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31 Introdu
tionConsider the drag on an air
raft at transoni
 
ruise, the radar 
ross-se
tion of a glider,the ele
trostati
 free energy of a biomole
ule in water, or the 
ux of fossil fuels througha porous medium. These and many other problems of engineering and s
ienti�
 interestmay be studied quantitatively by 
omputing integral fun
tionals of PDE solutions.In attempting to improve the a

ura
y of fun
tional estimates, the numeri
al pra
-titioner is 
onfronted with an array of possibilities. Reasonable alternatives in
ludere�ning the 
omputational mesh (mandating larger faster 
omputers), in
reasing theorder of a

ura
y of the dis
retization (when pra
ti
al for the geometry under 
on-sideration), iterative re�nement of the numeri
al solution via defe
t 
orre
tion (againrequiring a higher order dis
retization), or Ri
hardson extrapolation of the solution orthe fun
tional (when the asymptoti
 
onvergen
e rate is reliably known). All of theseapproa
hes 
an be used to improve global solution a

ura
y, yielding 
orresponding in-
reases in fun
tional a

ura
y. However, for problems in whi
h the value of a fun
tionalis the most interesting quantitative output of a simulation, there is signi�
ant motiva-tion to devise reliable and eÆ
ient numeri
al te
hniques that spe
i�
ally enhan
e thea

ura
y of the fun
tional estimates without seeking to improve the a

ura
y of theunderlying solution.The purpose of this paper is to analyze a method for obtaining super
onvergentfun
tional estimates for arbitrary underlying numeri
al dis
retizations. The key is theuse of the solution of the adjoint PDE (the dual of the linearized form of the originalprimal PDE) whi
h reveals the in
uen
e of lo
al solution errors on the fun
tional valueof interest. Re
ent work has demonstrated that the leading order error term in thefun
tional 
an be estimated and removed by smoothly re
onstru
ting the primal solution,di�erentiating to approximate the primal residual error, and evaluating the inner produ
twith the re
onstru
ted adjoint solution [24, 10℄. Alternatively, the lo
al 
ontributionsto this inner produ
t 
an be employed as an optimal adaptivity 
riterion for improvingfun
tional a

ura
y [28, 29, 21℄.The signi�
an
e of the adjoint PDE for error analysis and adaptivity has long beenrealized within the �nite element 
ommunity [1, 2, 3, 4, 7, 15, 19, 22, 23, 27, 26℄, where itis well known that many �nite element methods enjoy natural super
onvergen
e forfun
tional estimates. The adjoint error 
orre
tion te
hnique extends these results toapproximate solutions obtained by any dis
retization method (or other means of ap-proximation) as well as illustrating the potential for further improvement of the inherent�nite element super
onvergen
e.Our earlier work in adjoint error 
orre
tion emphasized the a posteriori error analysisne
essary to motivate the approa
h for linear and nonlinear problems, with bulk fun
-tionals and homogeneous boundary 
onditions [24, 9℄. The present work extends theseresults in two ways, �rstly, by in
reasing the s
ope of the analysis to en
ompass bound-ary fun
tionals and inhomogeneous boundary 
onditions, and se
ondly, by performing apriori error analysis to predi
t the rate of super
onvergen
e of the remaining error termsafter 
orre
tion.We begin the paper by formulating the approa
h for general linear PDEs and fun
-



4tionals. Numeri
al demonstrations are provided for a one-dimensional (1D) Poissonproblem and a two-dimensional (2D) Lapla
e problem with 
urved boundaries and ageometri
 singularity in the domain. In the 1D setting, an a priori analysis is thenperformed to evaluate the primal, dual, and 
ubi
 spline re
onstru
tion errors, 
orre
tlypredi
ting a doubling in the 
onvergen
e rate of the fun
tional value over that of thebaseline s
heme.Next, the approa
h is formulated for general nonlinear PDEs and fun
tionals. Nu-meri
al demonstrations are provided for the system of quasi-1D Euler equations and fora 2D nonlinear thermal di�usion problem. An a priori analysis then follows for the 1D
ase, elu
idating the relationships between errors in the nonlinear primal problem, thelinear dual problem and the re
onstru
tion errors in both. This analysis demonstratesthat the same order doubling phenomenon is also predi
ted for the nonlinear 
ase. For a�rst order di�erential operator in 1D, the somewhat surprising point is made that a del-i
ate 
an
ellation e�e
t allows linear re
onstru
tion to yield the same order of a

ura
yas the smoother 
ubi
 splines.To demonstrate the generality of adjoint error 
orre
tion, di�erent numeri
al exper-iments are performed with �nite di�eren
e, �nite volume, and �nite element methods.The latter examples serve to illustrate the improvement that is a
hievable over the nat-ural �nite element super
onvergen
e.2 Linear adjoint error 
orre
tionLet u be the solution of the linear di�erential equationLu = f;in the domain 
, subje
t to the linear boundary 
onditionsBu = e;on the boundary �
. In general, the dimension of the operator B may be di�erent ondi�erent se
tions of the boundary (e.g. in
ow and out
ow se
tions for the 
onve
tionp.d.e.).The output fun
tional of interest is taken to beJ = (g; u) + (h; Cu)�
;where the notation (:; :) denotes an integral inner produ
t over the domain 
, and (:; :)�
represents an integral inner produ
t over the boundary �
. The boundary operator Cmay be algebrai
 (e.g. Cu � u) or di�erential (e.g. Cu � �u�n), but must have the samedimension as the adjoint boundary 
ondition operator B� to be de�ned shortly. Notethat either g or h may be set to zero if the fun
tional does not have an interior orboundary integral 
ontribution, respe
tively.The 
orresponding linear adjoint problem isL�v = g;



