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21 Introdu
tionThere is a long history of the use of adjoint equations in optimal 
ontrol theory [30℄.In 
uid dynami
s, the �rst use of adjoint equations for design was by Pironneau [37℄,but within the �eld of aeronauti
al 
omputational 
uid dynami
s, the use of adjointequations has been pioneered by Jameson, who used his knowledge of optimal 
ontroltheory to develop what he 
alls optimal design methods. The term `optimal' refers tothe fa
t that one is trying to �nd the geometry whi
h minimises some obje
tive fun
tionsubje
t to a set of 
onstraints. In a sequen
e of papers by himself [24, 25, 26℄ and withReuther and other 
o-authors [39, 42, 28℄ Jameson developed the adjoint approa
h forpotential 
ow, the Euler equations and the Navier-Stokes equations. The 
omplexity ofthe appli
ations within these papers also progressed from 2D airfoil optimisation, to 3Dwing design and �nally to 
omplete air
raft 
on�gurations [27, 40, 41℄.A number of other resear
h groups have developed adjoint CFD 
odes for design op-timisation [6, 23, 44, 4, 22, 29, 3, 8℄. An overview of re
ent developments in adjoint designmethods is provided elsewhere [33℄. Of parti
ular interest is the work of Elliott [11, 9℄and Anderson [34, 2℄ on unstru
tured grids using the `dis
rete' adjoint approa
h, andthe work of Mohammadi [31, 32℄ in using automati
 di�erentiation software to 
reatethe adjoint 
ode from an original CFD 
ode; both of these approa
hes will be dis
ussedfurther in this paper.Considering the importan
e of design to aeronauti
al engineering, and indeed to allof engineering, it is perhaps surprising that the development of adjoint CFD 
odes hasnot been more rapid in the de
ade sin
e Jameson's �rst papers appeared. In part, thismay be due to some of the limitations of the adjoint approa
h, whi
h will be dis
ussedlater in this paper. However, it seems likely that part of the reason is its 
omplexity,both in the mathemati
al formulation of the adjoint p.d.e. and boundary 
onditions inthe `
ontinuous' approa
h favoured by Jameson, and in the 
reation of the adjoint CFD
ode in the `dis
rete' approa
h.In this paper we aim to address some of these diÆ
ulties. The adjoint theory is pre-sented �rstly in the 
ontext of linear algebra, in whi
h it is most easily understood. Thisis the basis for the dis
rete adjoint CFD approa
h in whi
h one works with the algebrai
equations that 
ome from the dis
retisation of the original 
uid dynami
 equations.The paper then treats the extension to p.d.e.'s as used in Jameson's 
ontinuousadjoint approa
h in whi
h the adjoint p.d.e. is formulated and then dis
retised. Theemphasis in the present review is on the 
onstru
tion of the adjoint p.d.e. and itsboundary 
onditions, the physi
al signi�
an
e of the adjoint solution, and the mannerin whi
h geometri
 perturbations are introdu
ed.The paper 
on
ludes with a dis
ussion of the pros and 
ons of the two approa
hes,the dis
rete and the 
ontinuous, and examples of the use of adjoint methods to optimisebusiness jet designs.



32 Dis
rete adjoint approa
h2.1 Linearised obje
tive fun
tionThe goal of aerodynami
 design optimisation is the minimisation (or maximisation) ofan obje
tive fun
tion that is a nonlinear fun
tion of a set of dis
rete 
ow variables. Forexample, the lift may be expressed as L(U) where U is the set of all 
ow variables atdis
rete grid points arising from an approximate solution of the Euler equations, andL is a s
alar fun
tion whi
h approximates the appropriate weighted integral of pressureover the surfa
e of an air
raft.In design optimisation, the question of interest is: what is the perturbation in L dueto a perturbation in the geometry, and hen
e the 
ow �eld? If u is the perturbation inthe 
ow �eld, then the linearised perturbation in the lift isgTu � �L�U u:Therefore, the goal is to evaluate the quantity gTu where u satis�es the appropriatelinearised 
ow equations.2.2 Duality and adjoint variablesSuppose one wishes to evaluate the quantity gTu given that u satis�es the linear systemof equations Au = f;for some given matrix A and ve
tor f . The dual form is to evaluate vTf where theadjoint solution v satis�es the linear system of equationsATv = g:Note the use of the transposed matrix AT , and the inter
hange in the roles of f and g.The equivalen
e of the two forms is easily proved as follows,vTf = vTAu = (AT v)Tu = gTu:Given a single f and a single g, nothing would be gained (or lost) by using the dualform. Exa
tly the same value for the linear obje
tive fun
tion would be obtained withexa
tly the same 
omputational e�ort. However, suppose now that we want the value ofthe obje
tive fun
tion for p di�erent values of f , and m di�erent value of g. The 
hoi
ewould be to do either p di�erent primal 
al
ulations or m di�erent dual 
al
ulations.When the dimension of the system is very large, the 
ost of the ve
tor dot produ
ts isnegligible 
ompared to solving the linear systems of equations, and therefore the dual(or adjoint) approa
h is mu
h 
heaper when m�p.



