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1 Introduction

Consider the drag on an aircraft at transonic cruise, the radar cross-section of a glider,
the electrostatic free energy of a biomolecule in water, or the flux of fossil fuels through
a porous medium. These and many other problems of engineering and scientific interest
may be studied quantitatively by computing integral functionals of PDE solutions.

In attempting to improve the accuracy of functional estimates, the numerical prac-
titioner is confronted with an array of possibilities. Reasonable alternatives include
refining the computational mesh (mandating larger faster computers), increasing the
order of accuracy of the discretization (when practical for the geometry under con-
sideration), iterative refinement of the numerical solution via defect correction (again
requiring a higher order discretization), or Richardson extrapolation of the solution or
the functional (when the asymptotic convergence rate is reliably known). All of these
approaches can be used to improve global solution accuracy, yielding corresponding in-
creases in functional accuracy. However, for problems in which the value of a functional
is the most interesting quantitative output of a simulation, there is significant motiva-
tion to devise reliable and efficient numerical techniques that specifically enhance the
accuracy of the functional estimates without seeking to improve the accuracy of the
underlying solution.

The purpose of this paper is to analyze a method for obtaining superconvergent
functional estimates for arbitrary underlying numerical discretizations. The key is the
use of the solution of the adjoint PDE (the dual of the linearized form of the original
primal PDE) which reveals the influence of local solution errors on the functional value
of interest. Recent work has demonstrated that the leading order error term in the
functional can be estimated and removed by smoothly reconstructing the primal solution,
differentiating to approximate the primal residual error, and evaluating the inner product
with the reconstructed adjoint solution [24,10]. Alternatively, the local contributions
to this inner product can be employed as an optimal adaptivity criterion for improving
functional accuracy [28,29, 21].

The significance of the adjoint PDE for error analysis and adaptivity has long been
realized within the finite element community [1,2,3,4,7,15,19,22,23,27,26], where it
is well known that many finite element methods enjoy natural superconvergence for
functional estimates. The adjoint error correction technique extends these results to
approximate solutions obtained by any discretization method (or other means of ap-
proximation) as well as illustrating the potential for further improvement of the inherent
finite element superconvergence.

Our earlier work in adjoint error correction emphasized the a posteriori error analysis
necessary to motivate the approach for linear and nonlinear problems, with bulk func-
tionals and homogeneous boundary conditions [24,9]. The present work extends these
results in two ways, firstly, by increasing the scope of the analysis to encompass bound-
ary functionals and inhomogeneous boundary conditions, and secondly, by performing a
priori error analysis to predict the rate of superconvergence of the remaining error terms
after correction.

We begin the paper by formulating the approach for general linear PDEs and func-



tionals. Numerical demonstrations are provided for a one-dimensional (1D) Poisson
problem and a two-dimensional (2D) Laplace problem with curved boundaries and a
geometric singularity in the domain. In the 1D setting, an a priori analysis is then
performed to evaluate the primal, dual, and cubic spline reconstruction errors, correctly
predicting a doubling in the convergence rate of the functional value over that of the
baseline scheme.

Next, the approach is formulated for general nonlinear PDEs and functionals. Nu-
merical demonstrations are provided for the system of quasi-1D Euler equations and for
a 2D nonlinear thermal diffusion problem. An a prior: analysis then follows for the 1D
case, elucidating the relationships between errors in the nonlinear primal problem, the
linear dual problem and the reconstruction errors in both. This analysis demonstrates
that the same order doubling phenomenon is also predicted for the nonlinear case. For a
first order differential operator in 1D, the somewhat surprising point is made that a del-
icate cancellation effect allows linear reconstruction to yield the same order of accuracy
as the smoother cubic splines.

To demonstrate the generality of adjoint error correction, different numerical exper-
iments are performed with finite difference, finite volume, and finite element methods.
The latter examples serve to illustrate the improvement that is achievable over the nat-
ural finite element superconvergence.

2 Linear adjoint error correction

Let u be the solution of the linear differential equation
Lu = f,

in the domain €2, subject to the linear boundary conditions
Bu = e,

on the boundary 0€). In general, the dimension of the operator B may be different on
different sections of the boundary (e.g. inflow and outflow sections for the convection
p.d.e.).

The output functional of interest is taken to be

J = (ga U) + (ha Cu)aﬂa

where the notation (.,.) denotes an integral inner product over the domain Q, and (., .)aq
represents an integral inner product over the boundary 0€2. The boundary operator C'
may be algebraic (e.g. Cu = u) or differential (e.g. Cu = 2%), but must have the same
dimension as the adjoint boundary condition operator B* to be defined shortly. Note
that either g or h may be set to zero if the functional does not have an interior or
boundary integral contribution, respectively.

The corresponding linear adjoint problem is

L'v =g,



in 2, subject to the boundary conditions
B*v = h,

on the boundary 0€2. The fundamental identity defining L*, B* and the boundary
operator C* is

(L*w, z) + (B*w,Cz)sq = (w, Lz) + (C*w, Bz)sq,

for all sufficiently differentiable functions w, z. This identity is obtained by integration
by parts, and in a previous paper we describe the construction of the appropriate adjoint
operators for the linearized Euler and Navier-Stokes equations [8].

Using the adjoint identity, one immediately obtains the equivalent dual form of the
output functional,

J = (U, f) + (C*U, 6)39.

