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Two error estimation approaches are presented for the purposes of bounding or correcting
the error in functional estimates such as lift or drag. Adjoint methods specifically quantify
the error in a particular output functional due to residual errors in approximating the so-
lution to the partial differential equation. Defect methods can used to bound or reduce the
error in the entire solution, with corresponding improvements to functional estimates. The
approaches may be used separately or in combination to obtain highly accurate solutions
with asymptotically sharp error bounds. The adjoint theory is extended to handle flows
with shocks and numerical experiments confirm 4th order error estimates for a pressure
integral of shocked quasi-1D Euler flow. Numerical results also demonstrate 4th order
accuracy for the drag on a cusped lifting airfoil at subsonic conditions.

Introduction

Integrals of solutions to partial differential equations
(PDEs) provide crucial feedback on system behav-
ior in many areas of engineering and science. In
many settings, integral functional values are the pri-
mary quantitative outputs of numerical simulations
to PDEs. In the field of computational fluid dynam-
ics, lift and drag are computed as surface integrals
of pressure and shear forces. The desire for efficient
computational algorithms that produce reliable and
accurate lift and drag values has motived a great deal
of research during the last several decades. Integral
functionals also arise in other aerospace areas such
as the calculation of radar cross-sections in electro-
magnetics!.

Modern numerical methods for PDEs make it pos-
sible to solve nonlinear systems with discontinuous
solutions in complicated computational domains.
Nonetheless, limited computational resources make
it desirable to compute solutions to the minimum
allowable accuracy. Supposing that the output of
most interest is an integral functional, we arrive at
two related challenges. For reliability, it is desir-
able to compute a bound on the remaining error in
the functional. For efficiency, it is advantageous to
compute the functional value to a higher order of ac-

*ATAA Member
TAIAA Member
ATAA Paper 2003-3846. 16th ATAA Computational Fluid
Dynamics Conference, Orlando, FL, 2003. Copyright ©2003
by N.A. Pierce & M.B. Giles. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permis-
sion.

curacy than the overall solution on which it is based.

The present work describes two approaches to er-
ror bounding and error correction for functional es-
timates. Depending on the priorities of the engi-
neer or scientist, an estimate of the leading term in
the functional error may either be used to provide
an asymptotically sharp error bound, or to remove
the leading error term and obtain a superconvergent,
estimate. The first approach relies on the adjoint
or dual PDE, whose solution describes the sensitiv-
ity of the functional of interest to residual errors
in satisfying the original primal PDE . Smooth re-
constructions of the primal and dual solutions are
employed so the method is applicable equally to fi-
nite difference, finite volume or finite element dis-
cretizations®—*. The treatment of problems contain-
ing shocks requires careful consideration, and is ad-
dressed in this present work. A second approach uses
the reconstructed primal solution to drive a defect
iteration that improves the accuracy of the under-
lying baseline solution*5. The resulting corrected
solutions can be used to estimate the leading error
term in the original functional estimate.

Adjoint sensitivities may also be employed as the
basis for optimal adaptive meshing strategies®: 7 that
seek to maximize the accuracy of the functional es-
timate for a given computational cost. The issues of
error bounding and adaptive error control have re-
ceived particular attention in the finite element com-
munity*-8-2', where the use of the adjoint PDE for
error analysis was first investigated. The orthogo-
nality properties of most finite element methods en-
sure that functional estimates are naturally super-



convergent. The present approach may be used to
enhance the natural finite element superconvergence
3 but it is also a generalization to other approxima-
tion methods.

The study of error convergence is particularly
challenging if the true solution is unknown. To facil-
itate the study of functional accuracy for interesting
physical systems and nontrivial computational do-
mains, we formulate modified PDEs by postulating
a solution and evaluating the source term that is
required to make this the solution of the modified
equations. If the postulated solution is close to a
solution of the original PDE’s, then the source term
will be small and the modified problem will exercise
the numerical method in a very similar manner to
the true physics. In the present work, we describe
modified Euler problems for two-dimensional flow in
a duct, flow over a cylinder, and flow over a lifting
Joukowski airfoil. These test cases have been invalu-
able for debugging error estimation algorithms.

Flows with shocks pose a major challenge to both
adjoint calculations and adjoint error estimation.
The correct formulation of the inviscid adjoint equa-
tions must account for linearised perturbations to
the shock location. This approach reveals that the
adjoint equations corresponding to the steady quasi-
1D Euler equations require an interior boundary
condition at the shock location ?>. Numerical re-
sults using either the “continuous” approach (ap-
proximating the analytical adjoint equations, using
numerical smoothing in place of the shock boundary
condition) or the “discrete” approach (linearising
and transposing the discrete flow equations) yield
convergent results?s.

Ulbrich has recently developed the analytical for-
mulation of the adjoint equations for unsteady 1D
equations with scalar fluxes, such as Burgers equa-
tion 2425, In this case, numerical results 2¢ indi-
cate that the “discrete” adjoint approach does not
necessarily yield convergent results, unless one uses
numerical dissipation that leads to an increasing
smoothing of the shock as the mesh is refined. It
seems likely that there will be similar problems
with the convergence of solutions to the steady ad-
joint Euler equations in two dimensions, although
such convergence errors may be very small for weak
shocks.

In addition to these problems in calculating ad-
joint solutions, there is the further problem for ad-
joint error estimation that any smooth reconstructed
solution must necessarily have an O(1) local error
near the shock so that the residual error is likely
to increase without bound as the grid is refined.
This undermines the whole basis for adjoint meth-

ods, which assume small errors, allowing a linearised
treatment for error estimation. Here, we describe
a new approach that circumvents these difficulties,
by approximating the inviscid shock as the limiting
structure of a viscous shock. Adjoint error estimates
subsequently account for the error introduced by the
nonzero viscosity and for the numerical error in ap-
proximating the viscous shock.

We begin by describing error bounding and correc-
tion alternatives using adjoint and defect methods.
The approaches are then formulated for linear and
nonlinear PDEs with inhomogeneous boundary con-
ditions and bulk and boundary functionals. Addi-
tional theory is developed for the treatment of shocks
and then numerical demonstrations are provided for
smooth and shocked quasi-1D Euler flows, 2D duct
flow, and flow over a lifting airfoil.