42.3 Physi
al interpretationIt is possible to work with adjoint variables and regard them as a purely mathemati
al
onstru
t, but they do have physi
al signi�
an
e.One way of looking at them is that they give the in
uen
e of an arbitrary sour
eterm f on the fun
tional of interest,Au = f �! vTfsour
e term fun
tional perturbationAnother is that they are the value of the obje
tive fun
tion 
orresponding to theappropriate Green's fun
tion. To see this, we de�ne f (i) to be a ve
tor whose elementsare zero apart from the ith whi
h is unity. The 
orresponding solution u(i) given byAu(i) = f (i)is the dis
rete equivalent of a Green's fun
tion andvTf (i) = vi = gTu(i):Thus, the ith 
omponent of the adjoint variables is equal to the value of the obje
tivefun
tion when the solution is equal to the ith Green's fun
tion.2.4 Duality formulation for adjoint designGiven a set of design variables, �, whi
h 
ontrol the geometry of the airfoil, wing orair
raft being designed, and a set of 
ow variables at dis
rete grid points, U , the aimis to minimise a s
alar obje
tive fun
tion J(U; �). This minimisation is subje
t to the
onstraint that the dis
rete 
ow equations and boundary 
onditions are all satis�ed.These may be expressed 
olle
tively asN(U; �) � N(U;X(�)) = 0;where X is the ve
tor of grid point 
oordinates whi
h depends on �. Using te
hniquessu
h as the `method of springs' [38℄ or variants on trans�nite interpolation [45, 42℄, thegrid deforms smoothly as 
hanges in the design variables modify the surfa
e geometry.Hen
e, �X=�� is usually non-zero at both interior and surfa
e grid points.For a single design variable, we 
an linearise about a base solution U0 to getdJd� = �J�U dUd� + �J��;subje
t to the 
onstraint that the 
ow sensitivity dUd� satis�es the linearised 
ow equa-tions �N�U dUd� + �N�� = 0:



5By de�ning u = dUd� ; A = �N�U ;gT = �J�U ; f = ��N��we 
an 
onvert this into the standard formdJd� = gTu+ �J��;subje
t to Au = f:The dire
t sensitivity of the obje
tive fun
tion to perturbations in the design variables iseasy to evaluate. The term gTu � vTf 
an be 
omputed either by the dire
t approa
h,solving Au = f , or by the adjoint approa
h, solving ATv = g. For a single design variablethere would be no bene�t in using the adjoint approa
h, but for multiple design variables,ea
h has a di�erent f , but the same g, so the adjoint approa
h is 
omputationally mu
hmore eÆ
ient.2.5 Alternative Lagrange viewpointIn the presentation above, we have used the terminology of duality, 
oming from themathemati
s of ve
tor spa
es, linear algebra and linear programming. An alternative de-s
ription arises using the terminology of Lagrange multipliers asso
iated with 
onstrainedminimisation. In this framework, the adjoint variables are Lagrange multipliers, usuallywritten as �, and are introdu
ed into an augmented obje
tive fun
tionI(U; �) = J(U; �)� �TN(U; �);to enfor
e the satisfa
tion of the dis
rete 
ow equations. Considering general perturba-tions dU and d� givesdI = � �J�U � �T �N�U � dU + ��J�� � �T �N�� � d�:If �T is 
hosen to satisfy the adjoint equation�J�U � �T �N�U = 0 =) ��N�U �T� = � �J�U �T ;then dI = ��J�� � �T �N�� � d�;and thus dId� is obtained.



6 The �nal equations are exa
tly the same as those derived by 
onsidering duality; itis really only the des
ription of the mathemati
s whi
h di�ers. In aeronauti
al CFD,most people follow Jameson in adopting the Lagrange multiplier viewpoint for designoptimisation be
ause of its 
onne
tion to 
onstrained optimisation and optimal 
ontroltheory. On the other hand, we prefer the duality viewpoint be
ause it seems morenatural for other uses of adjoint variables, su
h as error analysis [35, 17, 46, 36℄, whi
hdo not involve 
onstrained optimisation.2.6 Nonlinear optimisationReturning to the design problem, the aim is to �nd the set of design variables � whi
hminimise the nonlinear obje
tive fun
tion J(U; �), where U is an impli
it fun
tion of �through the 
ow equations N(U; �) = 0:These nonlinear 
ow equations and the 
orresponding linear adjoint equations are bothlarge systems whi
h are usually solved by an iterative pro
edure.There are two prin
ipal s
hools of thought as to the best method for mar
hing thedesign variables to a lo
al minimum. In the �rst approa
h, a simple steepest des
entalgorithm is employed, �� = ��dJd�;where � 
ontrols the step size. The advantage of this method is that partially-
onverged
ow and adjoint solutions may be used to evaluate the gradients as long as these gradientsare properly smoothed (pre
onditioned) prior to updating � [26℄. As a result, the 
ostper design 
y
le is relatively low.In the se
ond approa
h, approximations to the Hessian matrix of se
ond derivativesd2Jd�id�j ;are used to speed 
onvergen
e via a quasi-Newton pro
edure su
h as BFGS [18℄. Thismethod therefore requires more a

