi�ant e�eton the funtional and therefore loal grid re�nementis desirable.Given this representation of the error in the fun-tional, the adaptive strategy is to re�ne those parts ofthe grid whih ontribute most signi�antly to the er-ror. Suh an approah was initially developed for �niteelement methods,2, 6, 10, 20 and more reently has beenused for �nite volume methods.21, 22 In the present pa-per we apply the approah to the �nite volume solutionof the 2D Euler equations on unstrutured grids. Par-tiular attention has to be paid to the estimation of theresidual. We will show that residuals evaluated piee-wise linearly over the elements exhibit a high frequenynoise to whih the standard �nite-volume or stabilised�nite-element methods are transparent. These highfrequenies have to be eliminated by smoothing beforea useful adaptation riterion is obtained.We begin with a review of the adjoint error analy-sis theory of Giles & Piere.8, 19 We then desribe indetail the steps required to apply the theory to numer-ial solutions of the Euler equations to obtain a usefulgrid adaptation riterion. Numerial results show thatthis leads to a sequene of adapted grids on whih thedesired funtional onverges muh more rapidly thanwith a more uniform grid re�nement sequene.1 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



Adjoint error analysisLet u be the solution of the nonlinear di�erentialequation N(u) = 0;in the domain 
, subjet to the nonlinear boundaryonditions D(u) = 0;on the boundary �
.The linear di�erential operators Lu and Bu are de-�ned to be the Fr�ehet derivatives of N and D,Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :and it is also assumed that the nonlinear funtional ofinterest, J(u), has a Fr�ehet derivative of the followingform,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h;Cu~u)�
:Here the inner produt (:; :)
 is an integral over thedomain 
, whereas the inner produt (:; :)�
 is an inte-gral over the boundary. The dimension of the operatorCu (whih may be di�erential) is required to equal thedimension of the adjoint boundary operator B�u, to bede�ned shortly.The orresponding linear adjoint problem isL�uv = g(u)in 
, subjet to the boundary onditionsB�uv = hon the boundary �
. The adjoint identity de�ning L�u,B�u and the boundary operator C�u is(L�uv; ~u) + (B�uv; Cu~u)�
 = (v; Lu~u) + (C�uv;Bu~u)�
;for all ~u; v; see the paper by Giles & Piere7 forhow this adjoint identity is derived for the Euler andNavier-Stokes equations.Now let uh; vh be approximate solutions whih havebeen obtained by solving some numerial disretisationof the partial di�erential equation and its boundaryonditions. It is assumed that they are suÆientlydi�erentiable that we may de�ne gh; hh byL�uhvh = gh; B�uhvh = hhNote the use of the Fr�ehet derivatives based on uhwhih is known, instead of those based on u whih isnot known.

By de�ning averaged Fr�ehet derivativesL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;so thatN(uh)�N(u) = Z 10 ���N(u+ �(uh�u)) d�= L(u;uh) (uh�u);and similarlyD(uh)�D(u) = B(u;uh) (uh�u);we then obtainJ(uh)� J(u)= (g(u; uh); uh�u) + (h;C(u;uh)(uh�u))�
� (gh; uh�u) + (hh; Cuh(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
� (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
In lines 3 and 6 of the above derivation, the errorswhih are introdued are extremely small, propor-tional to either kuh�uk2 or kuh�uk kvh�vk. Hene,this result shows that the di�erene between the fun-tional based on the approximate solution, J(uh), andthat based on the true solution, J(u), an be expressedto leading order as the sum of two terms, related tothe residual errors in satisfying the nonlinear di�eren-tial equation and its boundary onditions. In pratie,the dominant error of the two is usually the �rst,(vh; N(uh)), so we see that the signi�ane of the ad-joint solution is that it gives the weighted e�et of theresidual error N(uh) on the funtional of interest.Giles & Piere have used this analysis to orret theomputed value for the funtional and thereby obtaina higher order of auray.8, 19 Here though we hooseto use it to motivate an adaptive strategy. Writing theerror in the funtional as a sum of terms from eah ellin the grid, (vh; N(uh)) =X� (vh; N(uh))� (1)the idea is that we will adapt any ell � for whih(vh; N(uh))� is greater than some threshold.2 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



