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Abstract

Monte Carlo simulation is a widely used tool in finance for computing the prices of options as well as
their price sensitivities, which are known as Greeks. The disadvantage of the Monte Carlo simulation,
in its standard form, is its slow convergence rate. In the first part of this thesis, we review several
methods that they have been proposed, in order to improve the convergence rate of Monte Carlo
simulation. These methods find applicability in pricing exotic options such as barrier and lookback
options. In the second part of this thesis, we study the applicability of Monte Carlo in estimating
price sensitivities. In general, the estimation of Greeks is not as straightforward as that of option
prices. Difficulties may arise by discontinuities in the option payoff function, as in the cases of barrier
and digital options. The Monte Carlo methods for estimating Greeks can be divided in the following
three categories: a) Finite-difference , b) Likelihood Ratio1 and c) Pathwise methods. In this thesis,
we focus on the third method, which usually gives better estimates than the other two methods,
when it is applicable. A Pathwise estimator is derived by differentiating the payoff function inside
the expectation operator. Thus, the interchange between differentiation and expectation is required.
However, this interchange is not applicable in several cases such as the computation of delta and
gamma of digital and barrier options. To overcome this obstacle we apply a smoothing technique,
i.e. we approximate the discontinuous payoff through a smooth function and then we apply the
Pathwise method. Although, additional error is introduced from this smoothing approximation, we
can show that sufficiently good estimates of the Greeks can be obtained. Numerical results from
computation of both prices and Greeks of several exotic options, are given.

Thesis Supervisor: Prof. Michael Giles

1In cases in which the transition density of the underlying price process is not explicitly known, ideas from
Malliavin Calculus can be used to extend this method.
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Chapter 1

Introduction

Monte Carlo simulation is an essential tool in the pricing and hedging of derivative securities. A
derivative security has a payoff which depends on one or more of the underlying assets. The arbitrage
free price of a generic derivative security can be expressed as the discounted expected value of
its payoff. Valuing derivatives thus reduces to computing expectations, namely single or multi-
dimensional integrals. Valuation of a derivative security by Monte Carlo typically involves simulating
paths of stochastic processes, which describe the evolution of underlying asset prices and other factors
relevant to the security. Boyle first developed a Monte Carlo simulation approach for valuing options
in [Boy77]. Since then, remarkable progress (see [BBG97]) has been achieved, making the Monte
Carlo approach a valuable and flexible computational tool in modern finance.

The major disadvantage of the Monte Carlo method is its slow convergence rate, which is
O(n−1/2) independently of the dimension of the problem, where n is the number of simulated paths.
The latter makes Monte Carlo not a competitive method for pricing and hedging derivative securities
when the dimension of the problem is small1. This means that huge computational effort is usually
needed to obtain sufficiently accurate estimation of derivative prices.

Various techniques have been developed to improve the efficiency of Monte Carlo estimators.
These techniques aim at computing time, variance and bias reduction, which are the major criteria
for comparing alternative estimators. Various variance reduction techniques such as the control
variate approach and antithetic variate method have been used to speed up the convergence rate of
Monte Carlo simulation. More recently, moment matching and importance sampling methods have
been used to reduce the variance of simulation estimates. Alternatives to Monte Carlo simulation,
known as Quasi-Monte Carlo or low-discrepancy methods, use deterministic sequences of numbers
instead of random sequences to speed up the convergence rate.

However, all the above methods can do nothing to reduce the bias in Monte Carlo estimates that
results from the time-discretization of stochastic differential equations, which describe the evolution
of underlying asset prices and other factors relevant to the derivative security under consideration.
In the first part of this thesis, we focus on enhanced Monte Carlo methods, which reduce the bias in
Monte Carlo estimates. In particular, such methods are discussed and applied to price path-dependent
derivative securities such as Barrier and Lookback options.

In the second part of this thesis, we present enhanced Monte Carlo methods for estimating
sensitivities of expectations, i.e. the partial derivatives of derivative prices, which are known as

1Generally, Monte Carlo simulation becomes competitive when the dimension of the problem under

consideration is bigger than 3.

1



Chapter 1. Introduction 2

Greeks. Greeks are very important because they determine the trading strategy that hedges the
position in the derivative security. We use a smooth function to approximate the discontinuous
payoff of an option and then we apply the pathwise method to estimate the delta and gamma through
Monte Carlo simulation. In particular, we estimate the delta and gamma of a digital call option and
down-and-out barrier option. We note that without this smoothing technique the pathwise method
is inapplicable in estimating the greeks of those two options. Furthermore, we carry out asymptotic
analysis in order to determine the error that the smoothing introduces in our estimations and we
show how we can reduce this error. Also, we study how this smoothing affects the variance of Monte
Carlo estimates. Finally, we use the stratified sampling method to reduce the variance and thus to
improve further the efficiency of the Monte Carlo method.

1.1 Preliminaries

1.1.1 Monte Carlo Basics

Simulation is widely used to solve problems which either do not have analytical solution or it is too
difficult to obtain.