Error Bounding and Correction

Adjoint and defect methods based on smooth solu-
tion reconstructions are employed to bound and cor-
rect errors in estimates of integrals functionals. The
basic methods and alternatives are now introduced
in the simplest scenario of a linear differential equa-
tion with homogeneous boundary conditions and a
bulk functional.

Adjoint Methods
Consider the linear differential equation
Lu=f

subject to homogeneous boundary conditions on the
domain . Suppose we are interested in evaluating
the linear functional (g,u), where (.,.) denotes an
integral inner product on . This functional may
equivalently be evaluated in the dual form (v, f),
where v is the solution to the dual or adjoint PDE

L*v =g,
subject to homogeneous adjoint boundary condi-
tions. The equivalence of the primal and dual func-

tional representations follows from the definition of
the adjoint operator

(v, f) = (v, Lu) = (L*v,u) = (g, u).

The dual form of the functional indicates that the
adjoint solution v represents the sensitivity of the
functional to the primal source term f.

Discrete approximate primal and dual solutions,
Up and Vj, are computed on a mesh of average in-
terval h. Smooth reconstructions are then obtained

up = BpUp, vp = RpVh,



where Rj is a reconstruction operator (e.g. linear
or cubic spline interpolation). The degree to which
these functions do not satisfy the original PDEs can
then be quantified by the primal and dual residual
errors defined by
Lup, — f = L(up—u), L vy, —g= L*(vp—v).

Assuming that the underlying physical solution is
sufficiently smooth, the anticipated order of conver-
gence for the functional estimate depends on:

n, the order of the operator L,
p, the order of the discrete solution,
r, the order of the reconstruction.

Intuitively, the solution and residual errors are ex-
pected to satisfy

llun—ull, [lon—vll =

O (nminten)) (1)

| Lun—£1l, | L*on—gl| 0 (hmiﬂwfn)) ’

where the n differentiations required to evaluate the
residual errors account for their reduced accuracy.
In practice, these results may only hold in certain
norms.

The error in the functional value based on the re-
constructed primal solution may be expressed as
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Introducing the reconstructed adjoint solution vy
gives

(g,u) — (9,un) = (vn, f—Lup) + (v—o4, f—Lup).

The first term on the right hand side can be evalu-
ated, since f, up and vy, are all known. The second
term cannot be evaluated because v is not known,
however from 1 it can be a factor O(h™"?") smaller
than the first. Therefore we can use the first term
as an error bound,

(9, w) = (g, un)| < |(vn, f—Lun)| (2)

which is sharp asymptotically as h decreases, but
may be violated for finite h. Multiplying the error
bound by any constant greater than unity will ensure
that it is a valid bound for sufficiently small h, but
it is not possible in general to say how small A must
be.

Alternatively, the first term can be moved to the
left hand side to obtain a more accurate functional
estimate

(Q,U)—{(g;uh) + (vn, f — Luh)} = (v—vn, f—Lup).

®3)

As a concrete example, consider a one-dimensional
Poisson problem

d2

L=L"=—
dz?’

f=2*(1-2)% g=sinnz
with homogeneous boundary conditions on z €
[0,1]. The problem is discretized using second or-
der finite differences and solution reconstruction is
performed using cubic spline interpolation (n = 2,
p =2, r =4). Integrals are evaluated using 3-point
Gauss quadrature.

(From estimates (1), the reconstructed primal and
dual solutions are O(h?). Also, the functional esti-
mate (g, up) has the same order of accuracy as the
primal solution on which it is based. The remainder
term in (2) and (3) is of order

|(v—wp, f—Lup)| =
— o).

0 (hmin(2,4)+min(2,4—2))

Using adjoint error bounding, we expect a 2nd or-
der functional estimate with an asymptotically sharp
error bound that itself contains a 4th order error.
Alternatively, using adjoint error correction, we ex-
pect a 4th order functional estimate. These two al-
ternatives are illustrated by the numerical results
in Figure la. Lines of slope —2 and —4 are drawn
through the error value on the finest mesh to assist
in determining the convergence rate. Note that the
error bound is indistinguishable from the remain-
ing error, as it is roughly 10? times more accurate
than the functional estimate on the coarsest mesh,
increasing to roughly 10° times more accurate on
the finest mesh. Using adjoint error correction, rig-
orous a priori analysis of the errors in the primal
and dual numerical solutions as well as the errors
associated with the spline reconstruction confirms
that the functional accuracy should in fact double
in accuracy from 2nd to 4th order?’.

Depending on the reconstruction method, it is
possible that the inner product (v—wp, f— Luy) or
equivalently (g— L*vp,u—wuy) will exhibit a conver-
gence rate that is faster than the product of the con-
vergence rates of its components. This results from
cancellation effects that have been observed and ana-
lyzed in the nonlinear case of smooth quasi-1D Euler
flow?".



Error Convergence using Adjoint Methods
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Figure 1. Functional estimates for a 1D Poisson problem:
a) Adjoint error bounding and correction, b) Defect error
bounding and correction, c) Defect error correction followed
by adjoint error bounding or correction. The superimposed
lines have slopes of —2,—4 or —6 as suggested by the rate
descriptions in the legends.

Defect Methods

As an alternative to adjoint methods, solution re-
construction may be used to drive a defect correc-

tion process. If the original numerical solution is
obtained by solving the discrete problem

LU, =Thf

where T}, is an operator that transfers the continuous
source term f to discrete source terms associated
with the each of the unknowns in Up,, then the defect
correction iteration may be written as

LhAUh = Th(f—Luh) (4)
Ugn = up+ RpAUp,

where Rj is the linear reconstruction operator 4 5.
Note that this defect correction procedure differs
from traditional defect correction approaches that
evaluate Luj, using a higher order discrete opera-
tor L} applied to the low order solution U}, (instead
of the differential operator L applied to the recon-
structed solution up).

If the defect iteration is convergent, the final ac-
curacy of the defect corrected approximate solution
ugp, 1S determined mot by the low order discrete op-
erator Ly used to obtain the solution, but instead
by the interpolation accuracy of the reconstruction
method used to form uy and ugy,.

