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1 Introduction

As the title suggests, there are very few, if any, new results in this paper. Instead, it
is a collection of results on derivatives of matrix functions, expressed in a form suitable
for both forward and reverse mode algorithmic differentiation [7] of basic operations in
numerical linear algebra. All results are derived from first principles, and it is hoped
this will be a useful reference for the AD community.

The first section in the paper covers the sensitivity analysis for matrix product,
inverse and determinant, and other associated results. Remarkably, most of these results
were first derived, although presented in a slightly different form, in a 1948 paper by
Dwyer and Macphail [4]. Comments in a paper by Dwyer in 1967 [3] suggest that the
“Dwyer/Macphail calculus” was not widely used in the intervening period, but thereafter
it has been used extensively within statistics, appearing in a number of books [10, 13,
14, 16] from the 1970’s onwards. For a more extensive bibliography, see the notes at
the end of section 1.1 in [11]. The section concludes with a discussion of Maximum
Likelihood Estimation which was one of the motivating applications for Dwyer’s work,
and comments on how the form of the results in Dwyer and Macphail’s paper relates to
the AD notation used in this paper.

The subsequent sections concern the sensitivity of eigenvalues and eigenvectors, sin-
gular values and singular vectors, Cholesky factorisation, and associated results for ma-
trix norms. The main linear sensitivity results are well established [10, 17]. Some of
the reverse mode adjoint sensitivities may be novel, but they follow very directly from
the forward mode linear sensitivities. The paper concludes with a validation of the
mathematical results using a MATLAB code which is given in the appendix.

2 Matrix product, inverse and determinant

2.1 Preliminaries

We consider a computation which begins with a single scalar input variable SI and
eventually, through a sequence of calculations, computes a single scalar output SO. Using
standard AD terminology, if A is a matrix which is an intermediate variable within the
computation, then Ȧ denotes the derivative of A with respect to SI , while A (which has
the same dimensions as A, as does Ȧ) denotes the derivative of SO with respect to each
of the elements of A.

Forward mode AD starts at the beginning and differentiates each step of the com-
putation. Given an intermediate step of the form

C = f(A,B)
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then differential calculus expresses infinitesimal perturbations to this as

dC =
∂f

∂A
dA +

∂f

∂B
dB. (2.1)

Taking the infinitesimal perturbations to be due to a perturbation in the input variable
SI gives

Ċ =
∂f

∂A
Ȧ +

∂f

∂B
Ḃ.

This defines the process of forward mode AD, in which each computational step is
differentiated to determine the sensitivity of the output to changes in SI .

Reverse mode AD computes sensitivities by starting at the end and working back-
wards. By definition,

dSO =
∑

i,j

C i,j dC i,j = Tr( C
T
dC),

where Tr(A) is the trace operator which sums the diagonal elements of a square matrix.
Inserting (2.1) gives

dSO = Tr

(
C

T ∂f

∂A
dA

)
+ Tr

(
C

T ∂f

∂B
dB

)
.

Assuming A and B are not used in other intermediate computations, this gives

A =

(
∂f

∂A

)T

C, B =

(
∂f

∂B

)T

C.

This defines the process of reverse mode AD, working backwards through the sequence
of computational steps originally used to compute SO from SI . The key therefore is the
identity

Tr( C
T
dC) = Tr( A

T
dA) + Tr( B

T
dB). (2.2)

To express things in this desired form, the following identities will be useful:

Tr(AT ) = Tr(A),

Tr(A+B) = Tr(A) + Tr(B),

Tr(AB) = Tr(B A).

In considering different operations f(A,B), in each case we first determine the dif-
ferential identity (2.1) which immediately gives the forward mode sensitivity, and then
manipulate it into the adjoint form (2.2) to obtain the reverse mode sensitivities. This is
precisely the approach used by Minka [12] (based on Magnus and Neudecker [10]) even
though his results are not expressed in AD notation, and the reverse mode sensitivities
appear to be an end in themselves, rather than a building block within an algorithmic
differentiation of a much larger algorithm.
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2.2 Elementary results

2.2.1 Addition

If C = A + B then obviously

dC = dA + dB

and hence in forward mode

Ċ = Ȧ + Ḃ.