Suppose that u;, and v, are approximations to u and v. The subscript A indicates
that the approximate solutions are derived from a numerical computation using a grid
with average spacing h. When using finite difference or finite volume methods, u; and
vy, might be created by interpolation through computed values at grid nodes. With finite
element solutions, one might more naturally use the finite element solutions themselves,
or one could again use interpolation through nodal values. A last comment is that uy,
and v, do not have to come from a numerical computation; they could, for example,
come from an asymptotic analysis yielding a uniformly valid asymptotic approximation
to the solution.

Given approximate solutions uy, v, we define ey, fu, gn, by, by

Lup = fn, L*vy =gy, Bup=-ey, Bv,=h,.

It is assumed that u, and vy, are sufficiently smooth that f, and g, lie in Ly(€2). If uy
and v, were equal to u and v, then ey, f1, g, hy, would be equal to e, f, g, h, respectively.
Thus, the residual errors e, —e, fn— f, gn— g, hy, —h are a computable indication of the
extent to which u; and v, are not the true solutions.

Now, using the definitions and identities given above, we obtain the following ex-
pression for the functional:

(g,u) + (h,Cu)aq = (g,un) + (h,Cup)aq
—(gn, up, — u) — (hp, Clup —1))an
+(gn — g, up — u) + (hn — h, C(up — u))an
= (g,un) + (h,Cup)aq
—(L*Uh, Up — u) — (B*Uh, C’(uh — u))ag

+(gn — g, up — u) + (hy, — h, C(up — u))oq

= (g,un) + (h,Cup)aq
—(vn, L(up — u)) — (C*vp, B(up, — u))an



+(gn — g, up — u) + (hy, — h, C(up — u))oq

= (g,un) + (h,Cup)aq
—(vn, fr = f) = (C"vp, en — €)aq
+(gn — g, up — u) + (hp, — h, C(up — u))aa.

In the final result, the first line is the functional based on the approximate solution
up. The second line contains two computable terms. The first is an inner product of
the residual error f, — f and the approximate adjoint solution vy; the adjoint solution
gives the weighting of the contribution of the local residual error to the overall error in
the computed functional. The second term performs a similar task for the error e, —e
in satisfying the boundary conditions. Together, these two terms form what we label
the adjoint error correction, giving the leading order effect of the residual errors on the
functional of interest. Adding this correction to the quantity in the first line gives a
more accurate approximation to the value of the functional.

The third line is the remaining error after making the adjoint correction. Each of
the terms is an inner product of two quantities, the first being a function of v, —v and
the second being a function of u,—u. If each quantity is O(h?) so that halving the grid
spacing results in a 2? reduction, then the remaining error for the functional is O(h?).
Furthermore, if we assume that the approximate solutions wy, v, exactly satisfy the
boundary conditions, so that e,—e = hy—h = 0, then the second term is zero. The first
term can be expressed as (g,—g, L' (fy,—f)), where the operator L™! is defined subject
to homogeneous boundary conditions. There is therefore a computable a posteriori error

bound | L7H| [[fu— £l lgn—gll-

In Galerkin finite element methods (or any finite element method in which the test
and trial spaces are interchanged for the primal and dual problems) the adjoint correction
term is always zero due to the inherent orthogonality of the discretization. This desir-
able property yields automatic superconvergence for all integral functionals. However, if
p is the order of accuracy of the finite element solution uy, and the operator L involves
derivatives of up to degree m, then usually the residual error satisfies f,—f = O(h?~™)
and hence the error in any smoothly weighted functional is O(h?*~™). Replacing the
finite element solution with a smoother reconstructed solution allows adjoint error cor-
rection to recover an improved functional estimate with an error that is O(h%*). This
procedure will be demonstrated in the second of the two linear examples to follow. In
this, in which a piecewise linear finite element solution of the Poisson equation (for which
the functional accuracy is O(h?)) is replaced by a cubic spline interpolation leading to
an improved accuracy of O(h?).



3 Linear examples

3.1 1D Poisson equation with finite differences

The first example is the one-dimensional equation,

d?u

a2 =

on the unit interval [0, 1] subject to homogeneous boundary conditions u(0) =wu(1)=0.
This example has appeared previously [24], and is included here to serve as the basis
for a detailed a priori error analysis. The problem is approximated numerically on a
uniform grid, with spacing h, using a second order finite difference discretization,

h=*6u; = f(z;).

The approximate solution wu () is then defined by cubic spline interpolation through
the nodal values u,;.
The dual problem is the equation,
d?v

@:9,

subject to the same homogeneous boundary conditions, and the approximate adjoint
solution vy, is obtained in exactly the same manner.
Numerical results have been obtained for the case

f=a*1-2)3, g = sin(7x).

Figure 1 shows the residual error f, —f when h = 3%, as well as the three Gaussian
quadrature points on each sub-interval that are used in the numerical integration of
the inner product (vn, f — f). Figure 2 is a log-log plot of three quantities versus the
number of cells: the error in the base value of the functional (g, u); the remaining error
after subtracting the adjoint correction term (vy, fr, — f); the a posteriori error bound
WL~ fn—FIlllgn—gll. The superimposed lines have slopes of —2 and —4, confirming
that the base solution is second order accurate while the error in the corrected functional

and the error bound are both fourth order.

