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31 Introdu
tionThere is a long history of the use of adjoint equations in optimal 
ontrol theory [26℄.In 
uid dynami
s, the �rst use of adjoint equations for design was by Pironneau [33℄,but within the �eld of aeronauti
al 
omputational 
uid dynami
s, the use of adjointequations for design optimisation has been pioneered by Jameson [19, 20, 22℄ for thepotential 
ow, Euler and Navier-Stokes equations. The 
omplexity of the appli
ationswithin these papers has also progressed from 2D airfoil optimisation, to 3D wing designand �nally to 
omplete air
raft 
on�gurations [21, 34, 35℄. A number of other resear
hgroups have also developed adjoint CFD 
odes [24, 39, 4, 3, 8℄ using the same `
ontinuous'approa
h in whi
h the �rst step is to linearise the original partial di�erential equations.The adjoint p.d.e. and appropriate boundary 
onditions are then formulated, and �nallythe equations are dis
retised. While this minimises the memory requirements and theCPU 
ost per iteration, it requires one to develop an appropriate iterative solutionpro
edure, and this may not give as good a 
onvergen
e rate as the original nonlinear
ode. In addition, the debugging and validation of the adjoint 
ode is 
ompli
ated bythe la
k of a suite of ben
hmark test
ases.The alternative `dis
rete' approa
h, whi
h we use, takes a dis
retisation of the Navier-Stokes equations, linearises the dis
rete equations and then uses the transpose of thelinear operator to form the adjoint problem. This approa
h has been developed by Elliott[11, 10℄, Anderson [32, 1℄, Mohammadi [29℄ and Kim [23℄. The main advantage of thisapproa
h, in our opinion, is that the 
ode development be
omes a more straightforwardpro
ess. The linearisation of the nonlinear dis
rete equations 
an either be performedmanually or by automati
 di�erentiation software and the linear 
ode 
an be validated bydire
t 
omparison with the nonlinear 
ode. Similarly, sin
e the adjoint 
ode is obtainedby transposing the linear operator, it must yield exa
tly the same values for the linearisedobje
tive fun
tion, and so 
an be validated against the linear 
ode.For an ex
ellent review of resear
h on both 
ontinuous and dis
rete adjoint designmethods, see the paper by Newman et al [31℄.In this paper we 
ontribute to the development and understanding of dis
rete adjointmethods in �ve respe
ts:� Dis
ussion of the implementation of the adjoint 
ode in a way whi
h minimises thememory and CPU requirements, and 
an be automated using automati
 di�eren-tiation tools;� Development of an adjoint multigrid iteration pro
edure with pre
onditioned timestep-ping whi
h maintains exa
t equivalen
e between the linear and adjoint 
odes atall times during the evolution of their respe
tive solutions;� A detailed dis
ussion of the imposition of strong boundary 
onditions and thein
lusion of vis
ous stresses in obje
tive fun
tions and the 
onsequen
e for theformulation of the adjoint 
ode;� Development of a harmoni
 adjoint 
ode whi
h is the 
ounterpart of a linear un-steady 
ode for a single frequen
y of unsteadiness, and whi
h has appli
ations in



4 turboma
hinery blade design for redu
ed vibration due to for
ed response;� A numeri
al investigation indi
ating the potential for problems with strong sho
ks.This resear
h forms part of the development of the HYDRA suite of 
odes. Thefoundation is a nonlinear 
ode whi
h approximates the Reynolds-averaged Navier-Stokesequations on unstru
tured hybrid grids, using an edge-based dis
retisation. The solutionpro
edure uses Runge-Kutta time-mar
hing a

elerated by Ja
obi pre
onditioning andmultigrid [30℄, with dual-timestepping for unsteady 
ows.The se
ond 
ode in the suite is for the linear analysis of unsteady 
ows. This isbased on a linearisation of the unsteady 
ow equations around the steady-state 
ow
onditions 
al
ulated by the nonlinear 
ode. Due to linearity, unsteady periodi
 
ows
an be de
omposed into a sum of harmoni
 terms, ea
h of whi
h 
an be 
omputedindependently. Thus, the linear harmoni
 