5in 
, subje
t to the boundary 
onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the boundaryoperator C� is (L�w; z) + (B�w;Cz)�
 = (w;Lz) + (C�w;Bz)�
;for all suÆ
iently di�erentiable fun
tions w; z. This identity is obtained by integrationby parts, and in a previous paper we des
ribe the 
onstru
tion of the appropriate adjointoperators for the linearized Euler and Navier-Stokes equations [8℄.Using the adjoint identity, one immediately obtains the equivalent dual form of theoutput fun
tional, J = (v; f) + (C�v; e)�
:Suppose that uh and vh are approximations to u and v. The subs
ript h indi
atesthat the approximate solutions are derived from a numeri
al 
omputation using a gridwith average spa
ing h. When using �nite di�eren
e or �nite volume methods, uh andvh might be 
reated by interpolation through 
omputed values at grid nodes. With �niteelement solutions, one might more naturally use the �nite element solutions themselves,or one 
ould again use interpolation through nodal values. A last 
omment is that uhand vh do not have to 
ome from a numeri
al 
omputation; they 
ould, for example,
ome from an asymptoti
 analysis yielding a uniformly valid asymptoti
 approximationto the solution.Given approximate solutions uh; vh we de�ne eh; fh; gh; hh byLuh = fh; L�vh = gh; Buh = eh; B�vh = hh:It is assumed that uh and vh are suÆ
iently smooth that fh and gh lie in L2(
). If uhand vh were equal to u and v, then eh; fh; gh; hh would be equal to e; f; g; h, respe
tively.Thus, the residual errors eh�e; fh�f; gh�g; hh�h are a 
omputable indi
ation of theextent to whi
h uh and vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the fun
tional:(g; u) + (h; Cu)�
 = (g; uh) + (h; Cuh)�
�(gh; uh � u)� (hh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(L�vh; uh � u)� (B�vh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; L(uh � u))� (C�vh; B(uh � u))�




6 +(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; fh � f)� (C�vh; eh � e)�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
:
In the �nal result, the �rst line is the fun
tional based on the approximate solutionuh. The se
ond line 
ontains two 
omputable terms. The �rst is an inner produ
t ofthe residual error fh�f and the approximate adjoint solution vh; the adjoint solutiongives the weighting of the 
ontribution of the lo
al residual error to the overall error inthe 
omputed fun
tional. The se
ond term performs a similar task for the error eh�ein satisfying the boundary 
onditions. Together, these two terms form what we labelthe adjoint error 
orre
tion, giving the leading order e�e
t of the residual errors on thefun
tional of interest. Adding this 
orre
tion to the quantity in the �rst line gives amore a

urate approximation to the value of the fun
tional.The third line is the remaining error after making the adjoint 
orre
tion. Ea
h ofthe terms is an inner produ
t of two quantities, the �rst being a fun
tion of vh�v andthe se
ond being a fun
tion of uh�u. If ea
h quantity is O(hp) so that halving the gridspa
ing results in a 2p redu
tion, then the remaining error for the fun
tional is O(h2p).Furthermore, if we assume that the approximate solutions uh; vh exa
tly satisfy theboundary 
onditions, so that eh�e = hh�h = 0, then the se
ond term is zero. The �rstterm 
an be expressed as (gh�g; L�1(fh�f)), where the operator L�1 is de�ned subje
tto homogeneous boundary 
onditions. There is therefore a 
omputable a posteriori errorbound kL�1k kfh�fk kgh�gk.In Galerkin �nite element methods (or any �nite element method in whi
h the testand trial spa
es are inter
hanged for the primal and dual problems) the adjoint 
orre
tionterm is always zero due to the inherent orthogonality of the dis
retization. This desir-able property yields automati
 super
onvergen
e for all integral fun
tionals. However, ifp is the order of a

ura
y of the �nite element solution uh, and the operator L involvesderivatives of up to degree m, then usually the residual error satis�es fh�f = O(hp�m)and hen
e the error in any smoothly weighted fun
tional is O(h2p�m). Repla
ing the�nite element solution with a smoother re
onstru
ted solution allows adjoint error 
or-re
tion to re
over an improved fun
tional estimate with an error that is O(h2p). Thispro
edure will be demonstrated in the se
ond of the two linear examples to follow. Inthis, in whi
h a pie
ewise linear �nite element solution of the Poisson equation (for whi
hthe fun
tional a

ura
y is O(h2)) is repla
ed by a 
ubi
 spline interpolation leading toan improved a

ura
y of O(h4).



73 Linear examples3.1 1D Poisson equation with �nite di�eren
esThe �rst example is the one-dimensional equation,d2udx2 = f;on the unit interval [0; 1℄ subje
t to homogeneous boundary 
onditions u(0)=u(1)=0.This example has appeared previously [24℄, and is in
luded here to serve as the basisfor a detailed a priori error analysis. The problem is approximated numeri
ally on auniform grid, with spa
ing h, using a se
ond order �nite di�eren
e dis
retization,h�2Æ2xuj = f(xj):The approximate solution uh(x) is then de�ned by 
ubi
 spline interpolation throughthe nodal values uj.The dual problem is the equation, d2vdx2 = g;subje
t to the same homogeneous boundary 
onditions, and the approximate adjointsolution vh is obtained in exa
tly the same manner.Numeri
al results have been obtained for the 
asef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error fh�f when h = 132 , as well as the three Gaussianquadrature points on ea
h sub-interval that are used in the numeri
al integration ofthe inner produ
t (vh; fh�f). Figure 2 is a log-log plot of three quantities versus thenumber of 
ells: the error in the base value of the fun
tional (g; uh); the remaining errorafter subtra
ting the adjoint 
orre
tion term (vh; fh�f); the a posteriori error boundkL�1k kfh�fk kgh�gk. The superimposed lines have slopes of �2 and �4, 
on�rmingthat the base solution is se
ond order a