3.2 2D Laplace equation with finite elements

The second example is a much more testing 2D problem, with a boundary functional
over a curved boundary with a cusp at one point. The domain and functional mimic
the challenges that arise in computational fluid dynamics in considering the flow around
two-dimensional airfoils.

The test case is constructed with the aid of a conformal mapping. Starting with the
region in the complex Z-plane between two circles centered at (X,Y) = (—0.1,0) with
radii of Ry = 1.1 and R, = 3.0, application of the Joukowski mapping

1
=74+ =
4 -|—Z,
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Figure 1: Residual error for a 1D Poisson problem.

Error Convergence
-2 ‘

IoglO(Error)
:

_107 |
_127 |
O Base Error \V4
* Remaining Errof
v Error Bound
_14 I 1 1

1 15
IoglO(CeIIs)

Figure 2: Functional error convergence for a 1D Poisson problem.



then produces a computational domain €2 lying between a cusped airfoil (9€2,;) and a
smooth outer boundary (02,2).
Using cylindrical coordinates R, defined by

X +0.1 =R cosb, Y = R sin#,

the function R
UX,Y) = % sin 6,
is a solution of the Laplace equation subject to the boundary conditions U =0 on the
inner circle, and U = [(R2 — R?)/R,]sin# on the outer cylinder.
In the z-plane, the function u(z,y) = U(X,Y’) is the solution of the Laplace equation

0%u N Pu
oxz 0y
subject to =0 on the airfoil, and the appropriate Dirichlet boundary conditions on the
far-field boundary. As illustrated in Figure 3, this solution corresponds to the stream

function for incompressible inviscid flow around the airfoil, with zero circulation.
The boundary functional in the Z-plane is defined to be

2w ) aU
/0 smﬁ%

so the analytic value is —27. When mapped into the z-plane, the corresponding expres-

sion for the functional is
(sin@ 6u>
R1 ,87’7/ (9(2;1,

and hence the dual problem is the Laplace equation subject to the inhomogeneous Dirich-
let condition v=sinf/R; on the airfoil surface and v = 0 on the far-field boundary.

The problem in the z-plane is solved numerically using a bi-linear Galerkin finite
element method on a structured grid with quadrilateral elements. The approximate
reconstructed solutions u; and v, are then obtained from the nodal values by bi-cubic
spline interpolation. The computational coordinates at the grid points are also splined,
so that x, y, u;, and v, are all expressed parametrically as a function of spline coordinates
&, n. By differentiating these functions one can then obtain the necessary derived quan-
tities such as fj,. The inner products are evaluated using 3-point Gaussian quadrature
for the boundary integrals and 3 x 3 Gaussian quadrature for interior integrals.

Figure 4 shows the numerical values obtained for the functional, with and without
the adjoint error correction, plotted versus the square root of the number of cells, which
is a measure of 1/h, an average inverse grid spacing. Again the superimposed lines
of slope —2 and —4 show that the base solution is second order accurate whereas the
corrected value for the functional is fourth order accurate. Note that on a 12832 mesh
(the third data points), the increase in accuracy is greater than a factor of 6 x10*. This
improvement is achieved despite the cusped trailing edge and the added complication of
curved boundaries. The computable error bound does not appear to be useful for this
case due to a singularity in the adjoint residual near the trailing edge.

0,

a9,

R=R;
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Figure 3: The primal and dual solutions for a 2D Laplace problem around a Joukowski
airfoil with a cusped trailing edge.
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Figure 4: Error convergence of a boundary functional for a 2D Laplace problem around
a Joukowski airfoil.
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4 Linear a prior: error analysis

In this section we analyze the accuracy of the approximate primal and adjoint solutions
for the first of the linear examples, and derive an a priori error estimate proving that the
error in the functional after applying the adjoint error correction is fourth order. The
proof is intended to serve as a template for the a prior: analysis of other applications,
and so it is written in a more general form than is necessary for the particular problem
being considered.

We begin with a few comments on notation. Bold type (e.g. u) denotes a vector of
discrete quantities at the nodes of a computational grid, and discrete operators acting
on such data. Regular type is used for continuous functions and differential operators.
u(x,) denotes the discrete data obtained by evaluating the function u(z) at the grid
nodes whose coordinates are x;,.

All norms, both discrete and continuous, are L, norms. In addition, the notation
O(h?) when used in a context such as

u, = u(zxy) + O(hP),
means that there exists a constant ¢ such that
[un—u(@n)|| < ch?”, (4.1)
or, equivalently, u, € B(u(zy), ch?), where the ball B(u,€) is defined as
B(u,€) ={w: ||lw—ul| <€}
Turning now to the analysis of numerical example 3.1, the differential equation
Lu=f,

subject to homogeneous boundary conditions, is approximated on a uniform grid with
spacing h by the finite difference equation,

Lyup = f,.
The purpose of the first part of the analysis is to bound the discrete solution error,

[lwn —u(zn)|l
The first two lemmas concern the accuracy and stability of the discretization.

Lemma 1 For f € C*0,1], there exists a function T € C?[0,1] and constant c,, both
independent of h, such that

Lyu(my) = fr, = Pr(@s) + 71, I} < e
and
Ly (u(zn) — BPw(zs)) = fr =7y, || < ek,

where w e C*(0, 1] is the solution of
Lw=r,

subject to the given homogeneous boundary conditions.
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Proof The function 7 is easily found through a Taylor series expansion of the solution u about
the central node in the discrete operator. The bounds on rg) and rg) are then found using
appropriate truncated Taylor series expansions.