Using the reconstructed defect solution ugp, the
error in the original functional estimate may be rep-
resented

(9,u) — (9,un) = (9, uan—un) + (g, u—uqn)

where the first term on the right hand side may be
evaluated to provide an asymptotically sharp error
bound

(g, w) = (9, un)| < |(g; wan—un)|

or subtracted to give a more accurate functional es-
timate

(g,u) — (9,un) — (g, uan—un) = (9,u—uan). ()

For the previously considered 1D Poisson problem,
defect correction of the primal solution using cubic
spline reconstruction yields 4th order solution errors
and consequently a 4th order functional estimate.
The behavior for error bounding and correction is
illustrated in Figure 1b.

Combined Adjoint and Defect Methods

Combined approaches yield even sharper error esti-
mates. The remaining error in (5) may be expressed
in the dual form

(9,u) — (g,un) — (9, uan—un)



We introduce the reconstructed dual solution vy,

(gau) - (gauh) - (gaudh_uh)
= (vn, f—Luan) + (v — vn, f— Luan).

and evaluate the first term on the right hand side to
obtain either the asymptotically sharp error bound

[(g,u) = (g,un) — (9, uan—un)| < |(Vn, f—Luqn)|

or the more accurate functional estimate

(g,u) — (g9,un) — (g, uan—un) — (vn, f — Luan)
= (v—wn, f—Lugn)
= (9g—L*vp,u—ugp). (6)

For the 1D Poisson problem, the order of the re-
mainder term may be estimated as

(9 — L*vp,u —ugp) = O (hmi“(2’4*2)+min(4’4))

= O(hd).

Note that an estimate based on the alternative dual
representation of the remainder in (6) would appear
to be only O(h*). Integration by parts to obtain
the primal form shows that this estimate is overly
pessimistic. Hence, in the numerical results of Fig-
ure 1c, we observe either a 4th order functional es-
timate with a sharp error bound that itself contains
a 6th order error, or else a 6th order functional esti-
mate without a computable bound.

Linear Formulation

Adjoint Error Estimates

We now extend the adjoint error estimation ap-
proach to problems with inhomogeneous bound-
ary conditions and output functionals that contain
boundary integrals+.
Let u be the solution of the linear differential equa-
tion
Lu=f,

in the domain (2, subject to the linear boundary con-
ditions
Bu =e¢,

on the boundary 9). In general, the number of
boundary conditions described by the operator B
may be different on different parts of the boundary
(e.g. inflow and outflow sections for hyperbolic prob-
lems).

The output functional of interest is taken to be

J = (9,u) + (h, Cu)o,

where (.,.)sq represents an integral inner product
over the boundary ). The boundary operator
C may be algebraic (e.g. Cu = u) or differential
(e.g. Cu= g—Z). As with the boundary condition op-
erator B, the boundary functional operator C' may
have different numbers of components on different
parts of the boundary. The corresponding compo-
nents of h may be set to zero on those parts of
the boundary where the functional does not have
a boundary integral contribution.
The corresponding linear adjoint problem is

L*'v =g,
in €, subject to the boundary conditions
B*v = h,

on the boundary 0. The fundamental identity
defining L*, B* and the boundary operator C* is

(v, Lu) 4+ (C*v, Bu)sq = (L*v,u) + (B*v, Cu)sq,

for all u,v. This identity is obtained by integration
by parts and it implies that the primal functional
operator C' and the adjoint boundary condition op-
erator B* contain an equal number of components at
any location on the boundary. The construction of
the appropriate adjoint operators for the linearised
Euler and Navier-Stokes equations is described else-
where28—30,

Using the adjoint identity, the equivalent dual
form of the output functional is

J = (0, f) + (C7v, €)aq.

Given approximate reconstructed solutions uy and
vy, the error in the functional may be expressed

(g,u) + (h,Cu)sq — (g,un) — (h, Cup)aq

= —(L*vh,uh—u) - (B*Uh,C(uh—u))aQ

+(L*vp—g,un—u) + (B*vp—h, C(up—u))sa

= —(vn, L(up—u)) — (C*vn, B(up—u))sq
+(L*(vh—v), up—u) + (B*(vh—v), C(ur—u))sn

= —(vh,Luh—f) - (C*Uh,Buh—e)aQ
+(vn—v, L{un —u)) + (C* (vn —v), B(un—u))aq-

In the final result, the first line comprises com-
putable adjoint error estimates that describe the in-
fluence of the bulk and boundary residuals on the
functional of interest. These terms may either be
used to obtain a more accurate solution or to pro-
vide an asymptotically sharp bound on the error in
the original functional estimate. The second line de-
scribes the higher order remaining error.



Defect Error Estimates

The linear defect iteration (4) can be generalized
to inhomogeneous boundary conditions by ensur-
ing that the reconstruction satisfies the analytical
boundary conditions at the discrete mesh points lo-
cated on the boundary.

Nonlinear Formulation

This section describes the extension of the linear the-
ory to nonlinear operators and functionals® *. It be-
gins with some definitions and observations regard-
ing the linearization of functions and operators.

Preliminaries

If u is a scalar variable and f(u) is a nonlinear scalar
function then a standard Taylor series expansion
gives

fluz) = f(ur) + f'(w) (ua—u1) + O((uz—w1)?).

Alternatively, an exact expression without remain-
der terms is obtained by starting from

d !
@f(ul-i-ﬁ(uz—ul)) = " (u1+0(u2—u1)) (us—uy),

and then integrating from =0 to 8 =1 to give

Fluz) = f(ur) = F(ul,w) (ug — u1),

where
o 1
I (un un) E/ f' (w1 +6(us —ur)) do.
0

For the nonlinear operator N (u), the correspond-
ing linearised operator L, is defined formally by the
Fréchet derivative

N i) — N
L, = lim Y +e0) = N(w)
e—0 g
The subscript v denotes that L, depends on the

value of u around which N (u) is linearized. For ex-
ample, if

0 8%u

N(u) = oz (%uz) Y 9x2
then 5 24
9oy, Y

L, = 2 (u) —v RICE

Starting from

d
@ N (U1+0(UQ—U1)) = Lu1+0(u27u1) (UQ_Ul)

and integrating over 6
N(’LLQ) - N(ul) = Z(ul,uz) (UZ_UI);

where

1
L(uliu2) :/0 L|u1+0(u2—u1) da

Thus f(ulm) is the average linear operator over the
“path” from wu; to us.

