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Introduction to adjoint analysis

Overview

What I'll cover:
e the linear algebra viewpoint
e the p.d.e. connection

Key point: in all cases we're interested in
one or more functionals
e objective function and constraint
functions in design optimisation
e mismatch with experimental data
in data assimilation
e error in key functionals in error analysis

.

Linear Theory\

Want to evaluate g’ u given that

Au = f.

The dual form is to evaluate va where

ATy = g.

The equivalence comes from
va = ol Au = (ATU)TU = gTu,
or, alternatively,

gTu=g" (A7) = (gTA™ ) f=0T1
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|Linear Theory

Suppose we want the objective function
for p different f's, and m different g's.

Choice:
either do p different primal calculations
or do m different dual calculations

Adjoint approach is much cheaper
when m < p.
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Linear Theory

What do adjoint variables mean?

Answer 1: they give you the influence
of an arbitrary source term on the
functional of interest

Au=f vl'f
source term functional
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Linear Theory

Answer 2: they are the functional value
corresponding to Green's functions

Consider
fi=(..,0,1,0,..)T.
ith
Then corresponding solution u; is the

discrete equivalent of a Green's function
and

Te_ T
v f =v; =g u;.

.

Nonlinear design / data assimilation‘

For both, problem is to minimise J(U)
subject to N(U,a) = 0.

For aerodynamic design, may have
e o — geometric design variables
e J(U) — drag
e N(U) — discrete flow equations

For data assimilation, may have
e o — perturbed initial conditions
e J(U) — mismatch between model and
experimental data
e N(U) — discrete modelling equations
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Nonlinear design / data assimilation‘

Minimise J(U), subject to N(U,a) = 0.

For single «, can linearise about a base
solution Ugp to get:

d
J—gTu, Au=f

o=
where
aU T oJ ON ON
U=—— g = 5 =— f=—-—
do oU oU oo

For multiple @ each has different f,
but same g.
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‘Nonlinear design / data assimilation‘

Two drawbacks:

1) to add a ‘hard’ constraint Jo(U) = 0,
we need
dJo T

7L — u
do 92

which requires a second adjoint calc.

Additional ‘hard’ constraints require even
more adjoint calculations.

Alternative is to use ‘soft’ constraints
via penalties in objective function.
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Nonlinear design / data assimilation‘

Thus, the direct linear perturbation
approach gives the approximate Hessian
matrix, leading to very rapid convergence
for the optimisation iteration.

By contrast, the adjoint approach provides
no information on the Hessian, so the best
optimisation methods take more steps to
converge.
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‘Nonlinear design / data assimilation

2) If the objective function is of a
least-squares type,

J(U):%Z(pn(U)—Pn)Qa

then
aJ Op dU

dai n BUdoz,-
and so

d2J ~ Y dp dU\ [ dp dU
dogda; ~ 57 \OUda; ) \8U daj)

(on(U) — Pn),

.
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Linear error analysis

Back to the original linear problem,
evaluate ¢gZu subject to

Au=f,

and the dual problem to evaluate vL'f
subject to

ATvzg

Now suppose, we have approximate
solutions u, v.

.
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‘Linear error analysis‘
Then, we have
gtu = gTa+ g% (u—17)
= gla+vlA(u — 7)
= ¢gTa+3TA(—1) + (v —0)TA( — 7)
= gla+37(f — Au) + (v — )T A(u — @)
computable very small
No obvious benefits in linear algebra (7),
but generalisation to p.d.e.’s is useful in
grid adaptation (to reduce computable
error) and error correction (through
evaluating error).
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[The PDE connection]

Suppose one wants to know (g, u)
given that u satisfies the p.d.e.
Lu=f,
plus homogeneous b.c.’s.
The adjoint formulation is (v, f) where
L*'v =g,
plus homogeneous adjoint b.c.’'s.
The equivalence comes from
def
v, f) = (v, Lu) = (L*v,u) = (g,u).
9 (v, f) = ( ) = ( ) = (g,u) )
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Linear error analysis

One interpretation of this is that @ is
an exact solution to a problem with a
perturbed source term

Au = f+ (Aa - f),
leading to a functional perturbation of
v (Al — f)

which has to be subtracted to get back to
the functional for the original problem.
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du d?u

du u

d d2
v dx
dx dx

(v,Lu) =

f-
- |

du dv1l
+ {vu — ev% + eua
1 d d2 1
= / U _&v_ dx + ev—u
0 dx dx dx
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Thus, to satisfy the adjoint identity, we

need

L*v =

dv d?v
e,
dx dz?

and the adjoint b.c.’s must be

v(0) =wv(1) =0.
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More examples

Primal L

du d?u

dz  da?

V - (kVu)

ot  9z?’
ou . Ou

ot o

Adjoint L*
dv d2v
— — €
dx dz?
V - (kVv)
v 0%
ot  0x2
o0 _ov
ot Ox
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Complications

Boundary terms in the primal functional
lead to inhomogeneous b.c.’s for the dual
(or adjoint).

Inhomogeneous b.c.'s for the primal
p.d.e. lead to boundary terms in the dual
functional.

In general, there are some well-posedness
restrictions on what can be imposed as
b.c.'s and objective functions for the primal
and dual problems, but if the primal is
well-posed then so too is the dual.
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Interpretation

Sign changes arise through integration by
parts, but what do they really mean?

Key is to think about Green’s functions,
and domains of influence and dependence.

If you have a point source, what is
affected by it? ...and how does the
functional respond?




|One last issue|

When approximating p.d.e.'s there are two
options in adjoint analysis.

e Fully discrete approach: discretise
original p.d.e., linearise discrete
equations, and then use the transpose
for the adjoint.

e ‘Continuous’ approach: linearise
original p.d.e., construct adjoint
p.d.e. and associated b.c.'s, and then
discretise.

Not yet clear which is best overall.

.
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Fully discrete approach

Disadvantages:
e programming can be tedious
(but one could use automatic
differentiation software?)
e may have to store some linearisation
matrices, leading to large memory
requirements

.
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‘ Fully discrete approach

Advantages:

e in design/data assimilation applications,
get exact gradient of discretised
objective function

e creation of adjoint program is a
straightforward process, in principle

e transposed matrix has same eigenvalues
as original linearised matrix, so standard
iteration method is guaranteed to
converge
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Continuous approach

Advantages:
e role of adjoint b.c.'s is clearer
e adjoint program is perhaps simpler

Disadvantages:

e computed gradient will be slightly
inconsistent with discrete objective
function, so optimisation will not
converge fully

Still very much an open issue as to which
approach is better; right now final choice
seems to come down to personal preference!
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