Approximation of the Residual ErrorThe steady two-dimensional Euler equations areN(u) � �F (u)�x + �G(u)�y = 0: (2)F and G are the usual onservative uxes in the x andy diretions.Given an approximate solution uh, the residual uxdivergene error on a partiular triangular ell Ei isde�ned asfelemi = ZZEi r � (F;G) dA = Z�Ei(F;G) � n ds (3)Given values of uh at the orner nodes of Ei, the valuesof F and G on the boundary are obtained by linearinterpolation. For faes on a solid boundary, suh asan airfoil surfae, this is modi�ed to require that thereis no mass ux through the faeThe resulting plot of the pieewise onstant resid-uals for eah element is shown in �gure 1. One anlearly see the presene of a high-frequeny heker-board mode. Although not expeted, this result is nottoo surprising, and it is also seen in the 1D results ofVenditti and Darmofal.21 The underlying nonlinearsolution was produed with a node-entered �nite-volume ode.14 The disrete ux balane is driven tozero at the nodes where ontributions from elementswith opposite signs anel. To �rst order, entered�nite-volume shemes, entral ell-vertex shemes and�nite-element Galerkin shemes are idential on trian-gles.1 Thus, the methodology presented here appliesin general, although the problem of noisy elementresiduals is muh more pronouned in �nite volume

Fig. 1 Mass ux divergene per element, NACA0012, Ma .4, 2Æ angle of attak.

disretisations where upwinding leads to a highly non-linear arti�ial visosity.A sensor based on these noisy residuals will ag el-ements in a hequerboard mode, seleting every otherelement. This in turn destroys the regularity of themesh and is likely to inrease the numerial errors.Sine the ow solution itself does not have this he-querboard error, it is not appropriate to be onernedwith this residual mode when adapting the grid.One remedy is to also re�ne any elements with 2 ormore neighbors whih are agged for re�nement. Anyhanging nodes are removed by tessellation.16 In thisase the smoothing of the grid adds a few extra ele-ments. This strategy is adopted for all of the examplesin this work.Smoothing an also be applied to the elemental uxdivergene. The solver for a node-entered disretisa-tion drives nodal residuals to zero, thus the residualux divergene at the nodes is a smoother quantity. AGalerkin sheme or node-based �nite volume shemedistributes an equal share of the residual of element ito eah of its three nodes Ni. The ux divergene atnode j is then the sum of the ontributions from the setof triangles Tj of whih it is a node, orresponding toa dual ontrol volume whose area is Aj =Pi2Cj 13Ai.The gathering of the elemental residual to the nodesan be ombined with an area-weighted satteringbak to the elements, to form a smoothing operationwhih an be applied repeatedly.fnodej = Xi2Cj 13felemi (4)felemi = Xj2Ni AjAi fnodej (5)Note that the total residual error is onserved in thisproess. Figure 2 shows vT f after one satter-gatherstep. The resulting residual errors are still very noisybut possibly suitable for adaption. After 30 steps weobtain a smooth approximation to the residual error(Figure 3). To further inrease robustness the sensoris evaluated as jvj jf j rather than jvT f j. The resultsshow little di�erene between the two forms.The smoothing results in ompat regions of re�ne-ment where the area of the interfaes between adaptedand non-adapted elements is small and thus the meshirregularity introdued by the re�nement is minimal.However, as the results in the next setion will show,the smoothing also smears out some fainter featuresand best results are ahieved with a small number ofsmoothing sweeps.If estimated with suÆient auray the produtvT f an also be used to orret the funtional to obtainsuperonvergene on the �nest adapted grid.8 SinevT f is an inner produt over the entire domain, osil-lations will average out and no smoothing is neessaryin this ase.3 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



Fig. 2 vT f per element, after one satter-gatherstep, log of absolute values.