Adjoint Error Estimates

Let u be the solution of the nonlinear differential
equation
N(u)=0

in the domain 2, subject to the nonlinear boundary
conditions
D(u)=0

on the boundary 0.

The linear differential operators L, and B, are
defined by the Fréchet derivatives of N and D, re-
spectively,

It is assumed that the nonlinear functional of in-
terest, J(u), has a Fréchet derivative of the following
form,

lim LD =IO o )+ (b, Cui)oe.

e—0 €

where the operator C,, may be algebraic or differen-
tial.
The corresponding linear adjoint problem is

Lv=g(u)
in €, subject to the boundary conditions
Biv=nh

on the boundary 0€2. The adjoint identity defining
Ly, B; and the boundary operator C} is

(1), Luﬁ) + (C;:U, Bu'ﬁ)(-)g = (LZU, ﬂ) + (B;'U, Cuﬂ)ag,

for all @4, v. This expression implies that B} has the
same number of components as C(u) at any point
on the boundary.



We now consider approximate reconstructed pri-
mal and dual solutions up and vp,. The error analysis
that follows makes use of the quantities

* * *
LuthH Buhvh, Cuhvh,

which are computable since the linear operators are
defined based on uy, rather than u. The analysis also
requires averaged Fréchet derivatives defined by

1
L(uﬂuh) = /0 Llu—i—O(uh—u) de’
. 1
B(U,Uh) = /0 B|u+0(uh—u) da’
. 1
C(U,Uh) = A C|u+9(uh7u) de’
1
guw) = [ gt bun-w) b,
0
so that
N(up)—N(u) = Z(u,uh) (up—u),
D(uh) _D(u) = E(u,uh) (uh _u)7
J(uh)_‘](u) = (g(ua Uh),Uh—U)

+ (haa(u,uh)(uh_u))aﬂ'
Adjoint error estimates may then be expressed

J(up) — J(u)
= (g(u, un), un—u) + (b, C(y,up) (un—u))s0

= (L3, vh, un—u) + (By, vh, Cu, (un—u)) oo
— (L, vn—9(u, up), up—u)
—(h, (Cup, = Cuyun)) (un—u)) a0
_(B;hvh _h7 Cuh (uh _u))BQ

= (vn; Lu, (un—u)) + (C}, vh, By, (un—u))oe
—(Ly, vn—g(u,up), up—u)
_(h7 (Cuh _6(u,uh))(uh _u))f)Q
—(B;';hvh —h, Cuh (uh —u))ag

= (vh;z(u,uh)(uh_u)) + (C;hvhag(u,uh)(uh_u))aﬂ
—(Lzhvh—ﬁﬁhuh), up—u)

= (v, N(un)) + (C5, vn, D(un))on
—(Ly, v —9(u, up), up—u)
—(h, (CUh _C(U,uh))(“h —U))ag
—(B;,,vh—h, Cu, (ur—u))sq
+(Uh> (LUh _L(u,uh))(uh _u))
+(C;:h Uhs (Buh _F(u,uh))(uh _u))BQ-

In the final result, the first line contains adjoint er-
ror estimation terms describing the influence of the
residual errors in satisfying the PDE and the bound-
ary conditions. These terms may be used either to
provide an asymptotically sharp bound on the error
in the functional estimate or to correct the error to
leading order. The other lines are the remaining er-
rors, which include the consequences of nonlinearity
in L, B,C and g as well as residual errors in approx-
imating the adjoint problem.

If the solution errors for the nonlinear primal
problem and the linear adjoint problem are of the
same order, and they are both sufficiently smooth
that the corresponding residual errors are also of
the same order, then the order of accuracy of the
functional approximation after making the adjoint
correction is twice the order of the primal and ad-
joint solutions. However, rigorous a priori and a
posteriori analysis of the remaining errors is much
harder than in the linear case?’.

Defect Error Estimates

Suppose the original nonlinear PDE has the dis-
cretization

Ni(Up) =0

including appropriate boundary conditions. The de-
fect calculation has the appearance of an approxi-
mate Newton iteration

ON},
b\
U, Uh

_ThN(uh)7

ugn = up+ RpAUp,

where it is important to note that the right hand side
is based on the differential operator IV acting on the
reconstructed solution uy. The analytical boundary
conditions are imposed on wu; at the mesh points
on the boundary prior to using the reconstructed
solution to drive the defect process.

If a linearized discretization has not been previ-
ously implemented, it may be more convenient to
base the defect iteration on the nonlinear discretiza-
tion, replacing the first step by

Np(Up+AUR) = Ny(Up) = =ThN(up),



which simplifies to
Nh(Uh-i-AUh) = —ThN(uh).

Adjoint Approach for Shocked Flows

Non-oscillatory shock-capturing schemes have
revolutionized the calculation of transonic flows,
providing one-point shock structures.  Unfortu-
nately, sharp shocks introduce fundamental difficul-
ties when attempting to use linearization approaches
to evaluate the sensitivities of functionals to solution
errors. In fact, a convergent nonlinear discretization
may have linear sensitivities that do not converge°.

One solution to this problem is to approach it from
the perspective of well-resolved viscous shocks. Let
ue be the solution of the “viscous” quasi-1D Euler
equations

Apg 0 2 [P

0 0 0

oz Apg; + A o\ P = Ae 92 | = |>
Apg. H 0 p

where A(z) is the duct area. This may be written
symbolically as

N(ue) = e S(ue). (M)

In the limit ¢ — 0, u. will converge to the discon-
tinuous inviscid solution v at every point except at
the shock point. If u.p is an approximation to wu,
then the error in the computed value of the func-
tional J(u) may be split into two parts

J(w) = J(uen) = (J(uw) — J(ue))
+ (J(UE) - J(us,h))'

The first part is the error due to the viscosity. A
matched inner and outer asymptotic analysis 3132
reveals that for functionals such as the integrated
pressure,

J(us) = J(u) + ae + O(e?),

for some constant a. Accordingly,

e L) + 0@,

I(u) = Ju) = —=

where the quantity

o) = (o), 5

may be evaluated by the adjoint approach since by
definition, the gradient with respect to ¢ is based on
infinitesimal perturbations to the viscous solution.
Differentiating (7) with respect to € gives

du,

u_:S e)s
LS = S(u)

where L, is the Fréchet derivative of the nonlinear
operator N —eS. Hence,

(9003, 52 = (0,500,

assuming that the viscous adjoint solution v, exactly
satisfies the inviscid boundary conditions. If vy
is an approximation to the viscous adjoint v., then
€(Ven, S(uep)) is an approximation to the functional
error due to the viscosity.