urate while the error in the 
orre
ted fun
tionaland the error bound are both fourth order.3.2 2D Lapla
e equation with �nite elementsThe se
ond example is a mu
h more testing 2D problem, with a boundary fun
tionalover a 
urved boundary with a 
usp at one point. The domain and fun
tional mimi
the 
hallenges that arise in 
omputational 
uid dynami
s in 
onsidering the 
ow aroundtwo-dimensional airfoils.The test 
ase is 
onstru
ted with the aid of a 
onformal mapping. Starting with theregion in the 
omplex Z-plane between two 
ir
les 
entered at (X; Y ) = (�0:1; 0) withradii of R1 = 1:1 and R2 = 3:0, appli
ation of the Joukowski mappingz = Z + 1Z ;
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9then produ
es a 
omputational domain 
 lying between a 
usped airfoil (�
z1) and asmooth outer boundary (�
z2).Using 
ylindri
al 
oordinates R; � de�ned byX + 0:1 = R 
os �; Y = R sin �;the fun
tion U(X; Y ) = R2 � R21R sin �;is a solution of the Lapla
e equation subje
t to the boundary 
onditions U =0 on theinner 
ir
le, and U = [(R22 � R21)=R2℄ sin � on the outer 
ylinder.In the z-plane, the fun
tion u(x; y) = U(X; Y ) is the solution of the Lapla
e equation�2u�x2 + �2u�y2 = 0;subje
t to u=0 on the airfoil, and the appropriate Diri
hlet boundary 
onditions on thefar-�eld boundary. As illustrated in Figure 3, this solution 
orresponds to the streamfun
tion for in
ompressible invis
id 
ow around the airfoil, with zero 
ir
ulation.The boundary fun
tional in the Z-plane is de�ned to beZ 2�0 sin � �U�n ����R=R1 d�;so the analyti
 value is �2�. When mapped into the z-plane, the 
orresponding expres-sion for the fun
tional is �sin �R1 ; �u�n��
z1 ;and hen
e the dual problem is the Lapla
e equation subje
t to the inhomogeneous Diri
h-let 
ondition v=sin �=R1 on the airfoil surfa
e and v = 0 on the far-�eld boundary.The problem in the z-plane is solved numeri
ally using a bi-linear Galerkin �niteelement method on a stru
tured grid with quadrilateral elements. The approximatere
onstru
ted solutions uh and vh are then obtained from the nodal values by bi-
ubi
spline interpolation. The 
omputational 
oordinates at the grid points are also splined,so that x; y; uh and vh are all expressed parametri
ally as a fun
tion of spline 
oordinates�; �. By di�erentiating these fun
tions one 
an then obtain the ne
essary derived quan-tities su
h as fh. The inner produ
ts are evaluated using 3-point Gaussian quadraturefor the boundary integrals and 3�3 Gaussian quadrature for interior integrals.Figure 4 shows the numeri
al values obtained for the fun
tional, with and withoutthe adjoint error 
orre
tion, plotted versus the square root of the number of 
ells, whi
his a measure of 1=h, an average inverse grid spa
ing. Again the superimposed linesof slope �2 and �4 show that the base solution is se
ond order a

urate whereas the
orre
ted value for the fun
tional is fourth order a

urate. Note that on a 128�32 mesh(the third data points), the in
rease in a

ura
y is greater than a fa
tor of 6�104. Thisimprovement is a
hieved despite the 
usped trailing edge and the added 
ompli
ation of
urved boundaries. The 
omputable error bound does not appear to be useful for this
ase due to a singularity in the adjoint residual near the trailing edge.
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114 Linear a priori error analysisIn this se
tion we analyze the a

ura
y of the approximate primal and adjoint solutionsfor the �rst of the linear examples, and derive an a priori error estimate proving that theerror in the fun
tional after applying the adjoint error 
orre
tion is fourth order. Theproof is intended to serve as a template for the a priori analysis of other appli
ations,and so it is written in a more general form than is ne
essary for the parti
ular problembeing 
onsidered.We begin with a few 
omments on notation. Bold type (e.g. u) denotes a ve
tor ofdis
rete quantities at the nodes of a 
omputational grid, and dis
rete operators a
tingon su
h data. Regular type is used for 
ontinuous fun
tions and di�erential operators.u(xh) denotes the dis
rete data obtained by evaluating the fun
tion u(x) at the gridnodes whose 
oordinates are xh.All norms, both dis
rete and 
ontinuous, are L1 norms. In addition, the notationO(hp) when used in a 
ontext su
h asuh = u(xh) +O(hp);means that there exists a 
onstant 
 su
h thatkuh�u(xh)k � 
 hp; (4.1)or, equivalently, uh 2 B(u(xh); 
hp), where the ball B(u; �) is de�ned asB(u; �) = fw : kw�uk � �g :Turning now to the analysis of numeri
al example 3.1, the di�erential equationLu = f;subje
t to homogeneous boundary 
onditions, is approximated on a uniform grid withspa
ing h by the �nite di�eren
e equation,Lhuh = fh:The purpose of the �rst part of the analysis is to bound the dis
rete solution error,kuh�u(xh)k.The �rst two lemmas 
on
ern the a

ura
y and stability of the dis
retization.Lemma 1 For f 2 C4[0; 1℄, there exists a fun
tion � 2 C2[0; 1℄ and 
onstant 
1, bothindependent of h, su
h thatLhu(xh)� fh = h2�(xh) + r(1)h ; kr(1)h k � 
1h4;and Lh �u(xh)� h2w(xh)�� fh = r(2)h ; kr(2)h k � 
1h4;where w2C4[0; 1℄ is the solution of Lw = �;subje
t to the given homogeneous boundary 
onditions.