Fig. 3 vT f per element, after 30 satter-gathersteps, log of absolute values.ExamplesSubsoni airfoilThe following examples show the subsoni owaround a NACA 0012 pro�le at a Mah number of 0.4and an angle of attak of 2Æ. Figure 10 ompares fourdi�erent re�nement strategies. The left olumn showsre�nement based on pressure di�erenes in eah ele-ment. The pressure sensor is very appropriate for thisow; the ow is isentropi and pressure driven, more-over the pressure is a very smooth �eld. The seond

Fig. 4 Subsoni NACA airfoil, adjoint to the en-ergy equation.olumn shows re�nement using an unweighted sum ofresiduals, the third olumn the residuals weighted withthe adjoint, the fourth olumn the adjoint weightingwith 30 smoothing iterations. Every adaption step re-�ned the elements with a sensor value one standarddeviation above the average value - and all elementswith two or more re�ned neighbors. In eah olumn,the �gure shows the �rst adaption and the Mah num-ber ontours of the solution, the seond adaption andthe �fth adaption and Mah ontours, respetively.The pressure sensor is ideal for this ase and re-�nes in a smooth way where it is needed: at theleading and trailing edges. It an be seen from thelarge values in the adjoint solution in Figure 4 thatthe lift oeÆient is most sensitive to perturbations inthese areas. As opposed to the unweighted residuals,the adjoint weighted residuals do enter the adaptionaround the pro�le. Of the total 11% re�ned elementson the �rst level, more are situated near the pro�le.The jvj jf j smoothened 30 times enters the adaptationonly around the leading edge. The failure to re�ne thetrailing edge leads to the overshoot in lift preditionshown in Figure 5.The Mah ontours after the �rst adaptation showa pronouned layer of numerial entropy generated atthe leading edge, leading to an unphysial wake. Theweighted unsmoothened adjoint sensor does best here.After the �fth adaption the unweighted residual sensorhas re�ned the domain more or less evenly. Visuallythe Mah ontours show no di�erenes between thesensors exept for the pressure and smoothened adjointsensors that apply no re�nement further away from thewing and exhibit slightly less smooth ontour lines inthose areas.The main interest in adaptive methods is to improve4 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



level: 1 2 3 4 5sensor: size err size err size err size err size errp: 1.37 -0.0173 1.80 -0.0021 2.22 0.0008 2.58 0.0013 2.58 0.0013jvj jf j: 1.40 -0.0180 1.77 -0.0020 2.25 -0.0001 2.94 0.0002 4.14 0.0013jvj jf j, 10 sm: 1.32 -0.0176 1.92 -0.0036 2.80 -0.0007 4.13 0.0003 5.81 0.0005jvj jf j, 30 sm: 1.46 -0.0082 2.08 0.0171 3.38 0.0134 5.08 0.0091 7.21 0.0064f : 1.50 -0.0172 2.49 -0.0028 4.14 -0.0007 6.93 -0.0005 12.19 -0.0001p, 30%: 1.94 -0.0192 3.79 -0.0032 7.54 0.0005 15.14 0.0010 30.26 0.0003jvj jf j, 30%: 2.14 -0.0195 4.78 -0.0040 10.45 -0.0002 23.24 0.0000 52.24 0.0001full: 4,00 -0.0200 16.00 -0.0042 64.00 -0.0007 256.00 -0.0002 1024.00 0Table 1 Convergene of the lift oeÆient with re�nement for the subsoni NACA 0012. Shown arethe grid size relative to the initial grid of 1764 elements and the error in L relative to the fully re�nedsolution. Bold numbers indiate a drop below 1% error, italis below 0.1%.
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Fig. 5 Grid onvergene of the lift for the subsonitestase. The horizontal axis is the inverse of thenumber of elements in the grids.the eÆieny of a numerial method. To assess theperformane of the sensors, Figure 5 plots the lift o-eÆient L over the inverse of the number of elementsin eah grid. The solid line represents full re�nementand the 5th level fully re�ned grid with 1.8 million ele-ments is taken to be the referene solution. The initialgrid with 1764 triangles is at the bottom right, themost eÆient methods reah the referene value withthe lowest number of elements.Four sensors exhibit similar grid onvergene andonverge most rapidly: the pressure sensor, and theadjoint sensors with no smoothing or 10 iterations.Their onvergene is also robust, as opposed to the ad-joint sensor with 30 smoothing iterations whih over-shoots the referene value. All of these sensors wereused to ag elements one mean deviation above theaverage. The onvergene to the referene solution isnot as rapid if re�nement with a �xed fration of 30%is done.Quantitative results are shown in Table 1. The so-
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Fig. 6 Grid onvergene for the transoni testase.lutions are onverged to a drop in the L2 norm of theresiduals of about 7 orders of magnitude. All of thesolutions exept the highly smoothened adjoint dropbelow 1% error on the seond, below 0.1% on the thirdgrid. However, the ost is very di�erent. While thepressure sensor and the adjoint methods need a gridjust over twie as �ne as the initial one to reah 0.1%,the unweighted residual sensor and the sensors usedwith �xed fration re�nement require between twieand �ve times as muh as the optimal methods.Transoni airfoilThe testase presented in Figure 11 is the transoniow over a NACA 0012 pro�le with Mah number of0.8 and an angle of attak of 1:25Æ. It exhibits a strongshok on the upper and a weaker one on the lowersurfae, resulting in a di�erene of total pressure arossthe wake.In the previous setion the pressure sensor was alear winner: at minimal ost it provided the fastestgrid onvergene. This will not be the ase in generalsine, for example, a pressure sensor is insensitive to5 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