Also,

Tr(C
T
dC) = Tr(C

T
dA) + Tr(C

T
dB)

and therefore in reverse mode

A = C, B = C.

2.2.2 Multiplication

If C = AB then

dC = dA B + A dB

and hence in forward mode

Ċ = ȦB + A Ḃ.

Also,

Tr( C
T
dC) = Tr( C

T
dAB) + Tr( C

T
A dB) = Tr(B C

T
dA) + Tr( C

T
A dB),

and therefore in reverse mode

A = C BT , B = AT C.

2.2.3 Inverse

If C = A−1 then

C A = I =⇒ dC A + C dA = 0 =⇒ dC = −C dA C.

Hence in forward mode we have

Ċ = −C ȦC.

Also,

Tr( C
T
dC) = Tr(−C

T
A−1dAA−1) = Tr(−A−1C

T
A−1dA)

and so in reverse mode

A = −A−T CA−T = −CT C CT .
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2.2.4 Determinant

If we define Ã to be the matrix of co-factors of A, then

det A =
∑

j

Ai,jÃi,j , A−1 = (det A)−1ÃT .

for any fixed choice of i. If C = det A, it follows that

∂C

∂Ai,j

= Ãi,j =⇒ dC =
∑

i,j

Ãi,j dAi,j = C Tr(A−1dA).

Hence, in forward mode we have

Ċ = C Tr(A−1Ȧ),

while in reverse mode C and C are both scalars and so we have

C dC = Tr( C C A−1dA)

and therefore
A = C C A−T .

Note: in a paper in 1994 [9], Kubota states that the result for the determinant is well
known, and explains how reverse mode differentiation can therefore be used to compute
the matrix inverse.

2.3 Additional results

Other results can be obtained from combinations of the elementary results.

2.3.1 Matrix inverse product

If C = A−1B then

dC = dA−1 B + A−1 dB = −A−1dAA−1B + A−1 dB = A−1(dB − dAC),

and hence
Ċ = A−1(Ḃ − Ȧ C),

and

Tr( C
T
dC) = Tr( C

T
A−1dB) − Tr( C

T
A−1dAC)

= Tr( C
T
A−1dB) − Tr(C C

T
A−1dA)

=⇒ B = A−T C, A = −A−T C CT = −B CT .
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2.3.2 First quadratic form

If C = BT AB, then
dC = dBT AB + BT dAB + BT A dB.

and hence
Ċ = ḂT AB + BT ȦB + BT A Ḃ,

and

Tr( C
T
dC) = Tr( C

T
dBT AB) + Tr( C

T
BT dAB) + Tr( C

T
BT A dB)

= Tr( CBT AT dB) + Tr(B C
T
BT dA) + Tr( C

T
BT A dB)

=⇒ A = B C BT , B = AB C
T

+ AT B C.

2.3.3 Second quadratic form

If C = BT A−1B, then similarly one gets

Ċ = ḂT A−1B − BT A−1Ȧ A−1B + BT A−1Ḃ,

and
A = −A−T B C BT A−T , B = A−1B C

T
+ A−T B C.

2.3.4 Matrix polynomial

Suppose C = p(A), where A is a square matrix and p(A) is the polynomial

p(A) =
N∑

n=0

anA
n.

Pseudo-code for the evaluation of C is as follows:

C := aNI

for n from N−1 to 0
C := AC + anI

end

where I is the identity matrix with the same dimensions as A.
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Using standard forward mode AD with the matrix product results gives the corre-
sponding pseudo-code to compute Ċ:

Ċ := 0
C := aNI

for n from N−1 to 0
Ċ := Ȧ C + A Ċ
C := AC + anI

end

Similarly, the reverse mode pseudo-code to compute A is:

CN := aNI

for n from N−1 to 0
Cn := ACn+1 + anI

end

A := 0

for n from 0 to N−1
A := A + C CT

n+1

C := AT C
end

Note the need in the above code to store the different intermediate values of C in the
forward pass so that they can be used in the reverse pass. This storage requirement is
standard in reverse mode computations [7].