urate 
ow and adjoint solutions, whi
h must generallybe 
onverged fully during ea
h design iteration. As a result, the 
ost of ea
h design 
y
leis signi�
antly in
reased.The relative eÆ
ien
y and robustness of the partially and fully-
onverged approa
hesis still subje
t to debate. We have been unable to �nd any referen
e whi
h presents a
lear quantitative 
omparison of the two approa
hes, but the ane
dotal eviden
e is thatthe partially-
onverged approa
h yields the lowest total 
omputational time.2.7 Limitations of the adjoint approa
h2.7.1 ConstraintsEngineering design appli
ations often have a set of 
onstraints whi
h must be satis�ed, inaddition to the dis
rete 
ow equations. Some of these may be geometri
, su
h as airfoil



7design in whi
h the length of the 
hord and the area of the airfoil are �xed. Others maydepend on the 
ow variables, su
h as wing design in whi
h one wishes to minimise thedrag but keep the lift �xed.Geometri
 
onstraints are easily in
orporated by modifying the sear
h dire
tion forthe design variables to ensure that the geometri
 
onstraints are satis�ed. It is the
onstraints whi
h depend on the 
ow whi
h pose a problem. If the 
onstraint is takento be `hard' and so must be satis�ed at all stages of the optimisation pro
edure, then weneed to know both the value of the 
onstraint fun
tion, whi
h we shall label J2(U(�); �),and its linear sensitivity to the design variables. The latter requires a se
ond adjoint
al
ulation; the addition of more 
ow-based hard 
onstraints would require even moreadjoint 
al
ulations. This type of 
onstraint therefore undermines the 
omputational
ost bene�ts of the adjoint approa
h. If the number of hard 
onstraints is almost aslarge as the number of design variables, then the bene�t is entirely lost.To avoid this, the alternative is to use `soft' 
onstraints via the addition of penaltyterms in the obje
tive fun
tion, e.g. J(U) + � (J2(U))2. The value of � 
ontrols theextent to whi
h the optimal solution violates the 
onstraint J2(U; �) = 0. The largerthe value of �, the smaller the violation, but it also worsens the 
onditioning of theoptimisation problem and hen
e in
reases the number of steps to rea
h the optimum.2.7.2 Least-squares problemsIn the dire
t linear perturbation approa
h one evaluates ea
h of the linear 
ow sensi-tivities dU=d�i, one by one, by solving the linearised 
ow equations 
orresponding toa unit perturbation in a single design variable. From these one 
an then 
al
ulate thelinear sensitivity of the obje
tive fun
tion to ea
h of the design variables, but the total
ost is proportional to the number of the design variables, making the adjoint approa
hmu
h 
heaper.However, if the obje
tive fun
tion is of a least-squares type,J(U) = 12Xn (pn(U)� Pn)2 ;then dJd�i =Xn �p�U dUd�i (pn(U)� Pn) ;and so d2Jd�id�j �Xn � �p�U dUd�i�� �p�U dUd�j� ;assuming that pn(U)�Pn is small. Thus, the dire
t linear perturbation approa
h alsogives the approximate Hessian matrix, leading to very rapid 
onvergen
e for the opti-misation iteration. By 
ontrast, the adjoint approa
h provides no information on theHessian, so optimisation methods su
h as BFGS whi
h build up an approximation tothe Hessian take more steps to 
onverge than the dire
t linear perturbation approa
hfor least-squares appli
ations. It is important to keep in mind, however, that for large



8numbers of design variables, the adjoint approa
h may still be more eÆ
ient, sin
e the
ost of ea
h step is signi�
antly higher when the sensitivities are evaluated dire
tly.2.7.3 Limitations of gradient-based optimisationThe adjoint approa
h is only helpful in the 
ontext of gradient-based optimisation andsu
h optimisation has its own limitations. Firstly, it is only appropriate when the designvariables are 
ontinuous. For design variables whi
h 
an take only integer values (e.g. thenumber of engines on an air
raft) sto
hasti
 pro
edures su
h as simulated annealingand geneti
 algorithms are more suitable. Se
ondly, if the obje
tive fun
tion 
ontainsmultiple minima, then the gradient approa
h will generally 
onverge to the nearest lo
alminimum without sear
hing for lower minima elsewhere in the design spa
e. If theobje
tive fun
tion is known to have multiple lo
al minima, and possibly dis
ontinuities,then again a sto
hasti
 sear
h method may be more appropriate.2.8 Implementation issuesIn 
on
ept, the dis
rete adjoint approa
h is relatively straightforward. The linear algebraderivation is easy to grasp, and there is the attra
tive feature that the gradient of theobje
tive fun
tion with respe
t to the design variables is exa
tly the same as would beobtained by the dire
t linear perturbation method.Nonetheless, the pra
ti
al implementation of this approa
h 
an be 
hallenging. Thenonlinear 
ow solver often solves the steady-state equations, R(U) = 0; by a time-mar
hing iterative solution of dUdt +R(U) = 0:Linearising the steady-state equations gives Lu = f; whereL � �R�U ; u � �U�� ; f � ��R�� :Following a dire
t approa
h, the linear perturbation equations 
ould also be solved bymar
hing to steady-state the equationsdudt + Lu = f:Similarly, the adjoint equations LTv=g, 
an be solved by time-mar
hing1 the equa-tion dvdt + LT v = g:The fa
t that L and LT have the same eigenvalues means that the asymptoti
 