ode 
onsiders just one parti
ular frequen
yof unsteadiness, resulting in a formulation in whi
h the purpose is to 
ompute a 
omplex
ow solution whi
h represents the amplitude and phase of the unsteady 
ow. This isexplained in greater detail later in this paper.The third 
ode is the steady adjoint 
ode, whi
h again is based on a linearisation ofthe 
ow equations around the nonlinear steady-state 
ow 
onditions. The fourth 
ode,whi
h is an extension of the third, is the adjoint 
ounterpart of the linear harmoni
 
ode.It is the development of these 
odes that is the subje
t of this paper.2 Dis
rete adjoint formulationWe start by 
onsidering the dis
rete nonlinear Euler equations with a weak imposition ofboundary 
onditions on solid walls through the spe
i�
ation of zero mass 
ux throughfa
es on the surfa
e. If the far-�eld boundary 
onditions are also imposed throughfar-�eld 
uxes then the dis
rete system of equations whi
h is solved is of the formR(U; �) = 0:Here U is the ve
tor of 
ow �eld variables, � represents one or more design variableswhi
h 
ontrol the geometry of the airfoil or wing (and hen
e the grid 
oordinates) andR(U) represents the dis
rete 
ux residuals whi
h are driven to zero by the iterativesolution pro
ess.If there is just one design variable, then linearising the steady-state equations withrespe
t to a 
hange in that design variable yieldsLu = f;where L � �R�U ; u � dUd� ; f � ��R�� :The 
orresponding perturbation in a nonlinear obje
tive fun
tion J(U; �) iseJ = gTu+ �J��;



5where gT � �J�U :In the adjoint approa
h, this same quantity 
an be obtained by evaluatingeJ = vTf + �J��;where the adjoint solution v satis�es the equationLTv = g:The equivalen
e of this formulation 
omes from the following identity.vTf = vTLu = (LT v)Tu = gTu:If there are many design variables (ea
h giving rise to a di�erent ve
tor f) and onlyone obje
tive (yielding a single ve
tor g), then the bene�t of the adjoint approa
h is thatthe obje
tive sensitivity ~J 
an be obtained following a single evaluation of v instead ofseparate evaluations of u for ea
h f .3 Implementation of adjoint dis
retisationIn the implementation, the linear operator L is split into two parts,Lu = C u+Du: (3.1)The �rst part represents the 
onve
tive 
uxes due to a Galerkin �nite element dis
reti-sation. The se
ond part represents the smoothing 
uxes (to whi
h the vis
ous 
uxesare added later for the Navier-Stokes equations). The operator D 
an be further brokendown into the produ
t of two operators,Du = V Gu;where G 
omputes the gradient and a pseudo-Lapla
ian of u at ea
h node, in additionto u itself.The 
orresponding adjoint operator isLTv = CTv +DTv;with DTv = GT V T v;indi
ating that the adjoint gradient routine is applied after the adjoint smoothing rou-tine, whi
h at �rst seems 
ounter-intuitive.At an even more detailed level, the a
tion of ea
h of the operators C, V and G is
omputed by a loop over all edges in the unstru
tured grid. Therefore, taking Cu as