level: 1 2 3 4 5sensor: size err size err size err size err size errjvj jf j: 1.37 0.0025 1.76 -0.0036 2.35 0.0049 3.40 -0.0018 5.25 -0.0001jvj jf j, 10 sm: 1.43 0.0540 1.97 0.0680 2.88 0.0316 4.51 0.0148 7.28 0.0108jvj jf j, 30%: 2.15 -0.0005 4.83 0.0093 10.79 0.0101 23.56 0.0041 52.10 0.0007p: 1.47 0.0254 1.80 0.0390 2.14 0.0438 2.63 0.0440 3.47 0.0442p, 30%: 1.98 0.0030 3.91 0.0108 8.06 0.0059 16.35 0.0021 33.00 -0.0007full: 4.00 0.0049 16.00 0.0113 64.00 0.0075 256.00 0.0034 1024.00 0Table 2 Convergene of the lift oeÆient with re�nement for the transoni NACA 0012. Shown arethe grid size relative to the initial grid of 1764 elements and the error in L relative to the fully re�nedsolution. Bold numbers indiate a drop below 1% error, italis below 0.1%.level: 5 6 7 8 9sensor: size err size err size err size err size errjvj jf j : 5.25 -0.0001 8.64 -0.0066 15.23 -0.0055 27.65 -0.0055 51.67 -0.0031jvj jf j, max 4: 5.80 0.0018 9.39 0.0033 15.22 0.0052 23.48 0.0041 39.49 0.0041p: 3.47 0.0442 5.00 0.0443 7.72 0.0444 12.50 0.0444 20.88 0.0444p, max 4: 5.13 0.0241 8.19 0.0114 13.02 0.0046 19.58 0.0022 30.25 0.0022Table 3 Convergene of the lift oeÆient for the transoni NACA 0012. Shown are grid size and errorin lift oeÆient relative to the fully re�ned solution of level 5, for both the pressure and the adjointsensor, with and without limiting re�nement to four levels.

0 0.5 1 1.5 2 2.5 3

x 10
−4

0.306

0.308

0.31

0.312

0.314

0.316

0.318

0.32

1./elements

C
L

v.f distr   
v.f dist lim
v.f, s3     
v.f, s10    
v.f 30 pct  
v.f na      
p distr     
p dist lim  
p 30 pct    
full        

Fig. 7 Grid onvergene for the transoni testase;enlargement around the fully re�ned solutions.shear layers. Moreover, the magnitude of the sensor re-mains O(1) around shoks, independent of re�nement.As an be seen in Figure 11, the shok is over-resolvedin the �nal mesh, that is, it is re�ned beyond what isneeded for the aurate predition of a funtional. Itabsorbs re�nement resoures needed in other parts ofthe domain to resolve features whih are less visibleto the pressure sensor suh as the shok on the lowersurfae or the leading and trailing edges.This de�ieny manifests itself in the grid onver-gene shown in Figure 6. The pressure sensor fails toonverge toward the solution of the fully re�ned grid.