The second part of the error in (8) is due to the
approximation of the solution to the viscous equa-
tion. With a well-resolved shock, it is possible to
ensure that u. —u.p is small, so the resulting func-
tional error can be approximated by usual adjoint
estimate (vgp, N(ugn) — €S(ugp)). Adding this sec-
ond term to the first term due to the viscosity gives
the combined adjoint error estimate

(Us,ha N(us,h) - SS(Us,h)) +e ('Us,h; S(us,h))
= (Us,h; N(“E,h))

It is quite striking that the final result simplifies to
the standard adjoint error approximation using the
inviscid operator N but the “viscous” approximate
solutions ucp and vep. Since the viscous operator is
not applied to the reconstructed solutions, the treat-
ment of shocked flows imposes no additional accu-
racy requirements on the reconstruction scheme.

We conjecture that a similar treatment may be
used for contact discontinuities. In that setting, the
smoothing introduced by viscosity ¢ leads to a func-
tional error which is O(+1/€) to leading order. Hence,
the final form of the adjoint correction will not have
quite such a pleasingly simple form.

One-dimensional Results

The error estimation capabilities of adjoint and de-
fect methods are now demonstrated for a sequence
of nonlinear problems.

Subsonic quasi-1D duct

We first consider subsonic quasi-1D Euler flow in a
converging-diverging nozzle

2, -1<z <-4,
A(z)={ 2-sin'[r(z+3)], -i<z<i,
2, 1<z<1,
(8)

with a functional that is the integral of pressure. The
flow is fully determined by specifying stagnation en-
thalpy (H = 4) and stagnation pressure (po = 2) at



the inlet and pressure (p = 1.9) at the exit. The
numerical solution of Figure 2a is computed using a
second order finite volume scheme and reconstructed
using cubic spline interpolation. Integrals are eval-
uated using 3-point Gauss quadrature so that the
numerical integration errors are O(h%)3. The ex-
act geometry is employed when evaluating the flow
residual.

The performance of adjoint error bounding and
correction is illustrated in Figure 2b. The bound is
sharp, containing an O(h*) error compared to the
O(h?) accuracy of the functional estimate. By sub-
tracting the leading error term, we obtain an O(h*)
functional estimate. Note that the temporary ex-
cursion of the base error from the overall trend is
caused by a change in the sign of the error.

It is surprising that very similar error estimates
are obtained using piecewise linear reconstruction.
Linear interpolation provides O(h?) solution accu-
racy but only O(h) residuals (as a result of differen-
tiating once). Hence, the corrected functional esti-
mate is expected to be only O(h®). However, numer-
ical experiments reveal that the functional accuracy
is actually O(h*), as seen in Figure 2c. This un-
expected accuracy results from a cancellation effect
between the leading order terms in the adjoint solu-
tion and the flow residual that has been elucidated
for the quasi-1D Euler equations?”.

Returning to cubic spline reconstruction, the com-
bined use of defect and adjoint error correction is
illustrated in Figure 2d. The 2nd order base error
is bounded by the defect error estimate, or alterna-
tively, it is corrected to obtain 4th order accuracy.
Adjoint methods are then used to obtain a sharp
bound on the 4th order functional estimate or alter-
natively, a 7th order functional estimate is obtained
by subtracting the adjoint correction. The primal
solution is O(h*) and the adjoint residual is O(h?)
so we expect O(h%) accuracy. The higher observed
rate of convergence may be related to the choice of
geometry or it may result from a cancellation effect.
The 7th order accuracy is also observed for a related
asymmetrical geometry.

Shocked quasi-1D duct

We now consider the integral of pressure for shocked
flow in an expanding duct. The geometry is defined
by the quintic polynomial A(z) that yields A'(z) =
A"(z) =0 at £ = 0,1 with A(0) = 0.95 and A(1) =
1.05. Uniform inlet and outlet sections of length 0.1
are appended to this smooth expansion. The flow
and adjoint solutions are both obtained using second
order finite volume schemes. Hence, the errors in

the functional resulting from viscosity and from the
discretization error are both second order.

Adjoint error correction is implemented using two
adaptive meshing approaches: grid redistribution
and grid refinement. Using grid redistribution, grid
points are moved to better resolve regions with high
gradients and/or second derivatives. Using grid
refinement, extra grid points are added by sub-
dividing cells to better resolve the gradients in the
shock region. In this implementation, both meth-
ods used a smoothed indicator function based on
the pressure gradient and the local cell size. Care
was taken to ensure that the additional numeri-
cal smoothing in the discretization of the inviscid
flux terms remains second order accurate even when
there are jumps in the grid spacing. The viscous
coefficient is defined by ¢ = N~2, where N is the
number of grid points, and the effect of the grid
adaptation is to smear the shock across an increasing
number of grid points as N increases.

Evaluating the combined adjoint error estimates
for viscous modeling error and numerical residual er-
ror, we obtain either a sharp bound on the 2nd order
base error or a 4th order functional estimate as seen
in Figure 3. These results were obtained using cubic
spline reconstruction, but virtually indistinguishable
results were obtained using linear interpolation.

Two-dimensional Implementation

Discretization

The two-dimensional Euler equations are discretized
using a 2nd order accurate cell-centered finite vol-
ume scheme with dummy cells to enforce boundary
conditions. The solution is marched to a steady state
using multigrid with Runge-Kutta smoothing 3+ 33.
Numerical dissipation scaled by the spectral radius
of the flux Jacobian is based on 4th differences of the
vector of conserved variables u = (p, pgz, pqy, pE)T.