This results in

1 df
T 2d
and
T d4f
Cl—%‘% .
[ |

Lemma 2 There exists a constant ¢y, independent of h such that

1L, < ca.

Proof Standard convergence analysis for elliptic operators based on a maximum principle
and a comparison function gives ¢ = 3 (e.g. see page 165 in [20]). m

From these two results we can prove the following lemma regarding the error in the
numerical solution.

Lemma 3 The discrete solution uy, can be written as
— _ 2 3)
U, = u(:ch) h ’U)(:Bh) + r,, (42)
(3)

where the function w(x) is as defined in Lemma 1 and the remainder term v}’ is bounded

by
Ir]] < ercah?, (4.3)

with the constants ci, ¢ as defined in Lemmas 1 and 2.

Proof Lemma 1 gives

Lhrgg) = —rg),

and the result then follows from the bounds in Lemmas 1 and 2. =

The second part of the analysis considers the errors introduced by the cubic spline
interpolation of the discrete solution u; and the corresponding discrete adjoint solution
vy. A cubic spline interpolates the data with a C? piecewise cubic polynomial. One
boundary condition is required at each end, and here we discuss the case of complete
splines for which the second derivative is specified.

As with the discretization of the differential equation, we need results concerning the
accuracy and stability of cubic spline reconstruction.
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Lemma 4 For a given function u(z) € C*0,1], the cubic spline defined by the knot
conditions s(x;) = u(x;) and the end conditions s"(0) = u"(0), s"(1) = u"(1) satisfies
the bounds

IN

384h4 || ////H :

%h2 ||U””|| )

Is = ull

" "
—u'|

IN

s
(Proof: see page 68 in [5]).

Lemma 5 The cubic spline s(z) defined by the knot conditions s(x;) = h*u; and the
end conditions s"(0) = h?Uy, s"(1) = h?Uy, satisfies the following bounds:

sl < h*max (3 [lull, 3|Tol, 5I0h]).

Is"l < h*max (12 [ull, |To|, [U1]).

Proof In the interior of the domain, the equation used to determine the second derivatives
of the spline at the mesh points s”(z;) is

s"(@5) = §h% (wjrn — 2uj +uj1)) — 3 (5" (@j51) + 5" (25-1)),

so therefore
|s" (a5)| < 6h||ull + 5|s"||.

Including the end conditions, and the fact that within each mesh interval the second derivative
is a linear interpolation of the two values at either end, gives

Is"Il < max (6h%||w]| + 5lls"ll, h*|Uo|, h*|UL)

and hence
Is"|| < B max (12[|u|l, |Uol, |U1]).

The bound for [|s|| follows from the reconstruction formula within each interval.

4 4
Isll < A*flael| + 22|18 < A* max (Fllwll, 5|Vl 57|U1]).

Lemma 6 If f,g € C*[0,1], then the approzimate solutions up(x ) and vp(x) obtained
by cubic spline interpolation of wy, and vy, with end conditions uj(0) = f(0),up(1) =
f(1),v7(0) = g(0),v;(1) = g(1), are second order approzimations to u(zx) and v(z),
respectively. Furthermore, the residual errors fr,—f and g,—g are both O(h?) and

(gg—9g,up—u) = O(hY).
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Proof The cubic spline reconstruction uy(x) can be written as the sum of 3 parts:
i) si(z) defined by si(x;) = u(x;) with end conditions s7(0) = f(0), s7(1) = f(1);
ii) h?s9(x) where so(x;) = —w(z;) and s5(0) = —w”(0), s5(1) = —w"(1);

iii) s3(z) satistying ss(z;) = r'” and $§(0) = h?w"(0), s4(1) = h?w"(1).

If f € C*0,1], then u € C%[0,1] and w € C*[0,1]. Hence, using the triangle inequality and
applying Lemma 4 to i) and ii), and Lemma 5 to iii), gives

“31 + h282 + 83 — u||
|51 — ul| + h?||s2 4+ w|| + h2||lw]|| + ||s3]|
serh? (1™l + B2 [[w™[]) + B?||w|

3
o+ max (3 e, 5w ()], 350" (1))

[l —ul

IN N

and likewise

="l < 3R (" [+ B2 [lw™[]) + h2[|lw”|

+ max (12h*2||r§f>||,h2|w"(0)|,h2|w"(1)|) .

Introducing the bounds on ||r§13) || from Lemma 3 gives the conclusion that up—u and f,—f
are both O(h?). The same argument applies to the adjoint solution, and the final result that
(99—9,un—u) = O(h') follows immediately.

As well as proving the fourth order accuracy of the corrected functional in this
particular case, this proof provides guidelines for proving superconvergence in other
applications with linear p.d.e.’s. Proving a property corresponding to Lemma 1 with the
appropriate powers of h will usually be relatively easy; note that this will require f (and g
in the adjoint problem) to satisfy certain smoothness constraints. Establishing a uniform
bound on the inverse operator, as in Lemma 2, will usually be a much harder task,
similar to proving coercivity in finite element analyses. The final step of interpolation
error analysis may also be troublesome in some cases; in the a priori error analysis for
the quasi-1D Euler equations using piecewise linear interpolation, presented later in this
paper, we will see the difficulties that can arise.