onver-gen
e of the time-mar
hing iteration in both 
ases will be identi
al, and will be equal tothe asymptoti
 
onvergen
e rate of the nonlinear 
ow solver.1The true adjoint of the unsteady equation dudt +Lu=f is �dvdt +LTv=g but this is only well-posedwhen solved ba
kwards in time. Swit
hing from t to �t gives the forward time-mar
hing equation givenabove.



9Let us turn now to the 
onstru
tion of the produ
t LT v. When approximating theEuler equations on an unstru
tured grid, the residual ve
tor R(U) 
an be expressed asa sum of 
ontributions from ea
h edge of the grid, with ea
h edge 
ontributing only tothe residuals at the nodes at either end of the edge. Symboli
ally, we 
an write this asR �Xe Re(U):Linearisation gives Lu =Xe Leu; Le � �Re�Uwhere Le is a sparse matrix whose only non-zero elements have row and 
olumn numbersboth mat
hing one or other of the two nodes at either end of the edge. Therefore,LT v =Xe LTe v:At the programming level, this produ
t involves exa
tly the same loop over all of theedges as for the original nonlinear 
ow dis
retisation. In prin
iple, one 
ould 
omputethe non-zero elements of the matrix Le and then form the produ
t LTe v. However, itis more eÆ
ient to 
al
ulate the produ
t dire
tly without expli
itly 
onstru
ting thematrix. A 
ommon obje
tion to the dis
rete approa
h is the memory overhead that isin
urred if the linearised matrix is pre-
omputed and stored to redu
e the total numberof operations. By forming the produ
t dire
tly, this memory overhead 
an be avoidedwhile maintaining an operation 
ount that is not substantially greater than that of theoriginal nonlinear solver.When approximating the Navier-Stokes equations on an unstru
tured grid, the resid-ual ve
tor 
an sometimes be expressed symboli
ally asR �Xe Re(U;DU);where the ve
tor DU represents the numeri
al approximation to the 
ow solution gra-dient at the grid nodes at either end of the edge. When linearised, this be
omesLu � Au+ V D u;in whi
h the matri
es A; V;D 
an ea
h be expressed as a sum of extremely sparse elemen-tal matri
es as des
ribed above for the Euler equations. The dis
rete adjoint operatorfor the Navier-Stokes equations is thenLTv � ATv +DTV Tv;indi
ating that the adjoint gradient subroutine responsible for DT must be applied afterthe vis
ous subroutine responsible for V T . At �rst this seems 
ounter-intuitive, but themathemati
s is quite 
lear.



10 Working out the mathemati
al expressions for LTe v and determining the best methodfor implementing the produ
t is relatively easy for the invis
id 
uxes of the Euler equa-tions. This pro
ess is far more arduous for the vis
ous 
uxes in the Navier-Stokes equa-tions and for 
hara
teristi
 smoothing 
uxes for the Euler equations. An alternative isto use AD (Automati
 Di�erentiation) software su
h as Odyss�ee [13, 12℄ or ADIFOR andADJIFOR [5, 7℄ to generate the Fortran 
ode to 
ompute the produ
t LTe v. In forwardmode, AD software takes the original 
ode whi
h 
omputed Re(U) and then uses thebasi
 rules of linearisation to 
onstru
t the 
ode to evaluate Leu. In reverse mode, itprodu
es the 
ode to 
al
ulate LTe v; it may seem that this is a mu
h harder task butin fa
t it is not. Furthermore, there are theoreti
al results whi
h guarantee that thenumber of 
oating point operations is no more than three times that of the originalnonlinear 
ode [20℄.A �nal point 
on
erns the evaluation of the term f , whi
h is the sour
e term for thedire
t perturbation equations and is in the obje
tive fun
tion in the adjoint approa
h.Again, forward mode AD software 
ould be used, but a very mu
h simpler alternativeis to use the `
omplex variable method' [43℄ used by Anderson and 
o-workers [1℄. Theessen
e of the idea is that lim�!0 I fR(U; �+i�)g� = �R�� :In this equation, R(U; �) has been taken to be a 
omplex analyti
 fun
tion, and thenotation If: : :g denotes the imaginary part of a 
omplex quantity. The equation itselfis an immediate 
onsequen
e of a Taylor series expansion. The key is that this 
anbe evaluated numeri
ally using �=10�20. Unlike the usual �nite di�eren
e approxima-tion of a linear sensitivity, there is no subtra
tion of two quantities whi
h are almostequal; therefore there is no una

eptable loss of a

ura
y due to ma
hine rounding er-ror. Applying this te
hnique to a FORTRAN 
ode requires little more than repla
ing allREAL*8 de
larations by COMPLEX*16, and de�ning appropriate 
omplex analyti
 versionsof 
ertain intrinsi
 fun
tions.We have found this 
omplex variable method to be extremely e�e
tive. We have alsoused it to verify the 
orre
tness of our hand-
oded adjoint 
al
ulations by 
he
king theidentity uT (LTv) = vT (Lu), with the produ
t LT v being 
omputed using the adjoint
ode, and the produ
t Lu = lim�!0 I fR(U+i�u; �)g� ;being 
omputed using the 
omplex variable method.3 Continuous adjoint approa
h3.1 Duality and the adjoint p.d.e.Duality in the 
ase of p.d.e.'s is a natural extension of duality in the linear algebraformulation. Using the notation (V; U) to denote an integral inner produ
t over some