Boundary Conditions

Correct implementation of the boundary conditions
is important to the order of accuracy of the func-
tional estimates. We now briefly describe the form
of the flow and adjoint boundary conditions, using
boundary normals which point out of the computa-
tional domain.

For the flow equations, there is one incoming char-
acteristic at the wall and the corresponding physical
boundary conditions is

On = QMg + GyNy = 0.
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Figure 2. Subsonic quasi-1D flow. a) Mach number profile. b) Adjoint error bounding and correction using cubic spline
reconstruction. ¢) A comparison of adjoint error correction using linear and cubic spline interpolation. d) Defect error

bounding and correction supplemented by adjoint error bounding and correction. The superimposed lines have slope —2,

—4 or —T7 as suggested by the rate descriptions in the legends.

All conserved variables are linearly extrapolated to
the dummy cells inside the wall so as to enforce zero
normal velocity with second order accuracy.

At an inflow boundary, three physical boundary
conditions and one numerical boundary condition
must be specified. This is accomplished by using
a Newton iteration to enforce

Ho —H
So0 — 8
R= v =0
gy —qt
Ap + pc Agp

at the inflow boundary, where a bar denotes an av-
erage at the boundary of the values in the adjacent
interior cell and exterior dummy cell, and A denotes
a difference in the values at these same two cells.
The first three equations represent specification of

10

the stagnation enthalpy, entropy and tangential ve-
locity. For a modified Euler problem, qtﬁ is obtained
from the known analytical solution. For the duct,
the equation for entropy is replaced by stagnation
pressure, and q{y = 0. The fourth equation is a
characteristic boundary condition on the outgoing
characteristic.

At an outlet boundary, a Newton iteration is
used to enforce one physical boundary condition and
three numerical boundary conditions

c2Ap — Ap
Agy
Ap + pc Agy)
7 —p

R

The first three equations represent characteristic
boundary conditions on the three outgoing charac-



Shock Resolution with Grid Redistribution

141

157

12r

-
-

-

Mach Mumber

0.8+
0&r
07
054 0% xo.&s 06 062
Shock Resolution using Grid Refinement
141 I I | |

PP

.62

0.6

Errgr Convergence: Adjcinl Methods & Grid Redistribution

-3 | . .
o i < O[M?) Base Emor
. : 7 Bound with O{N'*) Erox
O Q(M¥)Corrented Ernr
-4 : ;
§ 5| J
o
g
TS D N
7t J
1.8 2 2.8 28

lc?@fu(aria Patis)
Error Sonvergance! Adjoink Methads & Grid Rafinement

O O(N7) Base Emor
7 Bound with O[N™) Emor|
O O(N*i Comected Ermr

3] ; n( Error}

26

2‘.2 :4 2
156, (@rid Pofis) ¢
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teristics and the fourth equation sets the exit pres-
sure based on a far field model. For the duct, the exit
pressure is uniform and for the airfoil, it is based on
the known solution to the modified Euler equations.

The adjoint boundary conditions are defined so
as to remove the dependence of the augmented lin-
earized functional on perturbations to the flow vari-
ables?®: 36,

For the adjoint equations, the flow of informa-
tion along characteristics is reversed. At the wall,
there is one outgoing flow characteristic and hence
one adjoint boundary condition. The specific bound-
ary condition depends on the choice of integral func-
tional. If the linearized form of the nonlinear func-
tional is (h, %ﬁ)ag, corresponding to a weighted in-
tegral of the surface pressure perturbation, then the
adjoint boundary condition has the form?2s:2°

VaNg + 3Ny = h,
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which is enforced at the wall with second order ac-
curagcy.

At inlet and outlet boundary conditions, the lin-
earized augmented functional contains an expression
of the form?2:2°

vl Apa,

where A,, is the flux Jacobian in the coordinate sys-
tem normal to the boundary. For convenience, the
boundary term may be written in the equivalent
characteristic form

PpTAQ.

Here, the characteristic adjoint and flow variables
are

v=TTw, Q=T714,
A is the diagonal matrix of eigenvalues of A, and
T is the matrix of right eigenvectors of A,. This



characteristic form may be partitioned into incoming
and outgoing adjoint and flow components to give

(9)

where the number of incoming flow and outgoing
adjoint components is identical. Likewise, there are
the same number of incoming adjoint and outgoing
flow components.

Outgoing adjoint characteristic components %oy
are linearly extrapolated to the boundary of the do-
main. The incoming characteristic flow perturba-
tions Qin are expressed in terms of the unknown
outgoing perturbations Qg by invoking the flow
boundary condition R = 0. The effect of perturba-
tions to incoming and outgoing characteristic vari-
ables on R is described by

"!}Z:ltAin Qin + wiquAout Qout y

Dinﬁin + Doutﬁout =0R

where

OR
—T.
ou

Perturbations to the incoming characteristic vari-
ables may then be expressed

(DinlDout) =

Qin = _Di:llDoutﬁout-
Using this to eliminate {)j,, the boundary term (9)
becomes

(wi’{leut - '¢g1utAinD;;1Dout) Qout-
Making this zero for any Qg requires the adjoint
boundary condition

"pin = A;ult (Dl:ll Dout) TAin "pout -

Reconstruction

For the two-dimensional Euler equations, the dis-
crete solution is computed at the cell centers of a
structured quadrilateral mesh. The solution is aver-
aged to the grid nodes prior to reconstruction so that
the mesh and the solution are defined at the same
locations. The analytical wall and far field bound-
ary conditions are then enforced at the mesh points
prior to reconstruction. The wall boundary condi-
tion makes use of the exact wall normals to enforce
flow tangency. This boundary fix makes it unnec-
essary to evaluate the boundary contribution to the
adjoint error estimate because the leading term in
the boundary residual is shifted into the interior of
the domain.

The approximate solutions up, and vy are then
formed using bi-cubic spline interpolation for each
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component. Not-a-knot boundary conditions are
employed except in cases where one of the computa-
tional coordinates is periodic®”. The coordinate data
is also splined, so that the solutions and coordinates,
Up, Vh, Th, Yp, are all defined parametrically as func-
tions of the two spline coordinates £, 7. Derivatives
of each component of up can then be evaluated by
solving

Sup dzp  Oyn Bup
B¢ o€ D¢ oz

Oup o dzxp Oyn Sup,
on on on oy

The error correction integral is evaluated in (£,7)
coordinates using 3 x 3 Gauss quadrature on each
cell.