6an example, we 
an express it as a sum of elemental edge matri
es whose only non-zeroentries 
orresponds to the two nodes at either end of the edge,C u =Xe Ceu:The adjoint version of this is simplyCTv =Xe CTe v;
orresponding to a similar loop over all edges.For the 
onve
tive 
uxes, it is easy to 
ompute the edge produ
t CTe v dire
tly withoutexpli
itly forming the matrix Ce. The transposed gradient operator GT is also easily for-mulated. The produ
t V T v presents greater diÆ
ulties. Elliott [11, 10℄ pre
omputed andstored the non-zero entries in the elemental matri
es Ve, and then evaluated the matrix-ve
tor produ
ts V Te v. However, the storage of these matri
es for ea
h edge requires asubstantial amount of memory. Anderson [1℄ avoided the memory 
ost by re
omputingthe matri
es during ea
h iteration, but this greatly in
reases the CPU 
ost.To minimise both the memory and CPU requirements, it is ne
essary to 
al
ulate theedge produ
t V Te v dire
tly, as with CTe v. The diÆ
ulty is in working out how best to dothis. One approa
h is to use AD (Automati
 Di�erentiation) software su
h as Odyss�ee[12℄, ADIFOR [5, 7℄ or TAMC [13℄. In forward mode, AD software takes the originalnonlinear 
ode and then uses the basi
 rules of linearisation to 
onstru
t the 
ode toevaluate Veu. In reverse mode, it produ
es the 
ode to 
al
ulate V Te v; it may seemthat this is a mu
h harder task but in fa
t it is not. Furthermore, there are theoreti
alresults whi
h guarantee that the number of 
oating point operations is no more thanthree times that of the original nonlinear 
ode [16℄.Mohammadi used Odyss�ee to generate mu
h of his adjoint 
ode [29℄ but a lot of hand-
oding was still required. In our work we have written the adjoint 
ode manually, butfollowingmany of the te
hniques of automati
 di�erentiation. To simplify the expressionsfor the partial derivatives, we 
hose to use the primitive variables (density, velo
ity andpressure) as our working variables, rather than the usual 
onservative variables. Theequations are still in 
onservative form so this 
hoi
e of working variables has no e�e
ton the �nal solution.The memory requirements for the adjoint 
ode are 20-30% greater than for the non-linear 
ode, depending on the grid that is used. The CPU 
ost per iteration is only10-20% greater than for the nonlinear 
ode, with the in
reased 
ost of evaluating theadjoint residuals partially o�set by the fa
t that the Ja
obian for the pre
onditioningremains �xed.Another important point 
on
erns the evaluation of the term f , whi
h is the sour
eterm for the linear perturbation equations, and also appears in the linearised obje
tivefun
tion in the adjoint approa
h. Again, forward mode AD software 
ould be used, buta very mu
h simpler alternative is to use the 
omplex Taylor series expansion method[37℄ used by Anderson and 
o-workers [2℄. The essen
e of the idea is thatlim�!0 I fR(U; �+i�)g� = �R�� :



7In this equation, R(U; �) has been taken to be a 
omplex analyti
 fun
tion, and thenotation If: : :g denotes the imaginary part of a 
omplex quantity. The equation itselfis an immediate 
onsequen
e of a Taylor series expansion. The 
onvergen
e to thelimiting value is se
ond order in � so numeri
al evaluation with � < 10�8 yields doublepre
ision a

ura
y. In pra
ti
e, we use � = 10�20. Unlike the usual �nite di�eren
eapproximation of a linear sensitivity, there is no 
an
ellation e�e
t from the subtra
tionof two quantities of similarmagnitude, and therefore no una

eptable loss of a

ura
y dueto ma
hine rounding error. Applying this te
hnique to a FORTRAN 
ode requires littlemore than repla
ing all REAL*8 de
larations by COMPLEX*16, and de�ning appropriate
omplex analyti
 versions of the intrinsi
 fun
tions min,max,abs.We have also found this 
omplex variable method to be extremely helpful duringprogram development. Be
ause we have also written a linear perturbation 
ode, wehave used it verify that ea
h of the linear 
ux subroutines is 
onsistent with the originalnonlinear 
ux subroutines, by 
he
king the identityLu = lim�!0 I fR(U+i�u; �)g� ;for arbitrary 
hoi
es of u. The l.h.s. is 
omputed by the linear 
ux routines, and ther.h.s. is 
omputed by applying the 
omplex variable method to the nonlinear 
ux rou-tines. Having performed these 
he
ks, we then veri�ed that the adjoint 
ux routineswere 
onsistent with the linear routines by 
he
king that the identity uT (LT v) = vT (Lu)holds for any u; v.If one were developing an adjoint 
ode without �rst writing a linear perturbation
ode, then these two steps 
ould be 
ombined into one to 
ompare the adjoint routinesto the nonlinear 
ux routines to 
he
k for 
onsisten
y.
4 Adjoint Solution Pro
edureAn important issue is how best to solve the adjoint equations. The eigenvalues of theadjoint matrix LT are the same as those of the linear matrix L, and therefore oneis guaranteed to get the same 
onvergen
e rate when using Krylov subspa
e iterationmethods su
h as GMRES, as used by Anderson [32, 1℄. On the other hand, if one usesstandard time-mar
hing methods with multigrid, as are 
ommonly used to solve thenonlinear equations, it is not ne
essarily the 
ase that the iterative 
onvergen
e rate forthe adjoint solver will mat
h that of the linear solver.We have analysed this for our time-mar
hing method whi
h uses Ja
obi pre
ondi-tioning with partial updates of the numeri
al smoothing 
uxes (and the vis
ous 
uxesfor the Navier-Stokes equations) at sele
ted stages in the Runge-Kutta iteration [19℄.