11domain 
, (V; U) � Z
 V TU dx;suppose that one wants to evaluate the fun
tional (g; u), where u is the solution of thep.d.e. Lu = f;on the domain 
 subje
t to homogeneous boundary 
onditions on the boundary �
.Using the adjoint formulation, the identi
al fun
tional takes the form (v; f) where vis the solution of the adjoint p.d.e. L�v = g;plus appropriate homogeneous adjoint b.
.'s. The adjoint operator L� is de�ned by theidentity (V; LU) = (L�V; U);whi
h must hold for all fun
tions V; U satisfying the respe
tive homogeneous boundary
onditions. Given the de�nitions, the proof of the equivalen
e of the two forms of theproblem is trivial (v; f) = (v; Lu) = (L�v; u) = (g; u):3.2 ExamplesTo illustrate the 
onstru
tion of the adjoint operator and boundary 
onditions, let us
onsider the one-dimensional 
onve
tion-di�usion equationLu � dudx � �d2udx2 ; 0 < x < 1;subje
t to the homogeneous boundary 
onditions u(0) = u(1) = 0.Using integration by parts, for any twi
e-di�erentiable fun
tion v we have(v; Lu) = Z 10 v�dudx � �d2udx2� dx= Z 10 u��dvdx � �d2vdx2� dx+ �vu� �vdudx + �udvdx�10= Z 10 u��dvdx � �d2vdx2� dx+ ���vdudx�10 :For the integral term to equal the inner produ
t (g; u) in the adjoint identity, we needto de�ne the adjoint operator to beL�v = �dvdx � �d2vdx2 ;and to eliminate the boundary term the adjoint b.
.'s must bev(0) = v(1) = 0:



12 Table 1: Various operators and their adjointsoperator adjointdudx � �d2udx2 �dvdx � �d2vdx2r � (kru) r � (krv)�u�t � �2u�x2 ��v�t � �2v�x2�u�t + �u�x ��v�t � �v�xNote the reversal in sign of the �rst derivative in the adjoint operator; this implies areversal in the 
onve
tion dire
tion.Table 1 lists a number of other di�erential operators and their adjoints. Note the
hanges of sign whi
h o

ur due to the integration by parts. This produ
es a reversal of
ausality in time-varying problems so that, for example, the adjoint paraboli
 operatoris well-posed only if one starts with `initial data' at the �nal time and then integratesba
kwards in time towards the initial time of the original problem.3.3 Physi
al interpretationThe physi
al signi�
an
e of adjoint variables 
an again be understood by 
onsideringGreen's fun
tions and their e�e
t on the inner produ
t of interest.The solution of the p.d.e. Lu = f isu(x) = Z
G(x; x0) f(x0) dx0;where G(x; x0) is the Green's fun
tion. Therefore,Z
 gT (x) u(x) dx = Z
Z
 gT (x)G(x; x0) f(x0) dx dx0= Z
 vT (x0) f(x0) dx0;where vT (x0) = Z
 gT (x)G(x; x0) dx:Thus, the adjoint variables at a parti
ular point 
orrespond to the fun
tional evaluatedusing the Green's fun
tion for the same point.



133.4 Boundary termsSo far, we have assumed that the original problem has homogeneous b.
.'s and theobje
tive fun
tion 
onsists only of an inner produ
t over the whole domain and nota boundary integral. More generally, boundary integral terms in the primal obje
tivefun
tion lead to inhomogeneous b.
.'s for the adjoint, while inhomogeneous b.
.'s for theprimal problem lead to boundary terms in the adjoint fun
tional [15℄.The general form of the adjoint identity is(V; LU)
 + (C�V;BU)�
 = (L�V; U)
 + (B�V; CU)�
for all fun
tions U; V , with the notation (:; :)�
 denoting an inner produ
t over theboundary. B and C are both boundary operators (possibly involving normal derivatives)given in the de�nition of the original problem. B� and C� are the 
orresponding adjointboundary operators whi
h 
an be found by integration by parts.Using this general adjoint identity, it follows immediately that(v; f)
 + (C�v; f2)�
 = (g; u)
 + (g2; Cu)�
when Lu = f in 
; and Bu = f2 on �
;L�v = g in 
; and B�v = g2 on �
:There are some restri
tions on what 
an be imposed as b.
.'s and obje
tive fun
tions.The analysis is 
ompli
ated (see [28℄ and [15℄ for details) but it reveals that on a solidsurfa
e, the boundary integral term in the obje
tive fun
tion must be a weighted integralof the linear perturbation in the pressure when using the Euler equations. Similarly, forthe Navier-Stokes equations it must be a weighted integral of the linear perturbation inthe normal and tangential for
es on the surfa
e, and either the heat 
ux or the surfa
etemperature (depending whether one is spe
ifying the surfa
e temperature or adiabati