12Proof The fun
tion � is easily found through a Taylor series expansion of the solution u aboutthe 
entral node in the dis
rete operator. The bounds on r(1)h and r(2)h are then found usingappropriate trun
ated Taylor series expansions.This results in � = 112 d2fdx2 ;and 
1 = 7720 



d4fdx4 



 :�Lemma 2 There exists a 
onstant 
2, independent of h su
h thatkL�1h k � 
2:Proof Standard 
onvergen
e analysis for ellipti
 operators based on a maximum prin
ipleand a 
omparison fun
tion gives 
2 = 18 (e.g. see page 165 in [20℄). �From these two results we 
an prove the following lemma regarding the error in thenumeri
al solution.Lemma 3 The dis
rete solution uh 
an be written asuh = u(xh)� h2w(xh) + r(3)h ; (4.2)where the fun
tion w(x) is as de�ned in Lemma 1 and the remainder term r(3)h is boundedby kr(3)h k � 
1
2h4; (4.3)with the 
onstants 
1; 
2 as de�ned in Lemmas 1 and 2.Proof Lemma 1 gives Lhr(3)h = �r(2)h ;and the result then follows from the bounds in Lemmas 1 and 2. �The se
ond part of the analysis 
onsiders the errors introdu
ed by the 
ubi
 splineinterpolation of the dis
rete solution uh and the 
orresponding dis
rete adjoint solutionvh. A 
ubi
 spline interpolates the data with a C2 pie
ewise 
ubi
 polynomial. Oneboundary 
ondition is required at ea
h end, and here we dis
uss the 
ase of 
ompletesplines for whi
h the se
ond derivative is spe
i�ed.As with the dis
retization of the di�erential equation, we need results 
on
erning thea

ura
y and stability of 
ubi
 spline re
onstru
tion.



13Lemma 4 For a given fun
tion u(x) 2 C4[0; 1℄, the 
ubi
 spline de�ned by the knot
onditions s(xj) = u(xj) and the end 
onditions s00(0) = u00(0); s00(1) = u00(1) satis�esthe bounds ks� uk � 5384h4 ku0000k ;ks00 � u00k � 12h2 ku0000k :(Proof: see page 68 in [5℄).Lemma 5 The 
ubi
 spline s(x) de�ned by the knot 
onditions s(xj) = h4uj and theend 
onditions s00(0) = h2U0; s00(1) = h2U1; satis�es the following bounds:ksk � h4max �52 kuk ; 524 jU0j; 524 jU1j� ;ks00k � h2max (12 kuk ; jU0j; jU1j) :Proof In the interior of the domain, the equation used to determine the se
ond derivativesof the spline at the mesh points s00(xj) iss00(xj) = 32h2 (uj+1 � 2uj + uj�1))� 14 (s00(xj+1) + s00(xj�1));so therefore js00(xj)j � 6h2kuk+ 12ks00k:In
luding the end 
onditions, and the fa
t that within ea
h mesh interval the se
ond derivativeis a linear interpolation of the two values at either end, givesks00k � max �6h2kuk+ 12ks00k; h2jU0j; h2jU1j�and hen
e ks00k � h2max (12kuk; jU0j; jU1j) :The bound for ksk follows from the re
onstru
tion formula within ea
h interval.ksk � h4kuk+ 18h2ks00k � h4max �52kuk; 524 jU0j; 524 jU1j� :�Lemma 6 If f; g 2 C4[0; 1℄, then the approximate solutions uh(x) and vh(x) obtainedby 
ubi
 spline interpolation of uh and vh, with end 
onditions u00h(0) = f(0); u00h(1) =f(1); v00h(0) = g(0); v00h(1) = g(1), are se
ond order approximations to u(x) and v(x),respe
tively. Furthermore, the residual errors fh�f and gh�g are both O(h2) and(gg�g; uh�u) = O(h4):



14Proof The 
ubi
 spline re
onstru
tion uh(x) 
an be written as the sum of 3 parts:i) s1(x) de�ned by s1(xj) = u(xj) with end 
onditions s001(0) = f(0); s001(1) = f(1);ii) h2s2(x) where s2(xj) = �w(xj) and s002(0) = �w00(0); s002(1) = �w00(1);iii) s3(x) satisfying s3(xj) = r(3)j and s003(0) = h2w00(0); s003(1) = h2w00(1).If f 2 C4[0; 1℄, then u 2 C6[0; 1℄ and w 2 C4[0; 1℄. Hen
e, using the triangle inequality andapplying Lemma 4 to i) and ii), and Lemma 5 to iii), giveskuh�uk = ks1 + h2s2 + s3 � uk� ks1 � uk+ h2ks2 + wk+ h2kwk+ ks3k� 5384h4 �ku0000k+ h2kw0000k�+ h2kwk+max�52kr(3)h k; 524h4jw00(0)j; 524h4jw00(1)j� ;and likewise ku00h�u00k � 12h2 �ku0000k+ h2kw0000k�+ h2kw00k+max�12h�2kr(3)h k; h2jw00(0)j; h2jw00(1)j� :Introdu
ing the bounds on kr(3)h k from Lemma 3 gives the 
on
lusion that uh�u and fh�fare both O(h2). The same argument applies to the adjoint solution, and the �nal result that(gg�g; uh�u) = O(h4) follows immediately. �As well as proving the fourth order a