8One full step of the M -stage pro
edure for the linear equations 
an be expressed asu(0) = und(m) = �mDu(m�1) + (1��m) d(m�1)u(m) = u(0) + �mP �f � C u(m�1) � d(m)�un+1 = u(M)where �1=�5=1, P is the Ja
obi pre
onditioning matrix and C and D are again the
onve
tive and di�usive matri
es whose sum is the linear matrix L, as in Equation (3.1).The out
ome of this analysis [14℄ is that if the adjoint equations are solved using thefollowing M -stage iterative pro
edure,~v(M) = PH �g � LH vn�~d(M) = ��M ~v(M)~v(m) = PH ���m+1CH~v(m+1) + �m+1DH ~d(m+1)�~d(m) = ��m~v(m) + (1��m+1) ~d(m+1)vn+1 = vn + MXm=1�m~v(m)then the value of the linearised obje
tive fun
tion from the linear and adjoint 
odes isnot only identi
al on
e they have ea
h 
onverged to the �nal steady state, but it is alsoidenti
al after ea
h Runge-Kutta timestep. Note that this iteration uses the transposeof the Ja
obi pre
onditioning matrix, and works \ba
kwards" from m =M to m = 1.If partial updating of the dissipative 
uxes is not used, then it 
an be shown that thisredu
es to the standard Runge-Kutta method, but with the transposed pre
onditioner.However, with the use of partial updating, whi
h is 
ommonly employed to lower theCPU 
ost, it requires quite a lengthy analysis to determine this form for the adjointiteration.Furthermore, the analysis also extends to the use of multigrid, and shows that thekey here is that the restri
tion operator for the adjoint 
ode must be the transposeof the prolongation operator for the linear 
ode, and vi
e versa, and the number ofpre-smoothing iterations for the adjoint 
ode must equal the number of post-smoothingiterations for the linear 
ode, and vi
e versa. Provided these two 
onditions are satis�ed,the linear and adjoint 
odes produ
e identi
al values for the fun
tional after the samenumber of multigrid 
y
les.This result is important for two reasons. The �rst is that it guarantees that theadjoint 
ode 
onverges, and that it does so with the same rate of 
onvergen
e as thelinear 
ode, whi
h is itself equal to the asymptoti
 rate of 
onvergen
e of the nonlinear
ode. Thus the adjoint 
ode bene�ts from the wealth of experien
e and �ne tuning ofiterative pro
edures for nonlinear 
odes. The se
ond reason is that it provides anothervalidation 
he
k on the 
orre
t implementation of the adjoint 
ode. If the linear and