2.3.5 Matrix exponential

In MATLAB, the matrix exponential

exp(A) ≡
∞∑

n=0

1

n!
An,

is approximated through a scaling and squaring method as

exp(A) ≈
(
p1(A)−1p2(A)

)m

,

where m is a power of 2, and p1 and p2 are polynomials such that p2(x)/p1(x) is a
Padé approximation to exp(x/m) [8]. The forward and reverse mode sensitivities of this
approximation can be obtained by combining the earlier results for the matrix inverse
product and polynomial.
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2.4 MLE and the Dwyer/Macphail paper

A d-dimensional multivariate Normal distribution with mean vector µ and covariance
matrix Σ has the joint probability density function

p(x) =
1√

det Σ (2π)d/2
exp

(
− 1

2
(x−µ)T Σ−1(x−µ)

)
.

Given a set of N data points xn, their joint probability density function is

P =
N∏

n=1

p(xn).

Maximum Likelihood Estimation infers the values of µ and Σ from the data by choosing
the values which maximise P . Since

log P =
N∑

n=1

{
− 1

2
log(det Σ) − 1

2
d log(2π) − 1

2
(xn−µ)T Σ−1(xn−µ)

}
,

the derivatives with respect to µ and Σ are

∂ log P

∂µ
= −

N∑

n=1

Σ−1(xn−µ),

and

∂ log P

∂Σ
= − 1

2

N∑

n=1

{
Σ−1 − Σ−1(xn−µ) (xn−µ)T Σ−1

}
.

Equating these to zero gives the maximum likelihood estimates

µ = N−1

N∑

n=1

xn,

and

Σ = N−1

N∑

n=1

(xn−µ) (xn−µ)T .

Although this example was not included in Dwyer and Macphail’s original paper
[4], it is included in Dwyer’s later paper [3]. It is a similar application concerning
the Likelihood Ratio Method in computational finance [6] which motivated the present
author’s investigation into this subject.

Returning to Dwyer and Macphail’s original paper [4], it is interesting to note the
notation they used to express their results, and the correspondence to the results pre-
sented in this paper. Using 〈·〉i,j to denote the (i, j)th element of a matrix, and defining
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Ji,j and Ki,j to be matrices which are zero apart from a unit value for the (i, j)th element,
then their equivalent of the equations for the matrix inverse are

∂A−1

∂〈A〉i,j
= −A−1 Ji,j A−1,

∂〈A−1〉i,j
∂A

= −A−T Ki,j A−T .

In the forward mode, defining the input scalar to be SI = Ai,j for a particular choice
(i, j) gives Ȧ=Ji,j and hence, in our notation with B=A−1,

Ḃ = −A−1Ȧ A−1.

Similarly, in reverse mode, defining the output scalar to be SO =(A−1)i,j for a particular
choice (i, j) gives B=Ki,j and so

A = −A−T B A−T ,

again matching the result derived previously.

3 Eigenvalues and singular values

3.1 Eigenvalues and eigenvectors

Suppose that A is a square matrix with distinct eigenvalues. We define D to be the
diagonal matrix of eigenvalues dk, and U to be the matrix whose columns are the corre-
sponding eigenvectors Uk, so that AU =U D. The matrices D and U are the quantities
returned by the MATLAB function eig and the objective in this section is to determine
their forward and reverse mode sensitivities.

Differentiation gives

dA U + A dU = dU D + U dD.

Defining matrix dC = U−1 dU so that dU = U dC, then

dAU + U D dC = U dC D + U dD,

and pre-multiplying by U−1 and re-arranging gives

dC D − D dC + dD = U−1dAU.

Using the notation A◦B to denote the Hadamard product of two matrices of the same
size, defined by each element being the product of the corresponding elements of the
input matrices, so that (A◦B)i,j = Ai,jBi,j , then

dC D − D dC = E ◦ dC
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where Ei,j = dj − di. Since the diagonal elements of this are zero, it follows that

dD = I ◦ (U−1dAU).

The off-diagonal elements of dC are given by the off-diagonal elements of the equation

E ◦ dC + dD = U−1dAU.

The diagonal elements depend on the choice of normalisation for the eigenvectors. Usu-
ally, they are chosen to have unit magnitude, but if the subsequent use of the eigenvectors
is unaffected by their magnitude it is more convenient to set the diagonal elements of
dC to zero and so

dC = F ◦ (U−1dAU), =⇒ dU = U
(
F ◦ (U−1dA U)

)
,

where Fi,j = (dj − di)
−1 for i 6= j, and zero otherwise. Hence, the forward mode

sensitivity equations are

Ḋ = I ◦ (U−1Ȧ U),

U̇ = U
(
F ◦ (U−1Ȧ U)

)
.