ura
y of the 
orre
ted fun
tional in thisparti
ular 
ase, this proof provides guidelines for proving super
onvergen
e in otherappli
ations with linear p.d.e.'s. Proving a property 
orresponding to Lemma 1 with theappropriate powers of h will usually be relatively easy; note that this will require f (and gin the adjoint problem) to satisfy 
ertain smoothness 
onstraints. Establishing a uniformbound on the inverse operator, as in Lemma 2, will usually be a mu
h harder task,similar to proving 
oer
ivity in �nite element analyses. The �nal step of interpolationerror analysis may also be troublesome in some 
ases; in the a priori error analysis forthe quasi-1D Euler equations using pie
ewise linear interpolation, presented later in thispaper, we will see the diÆ
ulties that 
an arise.5 Nonlinear adjoint error 
orre
tionLet u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subje
t to the nonlinear boundary 
onditionsD(u) = 0;on the boundary �
.



15The linear di�erential operators Lu and Bu are de�ned to be the Fr�e
het derivativesof N and D, respe
tively, Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear fun
tional of interest, J(u), has a Fr�e
het derivativeof the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h; Cu~u)�
:Here the dimension of the operator Cu (whi
h may be di�erential) is required to equalthe dimension of the adjoint boundary operator B�u, to be de�ned shortly.The 
orresponding linear adjoint problem isL�uv = g(u)in 
, subje
t to the boundary 
onditionsB�uv = hon the boundary �
. The identity de�ning L�u, B�u and the boundary operator C�u is(L�uw; ~u) + (B�uw;Cu~u)�
 = (w;Lu~u) + (C�uw;Bu~u)�
;for all ~u; w.We now 
onsider approximate solutions uh; vh and de�ne gh; hh byL�uhvh = gh; B�uhvh = hh:Note the use of the Fr�e
het derivatives based on uh whi
h is known, instead of u whi
his not.The analysis also requires averaged Fr�e
het derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;



16so that N(uh)�N(u) = Z 10 ���N(u+ �(uh�u)) d�= L(u;uh) (uh�u);and similarly D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
:We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
= (gh; uh�u) + (hh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
: (5.1)In the �nal result, the �rst line is the adjoint 
orre
tion term taking into a

ountresidual errors in approximating both the p.d.e. and the boundary 
onditions. The otherlines are the remaining errors, whi
h in
lude the 
onsequen
es of nonlinearity in L;B;Cand g as well as residual errors in approximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linear adjoint problemare of the same order, and they are both suÆ
iently smooth that the 
orrespondingresidual errors are also of the same order, then the order of a

ura
y of the fun
tional



17approximation after making the adjoint 
orre
tion is twi
e the order of the primal andadjoint solutions.An a posteriori error bound is harder to 
onstru
t than in the linear 
ase. If we againassume that the boundary integral terms are zero, or at least negligible, then the twointerior inner produ
ts 
an be split into the following three pie
es:Error � (gh�g(uh); uh�u) + (g(uh)�g(u; uh); uh�u)� ((L�uh�L�(u;uh))vh; uh�u):We 
an obtain asymptoti
 error bounds by 
onverting ea
h inner produ
t into an al-ternative representation that is asymptoti
ally equivalent and has a 
omputable bound.With the �rst inner produ
t we have(gh�g(uh); uh�u) � (gh�g(uh); L�1u N(uh)):For the se
ond, we de�ne Gu to be the Fr�e
het derivative of g(u),Gu~u = lim�!0 g(u+ �~u)� g(u)� ;and then obtain(g(uh)�g(u; uh); uh�u) � 12(Gu(uh�u); uh�u)� 12(L� �1u GuL�1u N(uh); N(uh)):For the third inner produ
t, we de�ne the operator Hu;v asHu;v~u = lim�!0 L�u+�~uv � L�uv� ;so that ((L�uh�L�(u;uh))vh; uh�u) � 12(Hu;v(uh�u); uh�u)� 12(L� �1u Hu;vL�1u N(uh); N(uh)):Together, these give the approximate asymptoti
 boundj Error j < 
1kN(uh)k kgh�g(uh)k+ 
2kN(uh)k2;where 
1 = kL�1u k; 
2 = 12 

L� �1u (Gu�Hu;v)L�1u 

 :The problem in evaluating this a posteriori error bound is that 
1 and 
2 will not beknown in general, and may be hard to bound analyti
ally. A more pra
ti
al option maybe to estimate them 
omputationally based on the 
orresponding dis
rete operators.



186 Nonlinear examples6.1 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the 
ow of an ideal 
ompressible 
uid in avariable area du
t are ddx(AF )� dAdx P = 0;where A(x) is the 
ross-se
tional area of the du
t and u, F (u) and P (u) are de�ned asu = 0� ��q�E 1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here � is the density, q is the velo
ity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is 
losed by the equation of state for an ideal gas.The fun
tional of interest is the `lift'J = Z p dx;and the 
orresponding adjoint equations areL�uv � �A��F�u�T v0 � dAdx ��P�u�Tv = ��p�u�T :The nonlinear equations are approximated using a standard se
ond order �nite vol-ume method with 
hara
teristi
 smoothing on a uniform 
omputational grid. The linearadjoint problem is approximated by the so-
alled `
ontinuous' method, whi
h involvesdis
retizing the analyti
 adjoint equations on the same uniform grid as the 
ow solution[14℄. This approa
h produ
es 
onsistent approximations to the analyti
 adjoint solution[9℄, whi
h has been determined in 
losed form for the quasi-1D Euler equations [11℄.Two di�erent re
onstru
tion methods have been investigated: 
ubi
 splines and linearinterpolation. Ea
h 
omponent of the primal solution uh and the dual solution vh isindependently re
onstru
ted from the nodal values. The integrals that form the basevalue for the fun
tional and the adjoint 
orre
tion are then approximated by 3-pointGaussian quadrature.6.1.1 Subsoni
 