onditions, respe
tively).3.5 Geometri
 e�e
tsPerhaps the most 
ompli
ated part of the 
ontinuous approa
h to design is the mannerin whi
h design variable perturbations produ
e the sour
e term f for the linearisedp.d.e. and the inhomogeneous term f2 for the linearised b.
.'s.We will outline two approa
hes, both of whi
h use 
urvilinear 
oordinates (�; �) intwo dimensions. Writing the Euler equations in their usual ve
tor form as�F�x + �G�y = 0;when transformed to the 
urvilinear 
oordinates they be
ome��� �F �y�� �G�x��� + ��� ��F �y�� +G�x��� = 0:



14 In the approa
h used by Jameson, the 
urvilinear 
oordinates 
orrespond to gridlines of a stru
tured grid, with the airfoil surfa
e being de�ned as � = 0 [26℄. A smallperturbation ~� to a design parameter produ
es 
hanges su
h asF �! F + �F�U dUd� ~��x�� �! �x�� + �2x���� ~�:Terms not depending on ~� all 
an
el, and terms depending on ~�2 are negle
ted. Hen
e,we get the linearised equations,��� ��A�y�� �B�x��� u�+ ��� ���A�y�� +B�x��� u� =� ��� �F �2y���� �G �2x������ ��� ��F �2y���� +G �2x����� ;where A = �F�U ; B = �G�U ; u = dUd� :The boundary 
ondition on an invis
id wall is that there is no 
ow normal to thesurfa
e �=0. This remains true as � 
hanges but one needs to 
onsider the linearisedperturbation to the unit normal, whi
h eventually leads to the inhomogeneous boundaryterm f2.For 
omplex geometries, it is often not possible to generate stru
tured grids in whi
hthe surfa
e 
orresponds to �= 
onst. Instead, one 
an generalise the above approa
h byde�ning x(�; �) = � + ~�X(�; �);y(�; �) = � + ~�Y (�; �);so that (x; y) � (�; �) when ~�=0, and X(�; �); Y (�; �) are smooth fun
tions mat
hingthe surfa
e deformation so that the surfa
e remains �xed in (�; �) 
oordinates as �
hanges. This leads to the linearised equation��� (Au) + ��� (Bu) = � ��� �F �Y�� �G�X�� �� ��� ��F �Y�� +G�X�� � :This equation 
an then be approximated using an unstru
tured grid in the (�; �) do-main, whi
h is the same as the (x; y) domain for the unperturbed geometry. Boundary
onditions are handled in the same way as in Jameson's treatment, taking a

ount ofthe perturbation to the unit normal as the surfa
e geometry 
hanges.3.6 Other issuesWith the 
ontinuous adjoint approa
h, after linearising the original 
ow equations andintegrating by parts to obtain the adjoint formulation of the problem, there is then total



15freedom as to how one dis
retises the adjoint p.d.e. Indeed, without making re
ourseto the dis
rete approa
h, where the adjoint implementation is �xed by the primal dis-
retisation, there is even some ambiguity as to how one should implement the invis
idadjoint 
uxes for the Euler equations. In prin
iple, the adjoint dis
retisation may bedeveloped without regard for the dis
retisation of the nonlinear 
ow problem. Of 
oursethe standard issues or a