5 Nonlinear adjoint error correction

Let u be the solution of the nonlinear differential equation

on the boundary 0f2.
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The linear differential operators L, and B, are defined to be the Fréchet derivatives
of N and D, respectively,

It is assumed that the nonlinear functional of interest, .J(u), has a Fréchet derivative
of the following form,
J u) —J
i TSI (50, 3) 4 (1, oo

e—0 €

Here the dimension of the operator C, (which may be differential) is required to equal
the dimension of the adjoint boundary operator B}, to be defined shortly.
The corresponding linear adjoint problem is

on the boundary 0€2. The identity defining L}, B} and the boundary operator C} is
(Liw, @) + (Biw, Cyi)sq = (w, L,a) + (Ciw, B,1)sq,

for all u, w.
We now consider approximate solutions uy, v, and define g, hj, by

* *
Luhvh = Gh, Buhvh = hh.

Note the use of the Fréchet derivatives based on u;, which is known, instead of u which
is not.
The analysis also requires averaged Fréchet derivatives defined by

1
Luu,) = /0 Ll s oup—uy @9,
. 1
Bluw,) = /OB|u+0uh—)d9v
. 1
C(u,uh) = /OC|U+0uhu do,

Gl uy) = /0 g1+ O(uup—u1)) 6,
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so that

N(up)~ N(u) = / SN+ 0(un—u)) o

= L(u,uh) (Uh —U),

and similarly

D(up)—D(u) = E(u,uh) (up—u), B
J(up)=J(u) = (G(u,un), up—u) + (h, Cruu,) (up—1u))s0-

We now obtain the following:

J(un) = J(u) = (g(u, un), un—u) + (b, Cuuy) (un—1))oe

(

= (gn,un—u) + (hp, Cu, (un—1u))oq

_(gh_g(ua uh)a uh_u) - (ha (Cuh _C (w,up) )(uh_u))ﬁﬂ
—(hn—="nh, Cy, (up—u))an

= (L;‘thh, uh—u) + (BZhUh, Cuh (Uh—u))ag

—(gn =9 (u, up), up—u) = (h, (Cuy, = Cuuy)) (un—1u)) o
—(hh—h, Cuh (uh—u))ag

= (vn, Luy, (un—u)) + (C5, v, Bu,, (un—u)) o

—(gn—7(u, up), up—1u) — (b, (Cup = Cluuy)) (Un—1)) a0
—(hh—h, Cuh (uh—u))ag

= (vh,f(u,uh)(uh—u)) + (CZhUh,E(u,uh)(uh—U))aQ
—(gn =9, un), un—1u) = (b, (Cuy, = C i) (un—1))on
—(hp—h, Cy, (up,—u))aa + (Vh, (Luy, — Liuuy)) (un —u))
(C Uh;( uh_E(u,uh))(uh_u))BQ

= (vn, N(un)) + (Cy, vn, D(un))o
—(gn—=9(u, un), un—1u) — (h, (Cu, = Cuuy)) (un—1)) a0
—(hp,—h, Cy, (up—u))sq + (va, (Ly, —Z(u,uh))(uh—u))
(C* Uha( Uh_E(u:uh))(uh_u))BQ' (5'1)

In the final result, the first line is the adjoint correction term taking into account
residual errors in approximating both the p.d.e. and the boundary conditions. The other
lines are the remaining errors, which include the consequences of nonlinearity in L, B, C
and g as well as residual errors in approximating the adjoint problem.

If the solution errors for the nonlinear primal problem and the linear adjoint problem
are of the same order, and they are both sufficiently smooth that the corresponding
residual errors are also of the same order, then the order of accuracy of the functional
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approximation after making the adjoint correction is twice the order of the primal and
adjoint solutions.

An a posteriori error bound is harder to construct than in the linear case. If we again
assume that the boundary integral terms are zero, or at least negligible, then the two
interior inner products can be split into the following three pieces:

Error ~ (g,—g(un), up—u) + (g(un) —g(u, up), up—u) — ((L;‘Lh—fa’uh))vh, Up—1u).

We can obtain asymptotic error bounds by converting each inner product into an al-
ternative representation that is asymptotically equivalent and has a computable bound.
With the first inner product we have

(gn—9(un), up—u) = (gn—g(un), Ly N(uy)).
For the second, we define G, to be the Fréchet derivative of g(u),

Gt — i 9L €8) = 9()
e—0 €

and then obtain

(Gy(up—u), up—u)
(L: 'GuL, N (up), N(up)).

Q

(g(un) —g(u, up), up—u)

Q

N N =

For the third inner product, we define the operator H, , as

* . _L*
Hy it = lim el — 2ol
e—0 €
so that
(s, =L))o un—u) ~  3(Hyy(up—u), up—u)
Ly ~"HypwLy "N (up), N(up)).

Together, these give the approximate asymptotic bound
| Error | < er|[N(un)ll lgn—g(un) || + e[| N ()|,

where

a =LY, =1L NGu—H.)L, .