owThe �rst 
ase is smooth subsoni
 
ow in a 
onverging-diverging du
t 
orresponding to theMa
h number distribution depi
ted in Figure 5. Figure 6 shows the error 
onvergen
efor the 
omputed fun
tional. The superimposed lines of slope �2 and �4 show thatthe base error is se
ond order using either linear interpolation or 
ubi
 splines for there
onstru
tion, and the error in the 
orre
ted fun
tional is fourth order, again usingeither method of re
onstru
tion.
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Figure 5: Ma
h number pro�les for quasi-1D Euler equation test 
ases.It is parti
ularly noteworthy that the linear interpolation gives fourth order a

ura
yfor the 
orre
ted fun
tional. Linear interpolation gives a primal solution error that isse
ond order, and an adjoint residual error that is �rst order, so one might expe
t thatthe error remaining after adjoint error 
orre
tion would be third order. This point isanalyzed later in Se
tion 7, where it is proved that a 
an
ellation e�e
t zeroes thisleading order term in the inner produ
t of the primal residual error and the adjointsolution error.6.1.2 Isentropi
 transoni
 
owFigure 7 shows the error 
onvergen
e for a transoni
 
ow in a 
onverging-diverging du
t
orresponding to the Ma
h number distribution of Figure 5. The 
ow is subsoni
 atthe in
ow boundary and upstream of the throat (lo
ated at x = 0), and supersoni
downstream of the throat and at the out
ow boundary. Again the results show that thebase error is se
ond order while the remaining error after the adjoint 
orre
tion is fourthorder, regardless of the 
hoi
e of re
onstru
tion method. This result is obtained despitethe fa
t that there is a logarithmi
 singularity in the adjoint solution at the throat [11℄.6.2 Nonlinear thermal di�usionThe 
omputational domain is the 
ir
ular annulus 1 � r � 3 and the p.d.e. is thenonlinear di�usion equation r � (uru) = 0;subje
t to the requirement that u is positive. Diri
hlet boundary 
onditions are spe
i�edat the inner and outer boundaries so as to agree with the analyti
 solutionu(r; �) = �1 + �r4 � 1r� 
os ��1=2 :
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Figure 8: The primal and dual solutions for a 2D nonlinear thermal di�usion problem.The fun
tional of interest is J(u) = Z 2�0 �u�n ����r=1 d�;and the 
orresponding dual problem isL�uv � ur2v = 0;with Diri
hlet boundary 
onditions of 1=u and 0 on the inner and outer boundaries,respe
tively.The primal and dual solutions shown in Figure 8 are obtained by a bi-linear Galerkin�nite element formulation using 3�3 Gaussian quadrature to evaluate the mass andsti�ness matri
es. The nonlinear equations are solved using a full approximation s
hememultigrid method. Bi-
ubi
 spline interpolation and 3�3 Gaussian quadrature are thenused to 
al
ulate the fun
tional with and without the adjoint 
orre
tion. The resultsare plotted in Figure 9 with superimposed lines of slopes �2 and �4, showing se
ondorder a

ura
y for the basi
 �nite element solution and fourth order a

ura
y after thein
lusion of the adjoint error 
orre
tion. For a 128�32 mesh, the error de
reases bymore than a fa
tor of 105.7 Nonlinear a priori error analysisIn this se
tion we 
onsider the subsoni
 quasi-1D Euler test 
ase and establish the fourthorder a

ura
y of the 
orre
ted fun
tional using both 
ubi
 spline and pie
ewise linearinterpolation. For subsoni
 
ow, the analyti
 primal and dual solutions are both knownto be smooth for smooth du
t geometries [11℄.The dis
ussion is split into three parts. The �rst examines the 
onditions requiredto ensure se
ond order 
onvergen
e of the nonlinear solution and the se
ond analyzesthe error in the adjoint solution. The obje
tive of these �rst two parts is to des
ribe a
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e of a boundary fun
tional for a 2D nonlinear thermal di�usionproblem.minimal set of dis
retization properties that are suÆ
ient to ensure the desired super-
onvergen
e behavior. The third and �nal part 
onsiders the errors introdu
ed by theinterpolation and proves that ea
h of the terms in the remaining error for the fun
tionalis fourth order in magnitude.Analysis of the primal solutionBuilding on the ideas of Keller [16℄, Sanz-Serna and Lopez-Mar
os [18, 25℄ have developeda powerful framework for analyzing dis
retizations of nonlinear PDEs. The thrust oftheir work is that, with appropriate de�nitions, 
onsisten
y and stability are suÆ
ientto ensure existen
e, lo
al uniqueness and 
onvergen
e. In parti
ular, it is possible toidentify the order of 
onvergen
e of the global solution error, whi
h is of paramountimportan
e to the present dis
ussion.The nonlinear quasi-1D Euler equations,N(u) = 0;with appropriate boundary 
onditions, are approximated by the nonlinear �nite di�er-en
e equations Nh(uh) = 0:We de�ne the di�erential operator Lw to be the Fr�e
het derivative of N evaluated at w,and the dis
rete operator Lw to be the Fr�e
het derivative of Nh evaluated at w. Wealso, for 
onvenien
e, use the shorthand Lu to represent Lu(xh).



