
This is page 1Printer: Opaque thisOn the iterative solution ofadjoint equationsMihael B. GilesOxford University Computing LaboratoryABSTRACT This paper onsiders the iterative solution of the adjointequations whih arise in the ontext of design optimisation. It is shownthat naive adjoining of the iterative solution of the original linearised equa-tions results in an adjoint ode whih annot be interpreted as an iterativesolution of the adjoint equations. However, this an be ahieved throughappropriate algebrai manipulations. This is important in design optimisa-tion beause one an redue the omputational ost by starting the adjointiteration from the adjoint solution obtained in the previous design step.1 IntrodutionIn omputational uid dynamis (CFD), one is interested in solving a setof nonlinear disrete ow equations of the formN(U;X) = 0: (1.1)Here X is a vetor representing the oordinates of a set of omputationalgrid points, U is the vetor of ow variables at those grid points andN(U;X) is a di�erentiable vetor funtion of the same dimension as U .To solve these equations, many CFD algorithms use iterative methodswhih an be written asUn+1 = Un �R(Un; X)N(Un; X); (1.2)where R is a non-singular square matrix whih is a di�erentiable funtionof its arguments. If R were de�ned to be L�1 where L = �N=�U is thenon-singular Jaobian matrix, this would be the Newton-Raphson methodwhih onverges quadratially in the �nal stage of onvergene. However,in the iterative methods used in CFD, R is a poor approximation to L�1and therefore they exhibit linear onvergene asymptotially, with the �nalrate of onvergene being given by the magnitude of the largest eigenvalueof the matrix I �R(U;X)L(U;X), where I is the identity matrix.



2 Mihael B. Giles, Oxford University Computing LaboratoryIn design optimisation [1, 5, 9℄, the grid oordinates X depend on aset of design parameters �, and one wishes to minimise a salar objetivefuntion J(U;X) by varying �. To ahieve this using gradient-based opti-misation methods [10℄, at eah step in the optimisation proess one needsto determine the linear sensitivity of the objetive funtion to hanges in�.For a single design parameter, linearising the objetive funtion givesdJd� = �J�U u+ �J��: (1.3)Here u � dU=d� is the linear sensitivity of the ow variables to hanges inthe design parameter, whih is obtained by linearising the ow equationsto give Lu = f; (1.4)where f = ��N�X dXd� ; (1.5)and L and f are both funtions of the nonlinear solution (U;X) for theurrent value of the design parameter �.Using forward mode automati di�erentiation tools suh as ADIFOR orOdyss�ee (treating R(U;X) as a onstant for maximum eÆieny sine itslinearisation is unneessary beause it is multiplied by N(U;X) whih iszero [13℄) one an automatially generate a ode for the iterative solutionof these linear ow equations. This will use the same iterative proedureas the nonlinear equations and will orrespond to the iterationun+1 = un �R (Lun�f); (1.6)starting from zero initial onditions. R is again a funtion of the nonlinearsolution (U;X), and the linear onvergene rate for this will be exatly thesame as the asymptoti onvergene rate of the nonlinear iteration as it isontrolled by the same iteration matrix I�RL. However, if there are manydesign parameters, eah one gives rise to a di�erent vetor f and linearow perturbation u. Thus, the omputational ost inreases linearly withthe number of design variables.To avoid this inreasing ost, one an use adjoint methods. The evalua-tion of the seond term on the r.h.s. of Equation (1.3),�J�� = �J�X dXd� ;is straightforward and inexpensive, so we fous attention on the �rst term,whih we hoose to write as an inner produt (u; u) � uTu, by de�ningu � � �J�U�T :