If the depth of re�nement is limited to, say, 4 lev-els, re�nement resoures are made available to weakerfeatures after the 4th level and the pressure sensordoes onverge toward the fully re�ned solution. Ta-ble 3 shows the lift onvergene for levels 5 to 9 withand without limiting the maximum depth to 4 levels.Clearly this not a reommended proedure; it merelyillustrates where the problem with the pressure sensorlies. Note that even with limited re�nement levels theerror stagnates after 8 levels of re�nement at around0.2%.All other sensors inluding the adjoint ones exhibita \hump" in the onvergene of the lift. The lift in-reases in the �rst adaptation stages when the uppershok is re�ned and the shok moves aft. It dereaseswhen the re�nement starts to detet the weaker lowershok. The same phenomenon appears with the fullyre�ned solution; the lift dereases after the seondadaptation. Considering the \errati" onvergeneeven on the fully re�ned grid, it is not too surprisingthat the adjoint sensors exhibit a similar behaviour.However, what an be seen is that they do onvergetoward the fully re�ned solution, albeit at a slow rate.This an be attributed to the fat that the adjointsensor overly re�nes the shok on the upper surfae.Figure 8 shows uts of the nodal residual aross theshok on the upper surfae. It an be seen that themagnitude of the osillations dereases with mesh re-�nement, but for the �rst adaptation levels they arelarger than the residuals near the leading edge. Theadjoint variables are ontinuous and have a zero gradi-ent in a 1-D shok7, 9 and onsequently the osillationsin the residual error anel to a large extent on ei-ther side of the shok. Smoothing does redue the6 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



0:60 0:62 0:64 0:66�4:00:04:0�10�3 lvl 3lvl 4lvl 5
Fig. 8 Unweighted sum of residuals at levels 3, 4,5, ut aross the shok at y=.25. Solid line withsymbols is level 3, dashed line level 4, dotted linelevel 5.

0:60 0:62 0:64 0:66�4:00:04:0�10�3 0 g-s3 g-s10 g-s
Fig. 9 Unweighted sum of residuals at level 3, utaross the shok at y=.25. Solid line with symbolsare 0 smoothings, dashed line 3 smoothings, dottedline 10 smoothings.magnitude of these osillations (see Figure 9) but alow frequeny perturbation remains that triggers theadaptation. The plot in Figure 11 orresponding to theadjoint sensor smoothened 10 times shows the broad-ening of the re�nement around the shok due to thesmoothing. On the other hand smoothing does smearout the weaker shok suh that is not reognised bythe adaptation.It an be onluded that the adjoint sensors do pro-due a onverging sensor for shoked ows, however ata rate that is not optimal.ConlusionsMesh re�nement based on adjoint sensors has beenpresented. The advantages of adjoint sensors over on-ventional �nite di�erene sensors have been desribed.DiÆulties with the smoothing of the estimatedresiduals are disussed and a solution was presented.Results show that a smoothened adjoint sensor hasbetter grid onvergene for an integral funtional thansensors without adjoint weighting or smoothing.As presented, the method makes no assumptions

about the numerial method underlying the primaland adjoint solutions. It applies generally to three-dimensional hybrid meshes, and is apable of beingextended to the Navier-Stokes equations.AknowledgementsThis researh has been supported by funding fromthe Engineering and Physial Sienes Researh Coun-il under grants GR/K91149 and GR/L95700.We also aknowledge the ontributions of M.C. Dutaand N.A. Piere to the development of the adjointode.

7 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



Fig. 10 Grid re�nement based on pressure (left), unweighted residuals (middle left), unsmoothened jvj jf j(middle right), jvj jf j smoothened 30 times (right). The rows show �rst adaption and their Mah ontours,seond adaption and �fth adaption with Mah ontours.8 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550



Fig. 11 Re�nements for the transoni ow over a NACA 0012. Shown are grids and Mah ontours ofthe �fth re�nement level. Top row: pressure, pressure after 9 levels of re�nement, pressure with 30%re�nement, initial grid and solution after 5 full re�nements. Bottom row: jvj jf j, jvj jf j after 9 levels, jvj jf j30% and jvj jf j with 10 residual smoothing iterations.
9 of 10Amerian Institute of Aeronautis and Astronautis Paper 2001-2550
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