The boundary fix procedure is also useful for re-
constructed solutions that are used to drive a defect
iteration. The defect transfer operator T} that de-
fines the source term at each cell center is based on
the average value of the source term over the compu-
tational cell evaluated using 3 x 3 Gauss quadrature.

Note that the residuals that drive the defect it-
eration are based on a discrete solution defined at
the grid nodes. The process of averaging from the
cell centers to the grid nodes may be interpreted as
part of the overall 2nd order accurate discretization
procedure. The defect iteration produces a solution
at the cell centers that becomes 4th order accurate
only after the discretization process is completed by
again averaging to the grid nodes. This interesting
property simplifies the issue of moving solution data
to the nodes.

When using defect or adjoint methods alone, the
approaches described above suffice to provide 4th or-
der accuracy. However, when attempting to achieve
6th order accuracy, there are additional sources of
error that must be considered. After defect correc-
tion, the present scheme defines a reconstructed flow
solution that is 4th order accurate and an adjoint so-
lution that is 2nd order with a splined geometry that
is 4th order accurate. One source of remaining error
is the boundary residual contribution to the adjoint
correction (which is not necessary for 4th order accu-
racy when using the boundary fix described above).
Another source of error is the evaluation of bound-
ary integrals on the approximate geometry. There
is also an error in the bulk adjoint correction term
resulting from the neglect of the slivers that exist
between the splined and true geometries. However,
these contributions should be O(h8) since the total
neglected area is O(h*) and the residual integrated
over this area is O(h?). A careful investigation of
each source of error is currently underway.



Modified Euler equations

2D Duct. The flow field is defined to be the exact
quasi-1D flow solution®® with a vertical velocity com-
ponent that varies linearly from the upper to lower
walls so as to satisfy flow tangency

Here, a(z) = $A(z) is the half-height of the duct
and y = 0 is an axis of symmetry. The constructed
solution wu,, is substituted into the 2D Euler opera-
tor N to obtain a source term to drive the modified

Euler equations
fm = N(up)-

Derivatives of the flow quantities may be obtained
using standard differential relations between the flow
quantities and the duct variation?s.

Subsonic Cylinder. The velocity field is defined to
correspond to incompressible flow around a cylinder.
Using standard complex potential flow methods?,
the geometry is defined by |w| = 1 in the complex
w = u + tv plane, and the velocity field is based on
the complex potential

®=qo(w+w")

where ¢g is the real free stream velocity magnitude.
The Cartesian velocity components ¢, and ¢, are
obtained from

U
Qo= Yv = dw
with derivatives
0qy  Oqy d?®
u v R{dw2 ’
0qy _ Oqu _ ,[d?®
u  Bv dw? |~

Given this definition of the velocity, the pressure
and density, and their derivatives, are then defined
by specifying uniform stagnation enthalpy H and
entropy s throughout the flow field.

Subsonic Lifting Airfoil. The velocity field over a
subsonic lifting Joukowski airfoil is again specified to
correspond to incompressible flow, and is obtained
by constructing a complex potential using conformal
mapping?®. Starting from the unit cylinder |w| =1
in the w = u + v plane, we first map to a shifted
scaled cylinder in the z = x + iy plane centered at

Y =€g —igy, Eg,6y >0,
with radius R = |1++|. The mapping from w to z is

z = —y + Re'®w,
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and the inverse mapping is
w=R"te " (z+7),

where « is the angle of attack. The cylinder in the
z plane is then mapped to a Joukowski airfoil in the
¢ = a + ib plane using

c=1(z+27")

with inverse mapping

z=c++Vc2-1.

Care must be taken to define the branch cut for the
square root to lie inside the airfoil geometry.

The trailing edge of the airfoil is at ¢ =1, which
corresponds to z=1 and

Ey

w= e—i(a+ﬂ)7 e
€z

tan 8 =

We also need the following geometry mapping
derivatives:

dZ _ i dw _ -1 _—ix
i Re'®, P R™e™'%,
and
de _9 dz c
— ==(1- —=1 .
dz z(1-27), de + 21

The complex potential in the w-plane is
® =g (w+w") +illogw,

with gg being real. The Cartesian velocity compo-
nents, g, and gp, in the c-plane are then

d® _ d® dw dz

igp = — = — — —. 1
b de dw dz de (10)

Ga —
Asymptotically, as ¢ = 00, g, — igy — 2R te 1%,
so a freestream speed ¢ at angle of attack o re-
quires

9 = %RQOO

There is a critical point in the Joukowski mapping
at the cusped trailing edge, where % =0atc=1.
Examining the expression for complex velocity (10),
the Kutta condition requires that % = 0 as well.
This corresponds to placing a stagnation point in the
w plane at w = e~(@+A) The corresponding vortex
strength leading to smooth flow at the trailing edge
is

T = 2go sin(a+ B).



The velocity expression (10) is indeterminate at the
cusped trailing edge, but the velocity at this point
can be found using ’Hopital’s rule

dw\?
a_. — (2 _3_.F —92 aw
da —igy = (2qow iTw )(dz>,

with w = e i(e+h),
tained from

The flow derivatives are ob-

o _ @ (dwdz)® P dw dz
de? ~ dw? \ dz de dw dz de?’
with
0o _ _Om _ p [d°2
da ~ Ob de? [’
O _ 0w _ _o (&0
da  Oa de? |-

The pressure and density are again obtained by
specifying uniform stagnation enthalpy and entropy
throughout the flow field.