ura
y, stability and 
onvergen
e remain 
riti
al to the su

essof the iterative solution pro
ess.When 
onsidering sho
ked Euler 
ows, then in the analyti
 formulation, the sho
ksneed to be treated as dis
ontinuities a
ross whi
h the Rankine-Hugoniot sho
k jumprelations are enfor
ed [16℄. This treatment leads to the result that the adjoint variablesare 
ontinuous a
ross the sho
k and that an additional adjoint boundary 
ondition mustbe imposed along the length of the sho
k. Imposing su
h a b.
. would be 
ompli
ated, asit would require the automati
 identi�
ation of the sho
k lo
ation in the nonlinear 
ow
al
ulation. Quasi-1D results have demonstrated that the 
ontinuous implementationnaturally leads to satisfa
tion of the adjoint boundary 
ondition at the sho
k [16℄. Inpra
ti
e, resear
hers using the 
ontinuous adjoint approa
h do not enfor
e this b.
., andtheir results indi
ate no diÆ
ulties as a 
onsequen
e.The observations about the limitations of the dis
rete adjoint approa
h apply equallyto the 
ontinuous adjoint approa
h. There is one additional point that needs to be maderegarding the optimisation pro
ess. The 
ontinuous adjoint approa
h yields a dis
reteapproximation to the gradient of the analyti
 obje
tive fun
tion with respe
t to ea
h ofthe design variables. This will not be exa
tly equal to the gradient of the dis
rete ap-proximation to the obje
tive fun
tion. Therefore, there is a slight in
onsisten
y betweenthe dis
rete obje
tive fun
tion and the 
omputed gradient. As a result, the optimisationpro
ess will fail to 
onverge further on
e the solution is near a lo
al minimum.4 Relative advantages of two approa
hesIn the previous two se
tions we have gone through, in some detail, the formulation ofthe dis
rete and 
ontinuous adjoint approa
hes 
urrently in use by di�erent resear
hers.The di�eren
e between the two approa
hes is shown s
hemati
ally in Figure 1. In both
ases one ends up with a set of dis
rete adjoint equations. In the fully-dis
rete approa
hone starts by dis
retising the nonlinear p.d.e.; these equations are then linearised andtransposed. In the the 
ontinuous adjoint approa
h, the dis
retisation is the �nal step,after �rst linearising and forming the adjoint problem. One 
ould even follow an inter-mediate path, linearising the original equations, dis
retising them and then taking thetranspose. In prin
iple, if ea
h of the steps is performed 
orre
tly, and all of the solutionsare suÆ
iently smooth (e.g. no sho
ks) then in the limit of in�nite grid resolution allthree approa
hes should be 
onsistent and 
onverge to the 
orre
t analyti
 value for thegradient of the obje
tive fun
tion.However, there are important 
on
eptual di�eren
es between the di�erent approa
hes,and for �nite resolution grids there will be di�eren
es in the 
omputed results. Here weattempt to summarise what we see as being the advantages and disadvantages of the two
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Figure 1: Alternative approa
hes to forming dis
rete adjoint equationsapproa
hes. This assessment is based on our joint experien
e in developing an adjointNavier-Stokes 
ode using the dis
rete approa
h, and the experien
e of the se
ond authorin working with Jameson to develop an adjoint Navier-Stokes 
ode by the 
ontinuousapproa
h [28℄.The advantages of the fully dis
rete approa
h are:� The exa
t gradient of the dis
rete obje
tive fun
tion is obtained.This ensures that the optimisation pro
ess 
an 
onverge fully. It also providesa 
onvenient 
he
k on the 
orre
tness of the programming implementation; withthe 
ontinuous approa
h one doesn't know whether a slight disagreement is a
onsequen
e of the inexa
t gradient or a possible programming error.� Creation of the adjoint program is 
on
eptually straightforward.In the future this should enable the almost automati
 
reation of adjoint programsusing AD software. This bene�t in
ludes the iterative solution pro
ess sin
e thetransposed matrix has the same eigenvalues as the original linear matrix and sothe same iterative solution method is guaranteed to 
onverge.On the other hand, the advantages of the 
ontinuous approa
h are:� The physi
al signi�
an
e of adjoint variables and the role of adjoint b.
.'s is mu
h
learer.Only by 
onstru
ting the adjoint 
ow equations 
an one develop a good under-standing of the nature of adjoint solutions, su
h as the 
ontinuity at sho
ks, thelogarithmi
 singularity at a soni
 point in quasi-1D 
ows but not in 2D or 3D (ingeneral) and the inverse square-root singularity along the stagnation streamlineupstream of an airfoil in 2D [15℄.� The adjoint program is simpler and requires less memory.



17Be
ause one is free to dis
retise the adjoint p.d.e. in any 
onsistent way, the ad-joint 
ode 
an be mu
h simpler. However, our experien
e has been that even whenfollowing a 
ontinuous approa
h, it is advantageous to 
onsult the dis
rete for-mulation so as to 
hoose an appropriate dis
retisation for the 
ontinuous adjointequations. It is also generally the 
ase that 
ontinuous adjoint solvers require lessmemory than the fully-dis
rete 
odes, but this di�eren
e is not substantial if pre-
omputation and storage of the linearised matrix is avoided when implementingthe dis
rete method.It remains an open question as to whi
h approa
h is better when there are nonlineardis
ontinuities su
h as sho
ks. For quasi-1D Euler 
al
ulations, for whi
h we have de-rived the analyti
 solution of the adjoint equations [16℄, both approa
hes give numeri
alresults whi
h 
onverge to the analyti
 solution. For the dis
rete approa
h, this followsbe
ause the integrated pressure 
an be proved to be predi
ted with se
ond order a

ura
y[14℄. The linearised dis
retisation should therefore yield perturbations to the integral ofpressure that are at least �rst-order a

urate. The dis
rete adjoint formulation, whi
h is
onstru
ted using this linearised operator, must therefore behave 
orre
tly to �rst orderat the sho
k. For the 
ontinuous approa
h, in the absen
e of expli
it enfor
ement of the
orre
t adjoint b.
. at the sho
k, the 
orre
t asymptoti
 behaviour 
an be explained asthe e�e
t of numeri
al smoothing, given that the 
orre
t analyti
 solution is the onlysmooth solution at the sho
k [16℄.In 2D and 3D there is no proof of se
ond order a