In reverse mode, using the identity Tr(A (B◦C)) = Tr((A◦BT ) C), we get

Tr
(
D

T
dD + U

T
dU
)

= Tr
(
D

T
U−1dA U

)
+ Tr

(
U

T
U
(
F ◦ (U−1dA U)

))

= Tr
(
D

T
U−1dA U

)
+ Tr

((
(U

T
U) ◦ F T

)
U−1dA U

)

= Tr
(
U
(
D

T
+ (U

T
U) ◦ F T

)
U−1dA

)

and so
A = U−T

(
D + F ◦ (UT U)

)
UT .

3.2 Singular value decomposition

The SVD decomposition of a matrix A of dimension m × n is

A = U S V T

where S has the same dimensions as A and has zero entries apart from the main diagonal
which has non-negative real values arranged in descending order. U and V are square
orthogonal real matrices of dimension m and n, respectively. U , S and V are the
quantities returned by the MATLAB function svd and the objective is to determine
their forward and reverse mode sensitivities.

Differentiation gives

dA = dUS V T + U dS V T + US dV T .
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Defining matrices dC = U−1 dU and dD = V −1 dV so that dU = U dC and dV = V dD,
then

dA = U dC S V T + U dS V T + US dDT V T ,

and pre-multiplying by UT and post-multiplying by V then gives

UT dAV = dC S + dS + S dDT . (3.1)

Now since UT U = I, differentiation gives

dUT U + UT dU = 0 =⇒ dCT + dC = 0,

and similarly dDT+dD=0 as well. Thus, dC and dD are both anti-symmetric and have
zero diagonals. It follows that

dS = I ◦ (UT dAV ),

where I is a rectangular matrix of dimension m × n, with unit values along the main
diagonal, and zero elsewhere.

In forward mode, this gives

Ṡ = I ◦ (UT Ȧ V ).

In reverse mode, if we assume the output scalar depends only on the singular values S
and not on U and V , so that U = 0 and V = 0, then

Tr( S
T
dS) = Tr

(
S

T (
I ◦ (UT dAV )

))

= Tr
(
(S

T ◦IT )(UT dAV )
)

= Tr( S
T
UT dA V )

= Tr(V S
T
UT dA),

and hence
A = U S V T .

To determine dU and dV , it will be assumed that the singular values are distinct,
and that m ≤ n (if m > n then one can consider the SVD of AT ). Let S, dS and dD
be partitioned as follows:

S =
(

S1 0
)
, dS =

(
dS1 0

)
, dD =

(
dD1 −dD2

dDT
2 dD3

)
,

where S1, dS1 and dD1 all have dimensions m × m. Furthermore, let UT dAV be
partitioned to give

UT dAV =
(

dP 1 dP 2

)
.
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Remembering that dD1 is antisymmetric, Equation (3.1) then splits into two pieces,

dP 1 = dC S1 + dS1 − S1 dD1,

dP 2 = S1 dD2.

The second of these can be solved immediately to get

dD2 = S−1

1 dP 2.

To solve the other equation, we first take its transpose, giving

dP T
1 = −S1 dC + dD1S1.

It then follows that

dP 1 S1 + S1 dP T
1 = dC S2

1 − S2

1 dC

S1 dP 1 + dP T
1 S1 = dD1S

2

1 − S2

1 dD1.

Hence,

dC = F ◦ (dP 1 S1 + S1 dP T
1 )

dD1 = F ◦ (S1 dP 1 + dP T
1 S1),

where Fi,j = (s2
j − s2

i )
−1 for i 6= j, and zero otherwise. Note that these solutions for dC

and dD1 are antisymmetric because of the antisymmetry of F .

Finally, the value of dD3 is unconstrained apart from the fact that it must be anti-
symmetric. The simplest choice is to set it to zero. dU and dV can then be determined
from dC and dD, and the reverse mode value for A could also be determined from these
and the expression for dS.