Two-dimensional Results

Subsonic 2D duct

We now consider adjoint and defect methods for sub-
sonic Euler flow in a smooth 2D duct. We consider
the drag functional, which should be identically zero
for this problem. In developing the implementa-
tion, we found it very helpful to work on a test case
where the solution is known in addition to the func-
tional value. In a subsequent section, we describe a
modified Euler problem for 2D duct geometries that
has a known analytical solution. For the present
studies, we return to the unmodified Euler equa-
tions and rescale the geometry used for the quasi-
1D test case (8) to be ten times longer. The same
inlet and outlet conditions are used with the addi-
tional restriction that the flow is uniform at the inlet
(gy =0). The equations are discretized using a 2nd
order accuracy finite volume scheme. Reconstruc-
tion is performed using bi-cubic splining with not-a-
knot boundary conditions®”. Boundary integrals are
evaluated using 3 point Gauss quadrature and bulk
integrals are evaluated using 3x3 Gauss quadrature.
Figure 4a depicts a sample computational mesh,
computed pressure contours, and residual contours
obtained by substituting the reconstructed solution
into the first component of the Euler equations.
The baseline drag estimate are O(h®) for this
problem, as illustrated in Figure 4b. Adjoint meth-
ods provide either a sharp bound that is in error by
O(h?), or else an O(h®) functional estimate. The
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numerical discretization provides O(h?) primal and
dual solutions and cubic spline reconstruction pro-
vides a residual with the same order of accuracy.
Hence we expect at least 2nd order functional accu-
racy before correction and 4th order accuracy after
correction. In the present setting, we observe an
additional order of accuracy in each case. These re-
sults are reproducible on ducts with different throat
constrictions or asymmetric shape changes.

Figure 4c illustrates that linear reconstruction
provides nearly identical performance. Unlike in the
quasi-1D case, a theoretical justification for this be-
havior is not currently available. We are not yet
convinced of the generality of this result, as the per-
formance of linear interpolation does not hold up on
the airfoil test case to be discussed later. Nonethe-
less, linear reconstruction is very attractive from a
practical viewpoint so it merits consideration until
definitive conclusions are reached regarding its via-
bility.

A combination of defect and adjoint methods are
presented for this 2D duct flow in Figure 4d. Defect
methods provide an error estimate that is used either
to provide a sharp bound on the 2nd order baseline
error or subtracted to obtain a 4th order functional
estimate. Adjoint methods then provide a bound on
the 4th order defect estimate or else produce a 5th
order functional estimate. Note that the functional
accuracy is improved by roughly an order of mag-
nitude relative to the 5th order functional estimates
obtained in Figure 4b. In theory, the primal solution
after defect correction should be O(h*) and the ad-
joint residual should be O(h?) so we expect O(hS)
functional accuracy using the combined approach.
Further work is required to investigate the remain-
ing sources of error that prevent 6th order functional
convergence. A fundamental difficulty is that the re-
constructed solution is defined on a splined geometry
that is only 4th order accurate.

Subsonic airfoil

Our final test case examines the drag for lifting flow
over a Joukowski airfoil with free stream Mach num-
ber My, =0.5 and angle of attack a=23°. For this ge-
ometry, we construct a modified Euler problem with
a known analytical solution. Constant entropy and
stagnation enthalpy conditions are combined with a
velocity field derived from the potential flow solution
for the same geometry. The computational domain
is truncated at approximately 27 chords, where the
far field boundary conditions are based on the exact
solution to the modified Euler problem. The exact
drag is non-zero for the modified solution owing to
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Figure 4. Subsonic flow in a duct. a) Computational mesh, computed pressure contours and reconstructed density residual.
b) Adjoint error bounding and correction using cubic spline reconstruction. ¢) A comparison of adjoint error correction
using linear and cubic spline interpolation. d) Defect error bounding and correction supplemented by adjoint error bounding

and correction. The superimposed lines have slope —3, —4 or —b as suggested by the rate descriptions in the legends.

the effects of the small forcing terms in the modified
equation. The reconstruction scheme uses periodic
cubic splines around the airfoil including on the wall
boundary.

A sample computational mesh and corresponding
pressure contours are depicted in Figures 5a and 5b.
This problem is more challenging than the smooth
2D duct, since it contains a geometric singularity at
the cusped trailing edge. In Figure 5¢, we observe a
base error in the drag that is O(h2%). Using adjoint
error bounding we obtain an asymptotically sharp
bound. Using adjoint error correction, we obtain
4th order accuracy in the functional estimate.
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Conclusions

We have described adjoint and defect methods for
obtaining sharp estimates of the error in integral
functionals of PDE solutions. This approach has
been demonstrated for the drag on a lifting airfoil
in subsonic flow. Using 2nd order discretizations for
the flow and adjoint systems and cubic spline solu-
tion reconstruction, we obtain either an asymptoti-
cally sharp bound on the error in the functional, or
else a corrected functional estimate with 4th order
accuracy. Adjoint error estimation methods have
also been extended to treat shocked flows, using a
two step correction process to account for modeling
and discretization errors. Again, 4th order error es-
timates are obtained.

A modified equation approach is employed to pro-
vide test cases on interesting geometries with known
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Figure 5. Subsonic flow over a lifting airfoil. a) Compu-
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error bounding and correction for the error in the drag. The
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exact solutions. At truncated computational bound-
aries, the solution to the modified equation may be
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used to provide an exact far field model. The issue
of far field model accuracy is conceptually distinct
from the sources of error treated in this paper. Fur-
ther studies are required to determine the impact of
approximate far field models on the performance of
the methods presented here. It may be interesting to
consider adjoint approaches for computing the sen-
sitivities of functional estimates to errors in the far
field model. The difficulty is that some means of
assessing the error in the far field model would be
required to obtain a bound or perform a correction.

The present bounding and correction methods
can be extended to unstructured computational
meshes by changing to an unstructured reconstruc-
tion scheme®®. A discrete version of this approach
has been employed successfully on unstructured
meshes® 7, where the error estimates may be used
to drive an adaptive meshing algorithm. Individual
cell or element error contributions may be used to
drive adaptive error control methods by “localizing”
the error contribution via the triangle inequality2!.
Localization introduces a safety margin by reduc-
ing the sharpness of the bound (to the degree that
it eliminates cancellation effects between elements
with errors of opposite sign).

The combined use of adjoint and defect methods
to attempt 6th order error estimates using 2nd order
numerics and 4th order reconstruction is currently
underway. These same ingredients have been used
successfully for smooth quasi-1D Euler flow, even
when the exact geometry is replaced by a splined
representation.
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