The problem in evaluating this a posteriori error bound is that ¢; and ¢, will not be
known in general, and may be hard to bound analytically. A more practical option may
be to estimate them computationally based on the corresponding discrete operators.
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6 Nonlinear examples

6.1 Quasi-1D Euler equations

The steady quasi-1D Euler equations for the flow of an ideal compressible fluid in a

variable area duct are J A
—(AF) — — P =
dx( ) dx 0,

where A(z) is the cross-sectional area of the duct and u, F'(u) and P(u) are defined as

P pq 0
u=\| pg |, F=| pi’+p |, P=|p
pE pgH 0

Here p is the density, ¢ is the velocity, p is the pressure, E' is the total energy and H is
the stagnation enthalpy. The system is closed by the equation of state for an ideal gas.
The functional of interest is the ‘lift’

J:/pdx,

and the corresponding adjoint equations are

e () 2 (- ()
L ou dr \ Ou — \ou/)

The nonlinear equations are approximated using a standard second order finite vol-
ume method with characteristic smoothing on a uniform computational grid. The linear
adjoint problem is approximated by the so-called ‘continuous’ method, which involves
discretizing the analytic adjoint equations on the same uniform grid as the flow solution
[14]. This approach produces consistent approximations to the analytic adjoint solution
[9], which has been determined in closed form for the quasi-1D Euler equations [11].

Two different reconstruction methods have been investigated: cubic splines and linear
interpolation. Each component of the primal solution u; and the dual solution v, is
independently reconstructed from the nodal values. The integrals that form the base
value for the functional and the adjoint correction are then approximated by 3-point
Gaussian quadrature.

6.1.1 Subsonic flow

The first case is smooth subsonic flow in a converging-diverging duct corresponding to the
Mach number distribution depicted in Figure 5. Figure 6 shows the error convergence
for the computed functional. The superimposed lines of slope —2 and —4 show that
the base error is second order using either linear interpolation or cubic splines for the
reconstruction, and the error in the corrected functional is fourth order, again using
either method of reconstruction.
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Mach Number Profiles

Isentropic Transonic

.~ T~ Subsonic |

91 0 1
X

Figure 5: Mach number profiles for quasi-1D Euler equation test cases.

It is particularly noteworthy that the linear interpolation gives fourth order accuracy
for the corrected functional. Linear interpolation gives a primal solution error that is
second order, and an adjoint residual error that is first order, so one might expect that
the error remaining after adjoint error correction would be third order. This point is
analyzed later in Section 7, where it is proved that a cancellation effect zeroes this
leading order term in the inner product of the primal residual error and the adjoint
solution error.

6.1.2 Isentropic transonic flow

Figure 7 shows the error convergence for a transonic flow in a converging-diverging duct
corresponding to the Mach number distribution of Figure 5. The flow is subsonic at
the inflow boundary and upstream of the throat (located at z = 0), and supersonic
downstream of the throat and at the outflow boundary. Again the results show that the
base error is second order while the remaining error after the adjoint correction is fourth
order, regardless of the choice of reconstruction method. This result is obtained despite
the fact that there is a logarithmic singularity in the adjoint solution at the throat [11].

6.2 Nonlinear thermal diffusion

The computational domain is the circular annulus 1 < r < 3 and the p.d.e. is the
nonlinear diffusion equation

V- (uVu) =0,

subject to the requirement that u is positive. Dirichlet boundary conditions are specified
at the inner and outer boundaries so as to agree with the analytic solution

u(r,0) = (1 + <£ - %) cos9> "
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Error Convergence
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Figure 6: Error convergence for quasi-1D subsonic flow.
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Figure 7: Error convergence for quasi-1D shock-free transonic flow.
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Primal Solution Dual Solution

-4 -4

Figure 8: The primal and dual solutions for a 2D nonlinear thermal diffusion problem.

The functional of interest is

and the corresponding dual problem is

Liv=uV% =0,
with Dirichlet boundary conditions of 1/u and 0 on the inner and outer boundaries,
respectively.

The primal and dual solutions shown in Figure 8 are obtained by a bi-linear Galerkin
finite element formulation using 3 x 3 Gaussian quadrature to evaluate the mass and
stiffness matrices. The nonlinear equations are solved using a full approximation scheme
multigrid method. Bi-cubic spline interpolation and 3x 3 Gaussian quadrature are then
used to calculate the functional with and without the adjoint correction. The results
are plotted in Figure 9 with superimposed lines of slopes —2 and —4, showing second
order accuracy for the basic finite element solution and fourth order accuracy after the
inclusion of the adjoint error correction. For a 128 x 32 mesh, the error decreases by
more than a factor of 10°.

7 Nonlinear a prior: error analysis

In this section we consider the subsonic quasi-1D Euler test case and establish the fourth
order accuracy of the corrected functional using both cubic spline and piecewise linear
interpolation. For subsonic flow, the analytic primal and dual solutions are both known
to be smooth for smooth duct geometries [11].

The discussion is split into three parts. The first examines the conditions required
to ensure second order convergence of the nonlinear solution and the second analyzes
the error in the adjoint solution. The objective of these first two parts is to describe a
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Figure 9: Error convergence of a boundary functional for a 2D nonlinear thermal diffusion
problem.

minimal set of discretization properties that are sufficient to ensure the desired super-
convergence behavior. The third and final part considers the errors introduced by the
interpolation and proves that each of the terms in the remaining error for the functional
is fourth order in magnitude.