4 Cholesky factorisation

Given a symmetric positive definite matrix A of dimension N , the Cholesky factorisation
determines the lower-triangular matrix L such that A = LLT . There are many uses for
a Cholesky factorisation, but one important application is the generation of correlated
Normally distributed random numbers [6]. If x is a random vector whose elements are
independent Normal variables with zero mean and unit variance, then y = Lx is a vector
whose elements are Normal with zero mean and covariance A = LLT .
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Pseudo-code for the calculation of L is as follows:

for i from 1 to N
for j from 1 to i

for k from 1 to j−1
Aij := Aij − LikLjk

end

if j=i
Lii :=

√
Aii

else

Lij := Aij/Ljj

endif

end

end

The corresponding pseudo-code for calculating L̇ is

for i from 1 to N
for j from 1 to i

for k from 1 to j−1
Ȧij := Ȧij − L̇ikLjk − LikL̇jk

end

if j=i
L̇ii := 1

2
Ȧii/Lii

else

L̇ij := (Ȧij − LijL̇jj)/Ljj

endif

end

end

and the adjoint code for the calculation of A, given L, is

for i from N to 1
for j from i to 1

if j=i
Aii := 1

2
Lii/Lii

else

Aij := Lij/Ljj

Ljj := Ljj − LijLij/Ljj

endif

for k from j−1 to 1
Lik := Lik − AijLjk

Ljk := Ljk − AijLik

end

end

end
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5 Matrix norms

5.1 Frobenius norm

The Frobenius norm of matrix A is defined as

B = ‖A‖F =
√

Tr(AT A).

Differentiating this gives

dB = (2 B)−1 Tr(dAT A + AT dA) = B−1 Tr(AT dA),

since Tr(dAT A) = Tr(AT dA). Thus, in forward mode we have

Ḃ = B−1 Tr(AT Ȧ),

while in reverse mode
B dB = Tr( B B−1AT dA)

and hence
A = B B−1A.

5.2 Spectral norm

The spectral norm, or 2-norm, of matrix A

B = ‖A‖2,

is equal to its largest singular value. Hence, using the results from the singular value
section, in forward mode we have

Ḃ = UT
1 ȦV1,

where U1 and V1 are the first columns of the SVD orthogonal matrices U and V , while
in reverse mode

A = B U1 V T
1 .

6 Validation

All results in this paper have been validated with a MATLAB code, given in the ap-
pendix, which performs two checks.

The first check uses a wonderfully simple technique based on the Taylor series expan-
sion of an analytic function of a complex variable [15]. If f(x) is analytic with respect
to each component of x, and y=f(x) is real when x is real, then

ẏ = lim
ε→0

I{ε−1f(x+iεẋ)}.
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Taking ε=10−20 this is used to check the forward mode derivatives to machine accuracy.
Note that this is similar to the use of finite differences, but without roundoff inaccuracy.

The requirement that f(x) be analytic can require some creativity in applying the
check. For example, the singular values of a complex matrix are always real, and so
they cannot be an analytic function of the input matrix. However, for real matrices,
the singular values are equal to the square root of the eigenvalues of AT A, and these
eigenvalues are an analytic function of A.

The second check is that when inputs A,B lead to an output C, then the identity

Tr( C
T
Ċ) = Tr( A

T
Ȧ) + Tr( B

T
Ḃ),

should be satisfied for all Ȧ, Ḃ and C. This check is performed with randomly chosen
values for these matrices.

7 Conclusions

This paper has reviewed a number of matrix derivative results in numerical linear algebra.
These are useful in applying both forward and reverse mode algorithmic differentiation
at a higher level than the usual binary instruction level considered by most AD tools.
As well as being helpful for applications which use numerical libraries to perform certain
computationally intensive tasks, such as solving a system of simultaneous equations,
it could be particularly relevant to those programming in MATLAB or developing AD
tools for MATLAB [1, 2, 5, 18].
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Appendix A MATLAB validation code

%
% test code to check results in paper
%

function test

%
% create random test matrices
%

N = 10;

randn(’state’,0);

% the next line ensures the eigenvalues of A
% are all real, which is needed for the CVT check

A = 0.1*randn(N) + diag(1:N);
B = randn(N);
I = eye(N);

dA = randn(N);
dB = randn(N);
bC = randn(N);

eps = 1e-20;
epsi = 1/eps;