23We will assume that the nonlinear dis
retization has the following properties:Property 1: there exists a 
onstant 
1, independent of h, su
h thatkNh(u(xh))k � 
1h2:Property 2: There exists a 
onstant 
2, independent of h, su
h that

L�1u 

 � 
2:Property 3: There exists a 
onstant 
3, independent of h, su
h that, for anyw 2 B(u(xh); 
3h), kLw � Luk � 12
2 :Property 1 is a lo
al 
onsisten
y 
ondition on the nonlinear operator. Property 2is equivalent to requiring stability of the linearized operator. These 
onditions mirrorLemmas 1 and 2 of the earlier linear analysis. Property 3 is a new smoothness 
ondi-tion on the nonlinear operator (e.g. Lips
hitz or 
ontinuous Fr�e
het di�erentiability).Sanz-Serna and Lopez-Mar
os have shown that these 
onditions are suÆ
ient to guar-antee that the numeri
al solution uh lies in the ball B(u(xh); 
4h2) for some positive 
4independent of h [18℄.If the du
t area A(x) is suÆ
iently smooth (A 2 C2(
)), Properties 1 and 3 maybe veri�ed by Taylor series substitutions into the nonlinear and linearized dis
retizationoperators. Property 2 is more diÆ
ult to establish, but it appears that a proof 
ouldbe 
onstru
ted following the approa
h of Kreiss [17℄. Essentially, the matrix L�1u is adis
rete approximation to the Green's fun
tion for the 
ontinuous problem. The Green'sfun
tion is bounded due to the well-posedness of the p.d.e., and a uniform bound for thedi�eren
e between the Green's fun
tion and L�1u follows from using a dis
retization thatis 
onsistent and stri
tly dissipative on the interior, with dis
rete boundary 
onditionsthat are stable in the sense of Godunov and Ryabenkii [12, 13℄.Analysis of the dual solutionIn this se
tion we will assume throughout that h�h0 so that the nonlinear solution uhis known to exist and satisfy the error bounds given in the last se
tion.Given an approximate solution uh of the nonlinear p.d.e. (i.e. an interpolation of thedis
rete solution uh), our obje
tive in this se
tion is to analyze the di�eren
e vh�v(xh).Here v is the solution of the di�erential equationL�uv = g(u);subje
t to homogeneous boundary 
onditions, where Lu and g(u) are the Fr�e
het deriva-tives based on u, as de�ned previously. vh is the solution of the 
orresponding linear�nite di�eren
e equations L�uhvh = gh;



24with L�uh and gh both based on the dis
rete solution uh. The analysis also involves thedis
rete operator L�u, whi
h again is a shorthand for L�u(xh)We will assume that the adjoint dis
retization has the following three properties:Property 1: There exists a fun
tion � 2C0(
) su
h thatL�uhv(xh)� gh = h2�(xh) +O(h3);and L�uh �v(xh)� h2w(xh)�� gh = O(h3);where w2C1(
) is the solution to the linear p.d.e.L�uw = �;subje
t to homogeneous boundary 
onditions.Property 2: There exists a uniform bound 
5, independent of h, su
h thatkL� �1u k � 
5:Property 3: There exists a 
onstant 
6, independent of h, su
h that

L�uh � L�u

 � 12
5 ;when uh 2 B(u(xh); 
6h).Conditions 
orresponding to Properties 1 and 2 were previously proved for the 1Dlinear analysis, and Property 3 was already en
ountered in the dis
ussion of the primaldis
retization. For the present linear analysis, Properties 1 and 3 
ould be veri�ed byTaylor series substitutions into the �nite volume s
heme used to obtain the numeri
alresults (assuming A 2 C2(
)). Property 2 would again be the hardest to prove. Anestimate of the error in the adjoint solution now requires the following lemma.Lemma 7 There exists a 
onstant h1>0 su
h that, for h<h1,kL� �1uh k � 2
5:Proof De�ne D = L�uh � L�u and let h1 = minfh0; 
6=
4g, so that provided h < h1, thenuh 2 B(u(xh); 
4h2) � B(u(xh); 
6h). Hen
e, using Properties 2 and 3,kL� �1u Dk � 12 :For any matrix A for whi
h kAk < 1 we have k(I + A)�1k � P1n=0 kAkn = 1=(1�kAk).Therefore, k(I+L� �1u D)�1k � 2:



25From this it follows that L�uh = L�u+D = L�u(I+L� �1u D) is non-singular, andkL� �1uh k � k(I+L� �1u D)�1k kL� �1u k � 2
5:� The main lemma then follows immediately from Property 1 and Lemma 7.Lemma 8 For h<h1, the adjoint solution satis�esvh = v(xh)� h2w(xh) +O(h3):Analysis of re
onstru
tion and fun
tional errorsIf one uses 
ubi
 spline interpolation to 
onstru
t the approximate solutions uh and vh,then the analysis from the previous se
tions together with standard interpolation erroranalysis for 
ubi
 spline interpolation lead to error bounds of the following form.kuh�uk � d1h2;kvh�vk � d2h2;kv0h�v0k � d3h2:From equation (5.1), the error in the fun
tional after the adjoint error 
orre
tion isthe sum of �ve terms:�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:We will now 
onsider ea
h of these in turn. Noting that gh=L�uhvh and g(u)=L�uv, the�rst term 
an be expressed as the sum of three other terms:(gh�g(u; uh); uh�u)= �(L�uh�L�u) vh; uh�u�| {z }(1a) + (L�u(vh�v); uh�u)| {z }(1b) + (g(u)�g(u; uh); uh�u)| {z }(1
) :By bounding the di�eren
es in the 
oeÆ
ient matri
es in the operators L�uh and L�u,we 
an obtain a bound of the form