1. On the iterative solution of adjoint equations 3Sine Lu� f = 0, simple algebrai manipulation yields(u; u) = (u; u)� (f; Lu�f) = (f; f)� (LT f�u; u) = (f; f)when f satis�es the adjoint equationLT f = u: (1.7)The advantage of the adjoint approah is that the alulation of F and theevaluation of the inner produt (f; f) for eah design variable is negligibleompared to the ost of determining the single adjoint solution f , and so thetotal ost is approximately independent of the number of design variables.The issue to be addressed in this paper is how to obtain the adjoint solu-tion f as the limit of a �xed point iteration whih is the natural ounterpartto that used for the nonlinear and linear equations, and whih therefore hasexatly the same rate of iterative onvergene. It will be shown that thenaive appliation of adjoint methodology to the iterative solution of the lin-ear equations results in an algorithm in whih the working variables do notorrespond to the adjoint variables f . However, with a slight reformulationit an be ast into the desired form.The bene�t of the adjoint alulation being formulated as a �xed pointiteration is that one an obtain very signi�ant omputational savings if onean provide a good initialisation for the adjoint variables. This is possible innonlinear design optimisation, sine the adjoint variables omputed for onestep in the design optimisation an be used to initialise the omputation ofthe adjoint variables for the next step. Indeed, it is usually found that theomputational ost of the entire optimisation proess is minimised by notfully onverging the nonlinear and adjoint ow alulations at eah designstep, and instead letting the nonlinear and adjoint ow variables as well asthe design parameters all evolve towards the optimum solution [11℄.This issue of the iterative solution of adjoint equations has been inves-tigated previously by Christianson [3, 4℄, but the ontext for his work ismore abstrat; the referenes should be onsulted for further information.2 Continuous equationsThe iterative solution methods used in CFD are often based on an unsteadyevolution towards the solution of a steady system of equations. Therefore,we begin by onsidering the unsteady solution u(t) of the oupled systemof di�erential equations dudt = �P (Lu� f); (1.8)for some onstant preonditioning matrix P , subjet to the initial ondi-tions u(0) = 0. The funtional of interest is the inner produt (u; u(T )),



4 Mihael B. Giles, Oxford University Computing Laboratorywith the �nal time T hosen to be suÆiently large that du=dt is verysmall and therefore u(T ) is very lose to being the solution of the steadyequations.Introduing the unsteady adjoint variable uu(t), and using integrationby parts, the unsteady adjoint formulation is given by(u; u(T )) = (u; u(T ))� Z T0 �uu; dudt + P (Lu�f)�dt= (u�uu(T ); u(T ))� Z T0 ��duudt + LTP Tuu; u�� (P Tuu; f) dt= Z T0 (P Tuu; f) dt; (1.9)where uu(t) satis�es the di�erential equationduudt = LTP Tuu; (1.10)whih is solved bakwards in time subjet to the �nal ondition uu(T ) = u.With the equations in this form, one would obtain the orret valuefor the funtional, exatly the same value as one would obtain from theunsteady linear equations over the same time interval, but it is not im-mediately lear how the working variables uu(t) are related to the steadyadjoint solution f .To obtain the link with the steady adjoint equation, we de�nef(t) = Z Tt P Tuu dt; (1.11)so that the funtional is (f(0); f) and f(t) satis�es the di�erential equation�dfdt = P Tuu= P T  u� Z Tt duudt dt!= P T  u� Z Tt LTP Tuu dt!= �P T �LT f � u� ; (1.12)subjet to the �nal ondition f(T ) = 0.In this form, the onnetion with the iterative solution of the steady ad-joint equations beomes apparent. f(t) evolves towards the steady adjointsolution, and if T is very large then f(0) will be almost equal to the steadyadjoint solution.



1. On the iterative solution of adjoint equations 53 Disrete equationsHaving onsidered the ontinuous equations to gain insight into the issue,we now onsider the disrete equations and their iterative solution. As de-sribed in the Introdution, many standard iterative algorithms for solvingthe linearised equations an be expressed asun+1 = un �R (Lun�f): (1.13)After performing N iterations starting from the initial ondition u0 = 0,the funtional (u; uN ) is evaluated using the �nal value uN .Proeeding as before to �nd the disrete adjoint algorithm yields(u; uN) = (u; uN)� N�1Xn=0 �un+1u ; un+1�un +R (Lun�f)�= (u�uNu ; uN)�N�1Xn=0 ��(un+1u �unu; un) + (LTRTun+1u ; un)� (RTun+1u ; f)	= (u�uNu ; uN)+N�1Xn=0 �(un+1u �unu � LTRTun+1u ; un) + (RTun+1u ; f)	 ;in whih we have used the following identity whih is the disrete equivalentof integration by parts,N�1Xn=0 an+1 (bn+1�bn) = aNbN � a0b0 � N�1Xn=0(an+1�an) bn:Consequently, if uu satis�es the di�erene equationunu = un+1u � LTRTun+1u ; (1.14)subjet to the �nal ondition uNu = u, then the funtional is equal to (f 0; f)where f 0 is de�ned to be the aumulated sumf 0 = N�1Xm=0RTum+1u : (1.15)The above desription of the disrete adjoint algorithm orresponds towhat would be generated by reverse mode automati di�erentiation toolssuh as Odyss�ee [6℄, ADJIFOR [2℄ or TAMC [7℄. As it stands, it is not learwhat the onnetion is between the adjoint solution f and either the sumf 0 or the working variable unu.