9adjoint 
odes do not produ
e identi
al values for the fun
tional after one timestep, itindi
ates a programming error.5 Strong boundary 
onditionsAlthough it is possible to solve the Euler equations with solid wall boundary 
onditionsimposed weakly by spe
ifying zero mass 
ux through the wall fa
es, it is more 
ommonwhen there are grid nodes on the wall to use strong boundary 
onditions and for
ethe normal 
omponent of the velo
ity at surfa
e nodes to be zero. In doing so, thenormal 
omponent of the momentum equation 
ux residual is dis
arded. Similarly, indis
retising the Navier-Stokes equations, the entire velo
ity at the surfa
e nodes is set tozero, and all 
omponents of the momentum residual are dis
arded. Thus in both 
asesthe equations whi
h are solved are a
tually of the form(I�B)R(U) = 0;B U = 0:Here I is the identity matrix and B is a proje
tion matrix whi
h in the 
ase of the Eulerequations extra
ts the normal 
omponent of the boundary velo
ity, and in the 
ase ofthe Navier-Stokes equations extra
ts the entire boundary velo
ity. The presen
e of theterm (I � B) re
e
ts the dis
arding of the appropriate 
ux residual 
omponents, to berepla
ed by the strong boundary 
onditions BU = 0.When 
onsidering linear perturbations to these equations, we obtain(I�B) (Lu� f) = 0;B u = b;where b is a boundary velo
ity whi
h is zero for the Navier-Stokes equations but non-zerofor the Euler equations due to a rotation in the surfa
e normal.These two equations 
an be 
ombined to form((I�B)L +B) u = (I�B)f + b; (5.1)and the appropriate adjoint equation is then found by transposing the linear operator,noting that B is symmetri
, to obtain�LT (I�B) +B� v = g: (5.2)At this point it is 
onvenient to de
ompose both v and g into orthogonal 
omponentsas v = (I�B)v +Bv = vk + v?;g = (I�B)g +Bg = gk + g?:



10Pre-multiplying Equation (5.2) by (I�B) shows that vk satis�es the adjoint equations(I�B)LTvk = gk;B vk = 0:These are the equations whi
h are solved iteratively by the adjoint 
ode. Then, on
e vkhas been 
omputed, v? is 
al
ulated in a post-pro
essing step using an equation obtainedby pre-multiplying Equation (5.2) by B:v? = g? �BLT vk: (5.3)Having 
omputed vk and v?, the linearised fun
tional is given byeJ = vT ((I�B)f + b) + �J��= vTk f + vT?b + �J��:This shows that v? gives the sensitivity of the fun
tional to the boundary 
ondition bwhi
h arises from the rotation of the boundary normal in the 
ase of invis
id 
ows.Note that v? does not 
orrespond to the normal momentum 
omponent of the ana-lyti
 adjoint solution at the boundary. Hen
e for visualisation purposes, it is desirableto repla
e v? by the analyti
 boundary 
ondition,vanalyti
? = hwh
ih would normally be employed using a \
ontinuous" formulation. Here h is zeroeverywhere ex
ept on the solid wall, where it 
orresponds to the sensitivity of the fun
-tional to the addition of momentum on the surfa
e. In the 
ase of a lift fun
tional, forexample, the element of h at a surfa
e node n ishn = 0� 0~�0 1A ;with ~� being the unit ve
tor in the lift dire
tion.6 Residual 
ontributions to the fun
tionalIf the fun
tional of interest is a for
e, su
h as lift or drag, we have to in
lude the surfa
emomentum residuals, whi
h are dis
arded in imposing the strong boundary 
onditions,in order to have a 
omplete for
e balan
e. Indeed, for vis
ous 
al
ulations, it is thetangential 
omponent of these residuals whi
h 
orresponds to the vis
ous shear stress.i.e. one de�nes the surfa
e shear stress to have the value whi
h is ne
essary to make thetangential momentum residual equal to zero.
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b) without residualsFigure 1: Variation in third adjoint 
omponent in y-dire
tion for a subsoni
 NACA0012test 
ase, with and without residual 
ontributions to the fun
tionalThe nonlinear fun
tional is thus of the formJ = Jp(U) + hTBR(U); (6.1)where Jp 
orresponds to the for
e due to the pressure distribution on the body and his again the ve
tor whi
h takes the 
omponent of the dis
arded momentum residuals inthe sele
ted for
e dire
tion (e.g. the dire
tion normal to the freestream in the 
ase oflift).The 
orresponding linearised fun
tional iseJ = gTp u+ hTBLu+ �J��; (6.2)where gTp � �Jp�U ; (6.3)and so we obtain g = gp + LTBh: (6.4)Fortunately, the se
ond term in this equation 
an be 
omputed in a pre-pro
essing stepusing the adjoint 
ux routines.The in
lusion of the extra term makes a dramati
 improvement to the quality of theadjoint solution near the surfa
e, as illustrated in Figure 1 for a subsoni
 NACA0012test 
ase to be dis
ussed later in more detail. To understand why it makes su
h adi�eren
e, it is important to remember that the adjoint variables 
orrespond to thelinearised e�e
t of mass, momentum and energy sour
es on the fun
tional of interest.Therefore, it is helpful to 
onsider what happens in the linearised 
ow 
al
ulation whennormal momentum is added 
lose to a wall, as shown in Figure 2.The e�e
t of the momentum addition on the far �eld 
ow solution will be negligi-ble. Therefore, with a 
onservative treatment, through the in
lusion of the dis
arded
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Figure 2: Diagram showing three possible lo
ations of momentum inje
tion 
lose to awall.momentum residuals, the linear 
ode will 
orre
tly predi
t that the 
hange in the liftis equal and opposite to the addition of normal momentum, regardless of the lo
ationof the momentum addition. On the other hand, without the in
lusion of the dis
ardedresiduals, the addition of momentum at point A, right next to the wall, will have zeroe�e
t on the fun
tional be
ause it will 
ontribute solely to the momentum residuals atsurfa
e nodes. Similarly, addition at point B will have some e�e
t on the residuals atnearby surfa
e points; if these are not in
luded in the fun
tional then the in
uen
e onthe fun
tional must be in
orre
t. Only at point C, well away from the surfa
e, willthe e�e
t on the surfa
e residuals be very small and so the e�e
t on the fun
tional is
orre
tly 
aptured without the in
lusion of the dis
arded residuals.7 Harmoni
 adjointIn analysing unsteady 
ow in turboma
hinery, it is now 
ommon to use linearised Eulerand Navier-Stokes methods whi
h treat the unsteadiness as a linear perturbation to anonlinear mean 
ow [17, 28, 27, 38, 18℄.For for
ed response problems, in whi
h the unsteadiness is due to periodi
 unsteadyin
ow or out
ow boundary 
onditions, the original nonlinear unsteady dis
rete equationsmay be written as MdUdt +R(U) = 0;where M is a blo
k-diagonal mass matrix. Expressing U(t) as the sum of a steady partplus a small amplitude perturbationU(t) = U + eu(t); keuk � kUkand linearising the equations gives Mdeudt + Leu = ef;where L � �R�U ;