(L�uh�L�u) vh

 � d4kuh�uk;so therefore term (1a) has the fourth order bound���(L�uh�L�u) vh; uh�u��� � d4 d1 h4:



26 For the term (1b), we use the se
ond order bounds on vh�v and its derivative toobtain a bound of the form kL�u(vh�v)k � d5 (d2+d3) h2;and hen
e j(L�u(vh�v); uh�u)j � d5 (d2+d3) d1h4:For (1
), the Fr�e
het derivative of g(u) is 
ontinuous and bounded, so there existsanother 
onstant d6 su
h thatkg(u)�g(u; uh)k � d6kuh�uk;and hen
e j(g(u)�g(u; uh); uh�u)j � d6 d21 h4:The se
ond and third terms are both identi
ally zero be
ause the fun
tional does nothave any boundary terms and therefore h=hh=0. The boundary operators in the �fthterm are all algebrai
, not di�erential, and therefore it has a bound similar to that for(1
), involving the maximum errors at the two boundaries, whi
h are not greater thanthe maximum errors over the whole interval.The fourth term is the last to be 
onsidered. Integrating it by parts yields((L�uh�L�(u;uh))vh; uh�u)(whi
h is fourth order by a similar argument to (1a)), plus some boundary terms thatare fourth order by the same argument as for the �fth term.Thus, the se
ond and third terms are zero and the other three are all fourth order inmagnitude, so the remaining error is O(h4). This 
ompletes the outline of an a priorianalysis proving the fourth order a

ura
y of the 
orre
ted fun
tional in the subsoni

ow 
ase using 
ubi
 spline interpolation.When using pie
ewise linear interpolation, the error in v0h be
omes �rst order. In theanalysis above, this error is important only in 
onsidering term (1b), where it initiallyappears that the degradation in the order of a

ura
y of v0h will 
ause (1b) to be
omethird order rather than fourth order. However, numeri
al experiments 
ontinue to exhibitfourth order fun
tional 
onvergen
e. An explanation for this behavior requires 
arefulattention to the nature of the error introdu
ed by pie
ewise linear interpolation.The starting point is the earlier result thatvh = v(xh)� h2w(xh) +O(h3):De�ning Ih to be the operator performing pie
ewise linear interpolation through thenodal values of a 
ontinuous fun
tion, and de�ning I to be the identity operator, thenvh = v + (Ih�I)v � h2Ihw +O(h3):Next, we use standard results to express the interpolation error (Ih�I)v as(Ih�I)v = q(x) +O(h3);



27where q(x) is a fun
tion whi
h on the interval [xj; xj+1℄ isq(x) = 12aj(x� xj)(x� xj+1);with aj de�ned as aj = �1h (v0(xj+1)� v0(xj)) :Hen
e, v0h = v0 + l(x) +O(h2);where l(x) on the open interval (xj; xj+1) isl(x) = aj(x�xj+1=2):Note in parti
ular that l(x) is anti-symmetri
 about xj+1=2, the midpoint of the interval.When this error representation is substituted into the (1b) inner produ
t error term,the 
omponent involving l(x) is of the form(Cl; uh�u);where C(x) is a matrix fun
tion with bounded derivative. Therefore, C(x) 
an bede
omposed into a dominant part C0 that is pie
ewise 
onstant and a remainder thatis O(h). The primal interpolation error uh�u 
an also be de
omposed into a dominantpart r(x) (whi
h, like q(x), is zero at nodes, pie
ewise quadrati
 and O(h2)), plus aremainder whi
h is O(h3).The 
riti
al observation is that the 
omponent of the inner produ
t involving all of theleading order terms, (C0l; r), is zero be
ause in ea
h sub-interval the produ
t (C0l)T ris anti-symmetri
 about the midpoint. All of the other inner produ
t 
ontributionsinvolving non-dominant terms areO(h4). Therefore, this 
an
ellation e�e
t is responsiblefor produ
ing a fun
tional error that remains O(h4) even when using linear interpolation.8 Con
lusions and future 
hallengesThis work provides the �rst 
omprehensive treatment of adjoint error 
orre
tion methodsfor bulk and boundary fun
tional estimates based on linear and nonlinear PDE solutionswith homogeneous and inhomogeneous boundary 
onditions. A priori error analysis ofone linear and one nonlinear problem 
orre
tly predi
ts the observed super
onvergen
eof the fun
tional estimates. These dis
ussions provide a framework for the analysis offun
tional estimates of other linear and nonlinear problems. Numeri
al demonstrationsin
luded a linear 1D bulk fun
tional, a linear 2D boundary fun
tional with a geometri
singularity in the domain, a bulk fun
tional of a quasi-1D nonlinear system, and aboundary fun
tional of a 2D nonlinear problem.In the linear 
ase, a posteriori analysis leads to a 
omputable bound on the error re-maining after adjoint error 
orre
tion. Further work is required to explore the sharpnessand utility of these bounds and to develop reliable 
omputable bounds for fun
tionalsof nonlinear problems.



28 The treatment of geometri
 singularities and solution dis
ontinuities also requires fur-ther investigation. Mesh movement or adaptivity implemented in a 
arefully pres
ribedmanner is required to yield fourth order fun
tional estimates for primal solutions 
on-taining sho
ks. We are 
urrently working on a theoreti
al treatment of this problem in1D that appears to hold promise for multi-dimensional problems.9 A
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