Analysis of the primal solution

Building on the ideas of Keller [16], Sanz-Serna and Lopez-Marcos [18, 25] have developed
a powerful framework for analyzing discretizations of nonlinear PDEs. The thrust of
their work is that, with appropriate definitions, consistency and stability are sufficient
to ensure existence, local uniqueness and convergence. In particular, it is possible to
identify the order of convergence of the global solution error, which is of paramount
importance to the present discussion.

The nonlinear quasi-1D Euler equations,

with appropriate boundary conditions, are approximated by the nonlinear finite differ-
ence equations
Nh(uh) = 0.

We define the differential operator L,, to be the Fréchet derivative of N evaluated at w,
and the discrete operator L,, to be the Fréchet derivative of IN}, evaluated at w. We
also, for convenience, use the shorthand L, to represent L, g, ).
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We will assume that the nonlinear discretization has the following properties:

Property 1: there exists a constant ¢y, independent of A, such that
INA(u(@n)]| < erh®
Property 2: There exists a constant co, independent of h, such that
122 <o

Property 3: There exists a constant c3, independent of h, such that, for any
w € B(u(zy), c3h),

1
L,—-L,|<—.
e

Property 1 is a local consistency condition on the nonlinear operator. Property 2
is equivalent to requiring stability of the linearized operator. These conditions mirror
Lemmas 1 and 2 of the earlier linear analysis. Property 3 is a new smoothness condi-
tion on the nonlinear operator (e.g. Lipschitz or continuous Fréchet differentiability).
Sanz-Serna, and Lopez-Marcos have shown that these conditions are sufficient to guar-
antee that the numerical solution uy lies in the ball B(u(xy), c4h?) for some positive ¢,
independent of h [18].

If the duct area A(x) is sufficiently smooth (4 € C?(Q)), Properties 1 and 3 may
be verified by Taylor series substitutions into the nonlinear and linearized discretization
operators. Property 2 is more difficult to establish, but it appears that a proof could
be constructed following the approach of Kreiss [17]. Essentially, the matrix L lis a
discrete approximation to the Green’s function for the continuous problem. The Green’s
function is bounded due to the well-posedness of the p.d.e., and a uniform bound for the
difference between the Green’s function and L' follows from using a discretization that
is consistent and strictly dissipative on the interior, with discrete boundary conditions
that are stable in the sense of Godunov and Ryabenkii [12,13].

Analysis of the dual solution

In this section we will assume throughout that A <hg so that the nonlinear solution wuy
is known to exist and satisfy the error bounds given in the last section.

Given an approximate solution uy, of the nonlinear p.d.e. (i.e. an interpolation of the
discrete solution wy,), our objective in this section is to analyze the difference v,—v(x}).
Here v is the solution of the differential equation

Lyv = g(u),

subject to homogeneous boundary conditions, where L, and g(u) are the Fréchet deriva-
tives based on u, as defined previously. v is the solution of the corresponding linear
finite difference equations

*
Luh/vh = gh?
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with L,, and g, both based on the discrete solution u,. The analysis also involves the

discrete operator L;, which again is a shorthand for LZ(wh)

We will assume that the adjoint discretization has the following three properties:

Property 1: There exists a function 7€ C°(2) such that
L;, v(mh) — g, = b7 (2s) + O(h?),

and
L;Z,L (U(wh) - h2w($h)) — g = O(hS),
where w e C*(Q) is the solution to the linear p.d.e.

* —_—
Liw=rT,

subject to homogeneous boundary conditions.

Property 2: There exists a uniform bound c¢5, independent of h, such that

1L, = < s

Property 3: There exists a constant cg, independent of h, such that

1
<

205 ,

HL:;h B LZ

when uy, € B(u(xzp), cgh).

Conditions corresponding to Properties 1 and 2 were previously proved for the 1D
linear analysis, and Property 3 was already encountered in the discussion of the primal
discretization. For the present linear analysis, Properties 1 and 3 could be verified by
Taylor series substitutions into the finite volume scheme used to obtain the numerical
results (assuming A € C?(Q2)). Property 2 would again be the hardest to prove. An
estimate of the error in the adjoint solution now requires the following lemma.

Lemma 7 There exists a constant hqy >0 such that, for h<hq,
13,7 < 2¢s.

Proof Define D = L;, — Ly and let hy = min{hg,cs/ca}, so that provided h < hi, then
uy, € B(u(zxy), cah?®) C B(u(zp), ch). Hence, using Properties 2 and 3,

1L, ~'D| < 5.

For any matrix A for which ||A|| < 1 we have ||[(I + A)7'| < S22 |1AI* = 1/(1—]|A]).
Therefore,
I(I+L;, ~'D)~'|| < 2.
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From this it follows that L;, = Ly+D = Ly, (I+L, ~1D) is non-singular, and
IZ%, I < II+L3 D)~ Ly M < 205

h

[
The main lemma then follows immediately from Property 1 and Lemma 7.

Lemma 8 For h<hy, the adjoint solution satisfies

v, = v(zs) — R*w(zy) + O(h?).

Analysis of reconstruction and functional errors

If one uses cubic spline interpolation to construct the approximate solutions u;, and vy,
then the analysis from the previous sections together with standard interpolation error
analysis for cubic spline interpolation lead to error bounds of the following form.

|lup—ul| < dyh?,
lop —v|| < doh?,
v, —v'|| < dzh?.