ura
y for quantities su
h as lift anddrag, and there is a dis
ontinuity in the gradient of the adjoint variables at the lo
ationof the sho
k. Therefore it remains an open question as to whether either approa
h willgive a 
onsistent approximation to the gradient of the obje
tive fun
tion in the limitof in�nite grid resolution. However, pra
ti
al results for appli
ations with weak sho
kssuggest that any in
onsisten
y must be small.Although we have aimed to be obje
tive in our assessment of the relative advan-tages of the two approa
hes, it should be noted that we are advo
ates of the dis
reteapproa
h. An advo
ate of the 
ontinuous approa
h may pla
e a di�erent emphasis onthe above observations and hen
e rea
h a di�erent 
on
lusion. Certainly, both meth-ods have performed well in pra
ti
e, and it remains to be seen whether either approa
hwill demonstrate 
ompelling advantages over the other in terms of design performan
e.Ultimately, the �nal 
hoi
e may always remain, to some extent, a matter of personaltaste.5 Appli
ationResults from a paper by Elliot and Peraire [10℄ show the use of a dis
rete adjoint imple-mentation for design optimisation on unstru
tured grids. The main appli
ation 
onsid-ered is the wing optimisation of a business jet for whi
h the surfa
e grid of the baseline
on�guration is shown in Figure 2.Simple algebrai
 fun
tions are used to de�ne six design perturbation modes for thewing surfa
e; 
are was taken to ensure 
ompatible perturbations to grid points on the
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Figure 2: Initial surfa
e grid for air
raft wing design [10℄

Figure 3: Evolution of the wing geometry during design [10℄
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Figure 4: Evolution of the pressure distribution on the wing [10℄

Figure 5: Business jet 
on�guration [41℄
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- Cp

Original
DesignDesign Point 1

- Cp

Original
DesignDesign Point 2

- Cp

Original
DesignDesign Point 3Figure 6: Multipoint drag minimization at �xed lift. Pressure distributions at thez=0.475 span station for the three design points des
ribed in Table 2 [41℄.Table 2: Multipoint drag redu
tion, normalised relative to original drag at 
entral designpoint [41℄. Ma
h CL Original C�D Design C�D0.81 0.35 1.00257 0.854130.82 0.30 1.00000 0.779150.83 0.25 1.08731 0.76836fuselage. A linearised version of the method of springs is used to 
reate the grid defor-mations in the interior. The implementation is based on the dis
rete adjoint approa
h,using BFGS optimisation, and both multigrid and parallel 
omputing to redu
e theexe
ution time.The obje
tive fun
tion is the mean-square deviation from a target pressure distribu-tion 
orresponding to a `
lean wing' in the absen
e of the rear-mounted engine na
elleand pylon. Two design iterations are taken, de
reasing the obje
tive fun
tion by 75%.Figures 3 and 4 show the evolution of the wing geometry and pressure distributions,respe
tively.Another example of the adjoint approa
h to design is provided by the work of Reutherand 
o-authors [41℄, who perform a transoni
 multipoint wing design for a business jet
on�guration of the type shown in Figure 5. Here, the obje
tive is to minimize drag forseveral 
ight 
onditions simultaneously.This work employs a 
ontinuous adjoint formulation on a stru
tured multiblo
k meshusing parallel multigrid 
ow and adjoint solvers. The wing surfa
e is parameterisedwith 18 Hi
ks-Henne bump fun
tions [21℄ at ea
h of �ve span stations and a total of 30
onstraints are imposed on maximum thi
kness, spar thi
kness, leading edge bluntnessand trailing edge angle. The results were obtained after �ve design iterations using theoptimization pa
kage NPSOL [19℄ during whi
h the interior grid points were perturbedusing WARP-MB [40℄.The initial 
on�guration was designed for 
ruise at M = 0:8 and CL = 0:3 and the



21three new design points are summarized in Table 2. The original and designed pressuredistributions are displayed at a single span station for ea
h of the three design pointsin Figure 6. The sho
k strength has been substantially redu
ed in all 
ases, leading tothe drag redu
tions des
ribed in Table 2. While a single point design would a
hievelower drag at the spe
i�ed 
ruise 
onditions, the multipoint design has the advantage ofmaintaining better o�-design performan
e [41℄.6 Con
lusionsThe development of design environments is 
urrently a major fo
us of resear
h in 
ompu-tational engineering. As part of this e�ort, adjoint methods o�er the ability to eÆ
iently
ompute linear design sensitivities when there are a large number of design variables.In reviewing the fundamental theory, we began with the linear algebra perspe
tivefrom whi
h these ideas are most easily understood. For 
on
eptual as well as pragmati
reasons, we believe that the `dis
rete' numeri
al implementations whi
h follow this ap-proa
h have a number of advantages over those based on the alternate `
ontinuous'approa
h. On the other hand, a sound grasp of the adjoint p.d.e. theory is essential tounderstanding the physi
al signi�
an
e of the adjoint variables and their behaviour atkey points in the 
ow �eld, su
h as at sho
ks.It is hoped that this overview of the theory and of a number of important imple-mentation issues will help others to develop adjoint te
hniques as an integral part ofengineering design systems. Although the fo
us of this paper has been on aeronauti
aldesign, the ideas are equally relevant to any area of engineering design involving largenumbers of 
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