6 Mihael B. Giles, Oxford University Computing LaboratoryAs with the ontinuous equations, it is preferable to ast the problemas a �xed point iteration towards the solution of the disrete adjoint equa-tions. To do this we de�ne fn for 0 � n < N to befn = N�1Xm=nRTum+1u ; (1.16)with fN = 0. The di�erene equation for fn isfn � fn+1 = RTun+1u= RT  u� N�1Xm=n+1(um+1u �umu )!= RT  u� N�1Xm=n+1LTRTum+1u != �RT �LT fn+1 � u� ; (1.17)showing that the new working variable fn evolves towards the solutionof the adjoint equations. The rate of onvergene is exatly the same asfor the linear iteration sine it is governed by the matrix I�RTLT whoseeigenvalues are the same as its transpose I�LR and hene also I�RL,sine if v is an eigenvetor of the former then L�1v is an eigenvetor of thelatter with the same eigenvalue.4 AppliationsIn applying the theory presented above to formulate adjoint algorithms,the key is to �rst express the nonlinear and linear iterative method in theorret form to determine the matrix R, and thereby determine the matrixRT for the adjoint iterative sheme. Note that not all algorithms an beexpressed in the above way with a onstant matrix R. In the onjugategradient algorithm, for example, the matrix R hanges from one iterationto the next.Referene [8℄ applies the theory to two kinds of iterative solver. The �rstis a quite general lass of Runge-Kutta methods whih is used extensivelyin CFD, and inludes both preonditioning and partial updates for visousand smoothing uxes. Putting the linear iterative solver into the orretform requires a number of manipulations, and having then determined RTfurther manipulations are neessary to express the adjoint algorithm in aonvenient form for programming implementation. The orretness of theanalysis has been tested with a simple MATLAB program whih an solveeither a simple salar o.d.e. or an upwind approximation to the onvetionequation with a harmoni soure term. In the latter ase, the theory pre-sented in this paper has been extended to inlude problems with omplex



1. On the iterative solution of adjoint equations 7variables, by replaing all vetor and matrix transposes by their omplexonjugates. In either ase, it is veri�ed that an idential number of itera-tions of either the linear problem or its adjoint yields idential values forthe funtional of interest.Referene [8℄ also briey onsiders the appliation of the theory to pre-onditioned multigrid methods [12℄, in whih a sequene of oarser gridsis used to aelerate the iterative onvergene on the �nest grid. Providedthe smoothing algorithm used on eah grid level within the multigrid solveris of the form given in Equation (1.6), it shown that all is well if the re-strition operator for the adjoint solver is the transpose of the prolongationoperator for the linear solver, and vie versa. This feature has been testedin unpublished researh in developing a three-dimensional adjoint Navier-Stokes ode using unstrutured grids. Again, idential values have beenobtained for the funtional of interest after equal number of multigrid y-les with either the linear solver or its adjoint ounterpart.5 ConlusionsIn this paper we have shown that the naive appliation of adjoint meth-ods to the iterative solution of a linear system of equations produes analgorithm whih does not orrespond to the iterative solution of the orre-sponding adjoint system of equations. However, with some algebrai ma-nipulations it an be transformed into an algorithm in whih the workingvariables do onverge to the solution of the adjoint equations.Mathematially, the two approahes produe idential results if the se-ond alulation starts from zero initial onditions. The advantage of theseond formulation is that the omputational osts an be greatly reduedif one has a good initial estimate for the solution. This happens in nonlin-ear design optimisation in whih the adjoint solution for one step in theoptimisation an be used as the initial onditions for the adjoint alulationin the following step.This has impliations for the use of automati di�erentiation software ingenerating adjoint programs. The AD tools an still be used to generatethe subroutines whih onstrut the adjoint system of linear equations butto ahieve the maximum omputational eÆieny it appears it is neessaryto manually program the higher-level �xed point iterative solver.AknowledgmentsThe author is very grateful to Prof. Andreas Griewank for his onsiderablehelp in the writing of this paper. This researh was supported by EPSRCunder grant GR/L95700, and by Rolls-Roye pl and BAe Systems pl.
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