From equation (5.1), the error in the functional after the adjoint error correction is
the sum of five terms:

—(gn—0(u, up), up—u) — (h, (Cy, —6(ﬂuh))(uh—u))89
—(hn—"h, Cu,, (un—u))aq + (Vn, (Luy, = Liuuy)) (un—1u))
+(Cy, vhs (Buy, = Buuy)) (un— 1)) aq-

We will now consider each of these in turn. Noting that g,=L; v, and g(u)=L;v, the
first term can be expressed as the sum of three other terms:

(gh—9(u,up), up—u)
= (L5~ L3 vy wn— ) + (Lo (n—v), up—u) + (g(u) =G, ), un—u) .

~ J/ ~

(1a) (1b) (1c)

By bounding the differences in the coefficient matrices in the operators L, and L,
we can obtain a bound of the form

(L3, = L3) on| < dallup—ull,
so therefore term (1a) has the fourth order bound

(L, —L%) o up—u) | < dydy .



26

For the term (1b), we use the second order bounds on v, —v and its derivative to
obtain a bound of the form

1L3 (vn =) || < ds (da+ds) B,

and hence
[(Ly, (vh—v), un—u)| < ds (da+ds) dih*.

For (1c), the Fréchet derivative of g(u) is continuous and bounded, so there exists
another constant dg such that

l9(w) =g(u, un) || < ds|lun—wull,

and hence
|(g(u) —g(u, up), up—u)| < ded?h*.

The second and third terms are both identically zero because the functional does not
have any boundary terms and therefore h=~h;, =0. The boundary operators in the fifth
term are all algebraic, not differential, and therefore it has a bound similar to that for
(1c), involving the maximum errors at the two boundaries, which are not greater than
the maximum errors over the whole interval.

The fourth term is the last to be considered. Integrating it by parts yields

((L’)lkl.h _Eztu,uh))vh7 Up— U)

(which is fourth order by a similar argument to (1a)), plus some boundary terms that
are fourth order by the same argument as for the fifth term.

Thus, the second and third terms are zero and the other three are all fourth order in
magnitude, so the remaining error is O(h*). This completes the outline of an a priori
analysis proving the fourth order accuracy of the corrected functional in the subsonic
flow case using cubic spline interpolation.

When using piecewise linear interpolation, the error in v; becomes first order. In the
analysis above, this error is important only in considering term (1b), where it initially
appears that the degradation in the order of accuracy of v}, will cause (1b) to become
third order rather than fourth order. However, numerical experiments continue to exhibit,
fourth order functional convergence. An explanation for this behavior requires careful
attention to the nature of the error introduced by piecewise linear interpolation.

The starting point is the earlier result that

vy = v(mh) — th(mh) + O(hg)

Defining I, to be the operator performing piecewise linear interpolation through the
nodal values of a continuous function, and defining I to be the identity operator, then

Uy = U+ (Ih—I)v - hQIhw + O(hg)
Next, we use standard results to express the interpolation error (I, —I')v as

(In—1I)v = q(z) + O(h?),
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where ¢(z) is a function which on the interval [z;, ;] is

q(x) = sa;(v— ;) (x— 7541),

with a; defined as
1
aj=—7 (V' (2j11) — V' (25)) -
Hence,
vy, = v +1(x) + O(h?),

where [(x) on the open interval (z;,2;11) is

l(x) = aj(x—2j11/2).

Note in particular that {(x) is anti-symmetric about x;1/2, the midpoint of the interval.
When this error representation is substituted into the (1b) inner product error term,
the component involving /() is of the form

(Cl,up—u),

where C'(z) is a matrix function with bounded derivative. Therefore, C'(z) can be
decomposed into a dominant part C that is piecewise constant and a remainder that
is O(h). The primal interpolation error u; —u can also be decomposed into a dominant
part r(z) (which, like q(z), is zero at nodes, piecewise quadratic and O(h?)), plus a
remainder which is O(h?).

The critical observation is that the component of the inner product involving all of the
leading order terms, (Cyl,r), is zero because in each sub-interval the product (Col)”r
is anti-symmetric about the midpoint. All of the other inner product contributions
involving non-dominant terms are O(h*). Therefore, this cancellation effect is responsible
for producing a functional error that remains O(h?) even when using linear interpolation.

8 Conclusions and future challenges

This work provides the first comprehensive treatment of adjoint error correction methods
for bulk and boundary functional estimates based on linear and nonlinear PDE solutions
with homogeneous and inhomogeneous boundary conditions. A priori error analysis of
one linear and one nonlinear problem correctly predicts the observed superconvergence
of the functional estimates. These discussions provide a framework for the analysis of
functional estimates of other linear and nonlinear problems. Numerical demonstrations
included a linear 1D bulk functional, a linear 2D boundary functional with a geometric
singularity in the domain, a bulk functional of a quasi-1D nonlinear system, and a
boundary functional of a 2D nonlinear problem.

In the linear case, a posteriori analysis leads to a computable bound on the error re-
maining after adjoint error correction. Further work is required to explore the sharpness
and utility of these bounds and to develop reliable computable bounds for functionals
of nonlinear problems.
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The treatment of geometric singularities and solution discontinuities also requires fur-
ther investigation. Mesh movement or adaptivity implemented in a carefully prescribed
manner is required to yield fourth order functional estimates for primal solutions con-
taining shocks. We are currently working on a theoretical treatment of this problem in
1D that appears to hold promise for multi-dimensional problems.
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