13and ef is zero ex
ept at the in
ow and out
ow boundary nodes where it gives the residualperturbations due to the in
oming disturban
es.By the prin
iple of linear superposition, the periodi
 input ef(t) 
an be de
omposedinto the sum of a number of harmoni
 terms ea
h of whi
h 
an be written as the realpart of a 
omplex quantity of the formef(t) = Rnei!t bfo :Making a similar de
omposition for the response eu(t) yields the 
omplex harmoni
 equa-tions (i!M + L) bu = bf:In the 
ase of unsteadiness due to the periodi
 vibration of the blades, the grid nodesall os
illate with the blades. Therefore, the nonlinear equations are best written asM(x) dUdt +R(U; x; _x) = 0;to emphasise that the mass matrix and residuals depend on the grid 
oordinates, andthe 
ell residual has additional 
ux terms due to the motion of the grid. Performing thesame steps of linearisation and harmoni
 substitution then yields the same equations asbefore, with M and L being based on the undisturbed grid 
oordinates and 
ow, butwith bf de�ned as bf = ��R�x bx� i! �R� _x bxdue to the linearised motion of the grid.One important engineering 
on
ern is the level of vibration 
aused by the in
om-ing wakes. To determine this, one needs to 
ompute a surfa
e integral known as the\worksum". Following the theory of Lagrangian me
hani
s, this is the virtual work as-so
iated with the displa
ement of a parti
ular natural mode of vibration of the blade.Numeri
ally, it requires the 
omputation of an inner produ
t of the formbgHbu;where the supers
ript H denotes the 
omplex 
onjugate transpose. The ve
tor g is non-zero everywhere ex
ept at the grid nodes on the surfa
e of the blade where it 
orrespondsto the vibration mode being 
onsidered.The adjoint alternative is to evaluate the inner produ
tbvH bf;where the adjoint variables bv satisfy the adjoint equation(i!M + L)Hbv = bg:The implementation of this harmoni
 adjoint analysis is extremely similar to theusual steady adjoint analysis. The main di�eren
es are the 
oupled 
omputation of thereal and imaginary 
omponents of the 
omplex variables bv, and the use of phase-laggedperiodi
 boundary 
onditions [9℄.
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Figure 3: Cl vs. angle of atta
k for a NACA 0012 pro�le at M = 0:68.8 Validation 
ases8.1 Invis
id 
ow over NACA 0012 airfoilThe �rst two test 
ases 
onsider steady invis
id 
ow over a NACA 0012 airfoil. The
ir
les in Figure 3 show the lift 
oeÆ
ient obtained from the nonlinear 
ode plottedagainst angle of atta
k at a freestream Ma
h number of 0:68. The angle of atta
kvariation is a
hieved by rotating the airfoil as well as the points on and near the airfoilsurfa
e. Doing this in a linearised sense gives the geometri
 perturbations required forthe sour
e terms in the linear 
ode and the fun
tional in the adjoint 
ode. The lines inFigure 3 are the lift slope obtained from the linear and adjoint 
odes, with the base 
owin ea
h 
ase being the nonlinear 
ow 
onditions at the angle of atta
k at the mid-pointof the line. The agreement between the nonlinear and linear/adjoint results looks quitegood. To quantify this, Table 1 shows the nonlinear, linear and adjoint sensitivities at0Æ angle of atta
k. The di�erent nonlinear sensitivities are obtained by �nite di�eren
eapproximation over di�erent intervals. There is perfe
t agreement between the linearand adjoint sensitivities, and the agreement with the nonlinear sensitivities is within therange one would expe
t give the errors inherent in �nite di�eren
e approximation of thenonlinear sensitivities.An interesting situation arises at higher Ma
h numbers at whi
h there are strongsho
ks. Figure 4 shows the Ma
h 
ontours for the NACA 0012 at an angle of atta
k of1Æ and an in
reased Ma
h number of 0:85. There are now two sho
ks, with the maximumlo
al Ma
h number rea
hing approximately 1:45 on the supersoni
 side of the su
tionsurfa
e sho
k. The 
ir
les in Figure 5 show the nonlinear lift 
oeÆ
ients over a limitedrange of angles of atta
k. The line in this �gure is a linear regression least-square �t ofthe nonlinear data. The results indi
ate a pe
uliar la
k of smoothness in the nonlineardata; this is shown more 
learly in Figure 6 whi
h plots the di�eren
e between the
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L=��nonlinear 0.0{0.1 0.177780.0{0.2 0.1761740.0{0.5 0.17609960.0{1.0 0.1764888linear 0.0 0.1756657adjoint 0.0 0.1756657Table 1: Sensitivity of the lift to angle of atta
k for a NACA 0012 pro�le at M = 0:68around 0Æ angle of atta
k.