Ae = A + i*eps*dA;
Be = B + i*eps*dB;

%
% addition
%

Ce = Ae + Be;
C = real(Ce) ;

dC = dA + dB;

bA = bC;
bB = bC;

disp(sprintf(’\naddition’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)+dp(dB,bB)-dp(dC,bC)))

%
% multiplication
%

Ce = Ae*Be;
C = real(Ce) ;
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dC = dA*B + A*dB;

bA = bC*B’;
bB = A’*bC;

disp(sprintf(’multiplication’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)+dp(dB,bB)-dp(dC,bC)))

%
% inverse
%

Ce = inv(Ae);
C = real(Ce) ;

dC = - C*dA*C;

bA = -C’*bC*C’;
bB = 0*bC;

disp(sprintf(’inverse’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)+dp(dB,bB)-dp(dC,bC)))

%
% determinant
%

de = det(Ae);
d = real(de) ;

dd = d*trace(A\dA);

bd = 1;
bA = bd*d*inv(A’);

disp(sprintf(’determinant’))
disp(sprintf(’CVT error: %g’,norm(dd-epsi*imag(de))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-dd*bd))

%
% matrix polynomial
%

a = [1 2 3 4 5];

C = {};

Ce = a(5)*I;
C{5} = real(Ce);
dC = 0;

for n = 4:-1:1
dC = dA*C{n+1} + A*dC;
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Ce = Ae*Ce + a(n)*I;
C{n} = real(Ce);

end

bC2 = bC;
bA = 0;

for n = 1:4
bA = bA + bC2*C{n+1}’;
bC2 = A’*bC2;

end

disp(sprintf(’matrix polynomial’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-dp(dC,bC)))

%
% inverse product
%

Ce = Ae\Be;
C = real(Ce);
dC = A\(dB-dA*C);

bB = (A’)\bC;
bA = -bB*C’;

disp(sprintf(’inverse product’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)+dp(dB,bB)-dp(dC,bC)))

%
% first quadratic form
%

Ce = Be.’*Ae*Be;
C = real(Ce) ;

dC = dB’*A*B + B’*dA*B + B’*A*dB;

bA = B*bC*B’;
bB = A’*B*bC + A*B*bC’;

disp(sprintf(’first quadratic form’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)+dp(dB,bB)-dp(dC,bC)))

%
% second quadratic form
%

Ce = Be.’*(Ae\Be);
C = real(Ce) ;

dC = dB’*(A\B) - B’*(A\dA)*(A\B) + B’*(A\dB);
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bA = -(A’\B)*bC*(A\B)’;
bB = (A’\B)*bC + (A\B)*bC’;

disp(sprintf(’second quadratic form’))
disp(sprintf(’CVT error: %g’,norm(dC-epsi*imag(Ce))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)+dp(dB,bB)-dp(dC,bC)))

%
% eigenvalues and eigenvectors
%

[Ue,De] = eig(Ae);
U = real(Ue);
D = real(De);

% next line makes sure diag(C)=0 in notes
Ue = Ue*diag(1./diag(U\Ue));

D = diag(D);
E = ones(N,1)*D’- D*ones(1,N);
F = 1./(E+I) - I;

P = U\(dA*U);
dD = I.*P;
dU = U * (F.*P);

bD = diag(randn(N,1));
bU = randn(N);

bD = bD + F.*(U’*bU);
bA = U’\(bD*U’);

disp(sprintf(’eigenvalues and eigenvectors’))
disp(sprintf(’CVT error: %g’,norm(dD-epsi*imag(De))))
disp(sprintf(’CVT error: %g’,norm(dU-epsi*imag(Ue))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-dp(dD,bD)-dp(dU,bU)))

%
% singular values
%

[U,S,V] = svd(A);

S = diag(S);

De = eig(Ae.’*Ae);
De = sort(De,1,’descend’);
D = real(De);

dS = diag( I.*(U’*dA*V) );

bS = randn(N,1);
bA = U*diag(bS)*V’;

disp(sprintf(’singular value’))
disp(sprintf(’svd error: %g’,norm(S-sqrt(D))))
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disp(sprintf(’CVT error: %g’,norm(2*S.*dS-epsi*imag(De))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-dp(dS,bS)))