Figure 4: Ma
h 
ontours for NACA 0012 at M = 0:85.nonlinear data and the linear regression.The key point is that there is no physi
al justi�
ation for the loss of smoothness. Itappears to be a purely numeri
al artifa
t that is probably related to the displa
ementof the sho
k as the angle of atta
k 
hanges. Therefore, the slope of the linear regressionline is probably the best representation of the true lift slope. However, the linear/adjoint
odes give lift slopes that 
orrespond to the lo
al derivative of the nonlinear data. Fig-ure 7 plots the di�eren
e between the linear/adjoint slopes and the slope of the linearregression, showing a large dis
repan
y around 1:17Æ where the lo
al derivative of thenonlinear data di�ers signi�
antly from the linear regression value. Figure 8 plots thenumber of multigrid 
y
les required to 
onverge the nonlinear 
ode to a very tight tol-eran
e. Interestingly, the number of 
y
les in
reases substantially around 1:17Æ. Thissuggests that the linearisation matrix may be almost singular, whi
h 
ould be relatedto the fa
t that small 
hanges in the angle of atta
k produ
e larger 
hanges in the liftthan one would otherwise expe
t.This observation of limitations with the appli
ation of linear methods to 
ows withstrong sho
ks may be primarily of a
ademi
 interest, and not of engineering 
on
ern.
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L=��nonlinear 1.40{2.40 0.18150481.90{2.40 0.17721542.15{2.40 0.17426842.40{2.65 0.17136762.40{2.90 0.16449082.40{3.40 0.1398736linear 2.40 0.1680554adjoint 2.40 0.1680554Table 2: Sensitivity of the lift for a RAE 2822 pro�le at M = 0:725, Re = 6:5�106around 2:4Æ angle of atta
k.Most aeronauti
al appli
ations do not have su
h strong normal sho
ks, and with weakersho
ks with a peak normal Ma
h number of less than 1.3 we have not observed a similarphenomenon. However, it may be ne
essary to look more 
losely at the issue of linearisedsho
k displa
ement, and to use more numeri
al smoothing at sho
ks to obtain the 
orre
tlinear sensitivity [25℄.8.2 Turbulent 
ow over RAE 2822 airfoilFigure 9 presents the Ma
h 
ontours for the Reynolds-averaged 
ow over the RAE 2822airfoil at angle of atta
k � = 2:4Æ, freestream Ma
h number M = 0:725 and Reynoldsnumber Re = 6:5�106. The turbulen
e is modeled using a Spalart-Allmaras singleequation model. The 
ir
les in Figure 10 show the sensitivity of the variation in the lift
oeÆ
ient with 
hanges in the angle of atta
k. The lines 
orrespond to the lift slopes
omputed by the linear and adjoint 
odes, whi
h are again in perfe
t agreement with ea
hother. There is no eviden
e of any la
k of smoothness in the nonlinear lift predi
tions,and the linear/adjoint 
odes give lift slopes whi
h are in very good agreement with thenonlinear results. This is quanti�ed in Table 2 using �nite di�eren
es to estimate thenonlinear lift slope at � = 2:4Æ.Figure 11 shows the 
onvergen
e histories for the non-linear, linear and adjoint 
odesfor the RAE 2822 test
ase at � = 2:4Æ. As expe
ted, they all exhibit the same asymptoti

onvergen
e rate.8.3 Turboma
hinery wake intera
tionThe linear harmoni
 
ode has been validated against a number of test 
ases. Figure 12shows results for unsteady wake intera
tion with a 2D 
as
ade of 
at plate airfoils. Realand imaginary 
omponents of the 
omplex pressure jump a
ross one blade are 
omparedwith the results from the LINSUB [40℄ whi
h implements the analyti
 theory of Smith[36℄.
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Figure 9: Ma
h 
ontours for a RAE 2822 pro�le at M = 0:725, Re = 6:5�106.
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Figure 10: Lift vs. angle of atta
k for a RAE 2822 pro�le at M = 0:725, Re = 6:5�106.
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Figure 11: Convergen
e histories for the nonlinear, linear and adjoint 
odes for a RAE2822 pro�le at M = 0:725, Re = 6:5�106.Figure 13 demonstrates the variation in the bending mode worksum as the wakepit
h is 
hanged (representing modi�
ations both the inter-blade phase angle and thefrequen
y of the unsteadiness). The results show that the linear harmoni
 and adjointharmoni
 
odes produ
e identi
al values for the worksum, and these are in good agree-ment with the analyti
 values produ
ed by LINSUB.For further validation 
ases, and an example of the usefulness of the adjoint methodfor design of blades with redu
ed for
ed response, see Duta et al [9, 6℄.9 Con
lusionsIn this paper we have presented a number of algorithm developments 
on
erned withthe formulation and solution of adjoint Euler and Navier-Stokes equations using thedis
rete approa
h. These in
lude the treatment of strong boundary 
onditions and theasso
iated adjoint boundary 
onditions for lift and drag fun
tionals, as well as a Runge-Kutta time-mar
hing s
heme that ensures exa
t equivalen
e with a linear perturbation
ode throughout the 
onvergen
e pro
ess. This property guarantees the same asymptoti

onvergen
e rate for nonlinear, linear and adjoint solvers, as well as being very usefulduring 
ode validation.A
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