%
% Cholesky factorisation
%

A = A*A’;
A = A + i*eps*dA;
dA_sav = dA;

L = zeros(N);
dL = zeros(N);

for m = 1:N
for n = 1:m
for k = 1:n-1

A(m,n) = A(m,n) - L(m,k)*L(n,k);
dA(m,n) = dA(m,n) - dL(m,k)*L(n,k) - L(m,k)*dL(n,k);

end

if m==n
L(m,m) = sqrt(A(m,m));
dL(m,m) = 0.5*dA(m,m)/L(m,m);

else
L(m,n) = A(m,n)/L(n,n);
dL(m,n) = (dA(m,n)-L(m,n)*dL(n,n))/L(n,n);

end
end

end

bL = randn(N);
bL_sav = bL;
bA = zeros(N);

for m = N:-1:1
for n = m:-1:1
if m==n

bA(m,m) = 0.5*bL(m,m)/L(m,m);
else

bA(m,n) = bL(m,n)/L(n,n);
bL(n,n) = bL(n,n) - bL(m,n)*L(m,n)/L(n,n);

end

for k = n-1:-1:1
bL(m,k) = bL(m,k) - bA(m,n)*L(n,k);
bL(n,k) = bL(n,k) - bA(m,n)*L(m,k);

end
end

end

dL = real(dL);
bA = real(bA);
bL = bL_sav;
dA = dA_sav;
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disp(sprintf(’Cholesky factorisation’))
disp(sprintf(’CVT error: %g’,norm(dL-epsi*imag(L))))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-dp(dL,bL)))

%
% matrix norms
%

b2 = norm(A,’fro’);

be = sqrt( sum(sum(Ae.*Ae)));
b = real(be);

db = trace(A’*dA) / b;

bb = 1;
bA = (bb/b) * A;

disp(sprintf(’matrix Frobenius norm’))
disp(sprintf(’norm error: %g’,b-b2))
disp(sprintf(’CVT error: %g’,db-epsi*imag(be)))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-db))

b2 = norm(A,2);

[Ue,ee] = eig(Ae.’*Ae);
[ee,j] = max(diag(ee));
be = sqrt(ee);
b = real(be);

[U,S,V] = svd(A);
b3 = S(1,1);
U1 = U(:,1);
V1 = V(:,1);
db = U1’*dA*V1;

bb = 1;
bA = bb*U1*V1’;

disp(sprintf(’matrix 2-norm’))
disp(sprintf(’norm error: %g’,b-b2))
disp(sprintf(’norm error: %g’,b-b3))
disp(sprintf(’CVT error: %g’,db-epsi*imag(be)))
disp(sprintf(’adj error: %g\n’,dp(dA,bA)-db))

%
% dot product function
%

function p = dp(dA,bA)

p = sum(sum(dA.*bA));
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On my system the MATLAB code produced the following results, but because the
errors are due to machine roundoff error they may be different on other systems.

addition
CVT error: 7.59771e-16
adj error: 1.77636e-15

multiplication
CVT error: 8.0406e-15
adj error: -7.10543e-15

inverse
CVT error: 3.94176e-16
adj error: 4.44089e-16

determinant
CVT error: 9.31323e-10
adj error: -2.56114e-09

matrix polynomial
CVT error: 1.5843e-11
adj error: -2.18279e-11

inverse product
CVT error: 1.41363e-15
adj error: -2.33147e-15

first quadratic form
CVT error: 3.3635e-14
adj error: -1.7053e-13

second quadratic form
CVT error: 4.8655e-15
adj error: 7.10543e-15

eigenvalues and eigenvectors
CVT error: 1.12743e-13
CVT error: 4.95477e-13
adj error: -6.66134e-16

singular value
svd error: 1.30233e-14
CVT error: 1.04554e-12
adj error: 8.32667e-16

Cholesky factorisation
CVT error: 3.22419e-16
adj error: -7.77156e-16

matrix Frobenius norm
norm error: -3.55271e-15
CVT error: -2.22045e-16
adj error: 0

matrix 2-norm
norm error: -5.32907e-15
norm error: -1.77636e-15
CVT error: 2.22045e-14
adj error: -2.22045e-16