As we have already mentioned, Monte Carlo simulation is an easy way to estimate integrals
in one or more dimensions. We consider for example the problem of estimating the integral of a
Lebesgue integrable function, f ∈ L2(0, 1), over the unit interval [0, 1]. We can express this integral
as an expectation

E[f(X)] =

∫

[0,1]
f(x) dx , (1.1)

with X uniformly distributed on [0, 1]. This can be extended to the unit cube [0, 1]d in d dimensions

E[f(X)] =

∫

[0,1]d
f(x) dx , (1.2)

where X is a vector random variable uniformly distributed on [0, 1]d. For simplicity, we return to
the one dimensional problem. By drawing points Xi randomly, independently and uniformly from
[0, 1], we can build the Monte Carlo estimator of the integral (1.1)

Ê[f(X)] =
1

n

n∑

i=1

f(Xi) . (1.3)

Then, by the strong Law of Large Numbers, we have that with probability 1

lim
n→∞

1

n

n∑

i=1

f(Xi) −→
∫

[0,1]
f(x) dx . (1.4)

If we set

σ2
f =

∫

[0,1]

(

f(x) − E[f(x)]
)2

dx , (1.5)

then the error en = Ê[f(X)] − E[f(X)] in the Monte Carlo estimation is normally distributed, with
mean 0 and standard deviation σf/

√
n, i.e. en ≈ N

(
0, σ2

f/n
)
2. Practically, the unknown parameter

2The notation X ∼ N(µ, σ2) abbreviates the statement that the random variable X is normally distributed

with mean µ and variance σ2
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σf is approximated by the unbiased estimator

sf =

√
√
√
√

1

n − 1

n∑

i=1

(

f(Xi) − Ê[f(X)]
)2

. (1.6)

Thus, we can conclude that the standard error of the Monte Carlo method has the following form

en(f) ≈ σf√
n

ξ , (1.7)

where ξ ∼ N(0, 1). The latter expression shows that the error of the Monte Carlo method is
O(n−1/2), independently of the dimension of the problem.

1.1.2 Risk Neutral Pricing

In this thesis, we study the problem of derivative pricing and hedging in a risk neutral world, where
no arbitrage opportunities exist, i.e. no riskless profit can be made. We consider the Black-Scholes
model, in which the price of an underlying asset St follows the stochastic differential equation

dS(t) = µS(t)dt + σS(t)dW (t) , (1.8)

where the growth rate µ and volatility σ of S are deterministic constants and W is standard Brownian
motion. In this model the price of a risk free asset has the dynamics

dB(t) = rB(t)dt , (1.9)

where the r is the risk free rate, and all the assets grow at the risk free rate, i.e. µ = r. Further
details in risk neutral pricing of derivative securities can be found in Bjork’s book [Bjo98].

In this framework, the arbitrage-free price V of a derivative with payoff f(S(t1), . . . , S(tm)) at
time T = tm, is given by

V (t) = e−r(T−t)
E

Q[f(S(t0), . . . , S(tm))|Ft] , (1.10)

where the expectation is taken under the risk-neutral probability measure, which is known as the
martingale measure. Ft represents the history of the Brownian motion W (t) up to time t, while T
is the maturity time of the derivative.

To price the expectation of equation (1.10), we need to simulate the paths of the underlying asset
over the time interval [0, T ] according to their risk-neutral dynamics (1.8). We can simulate the
dynamics of the underlying asset using the Euler approximation to (1.8). The Euler approximation
Si of S(ti) on a time grid 0 = t0 < t1 < . . . < tm = T is defined as

Si+1 = Si + rSi[ti+1 − ti] + σSi

√

ti+1 − ti Zi+1 , (1.11)

where S0 = S(0) is known and Zi are independent standard normal random variables for i =
0, . . . , m − 1. With a fixed time step ∆t = ti+1 − ti > 0, we may write the Euler scheme as

Si+1 = Si + rSi ∆t + σSi

√
∆t Zi+1 . (1.12)

In summary, we use the following simple algorithm to price a derivative security in risk neutral
world.
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Pricing algorithm by Monte Carlo

1. Simulate the dynamics of the underlying asset using the Euler scheme.

2. Calculate the payoff of derivative security on each path.

3. Discount payoff at risk-free rate.

4. Calculate average over paths.

Table 1.1: Derivative security pricing in risk-neutral world by Monte Carlo.

1.1.3 Convergence Order

We use two categories of error of approximation to measure the quality of a discretization scheme
such as Euler scheme. Thus, if {S0, S1, S2, . . .} is any discrete-time approximation to a continuous-
time process S then the weak and strong order of convergence of the discretization are defined as
follows.

Definition 1.1.1. Strong order of Convergence

We say that the discretization has strong order of convergence β > 0 if

E
[
‖Sm − S(T )‖

]
≤ c∆tβ , (1.13)

for some constant c.

Definition 1.1.2. Weak order of Convergence

We say that the discretization has weak order of convergence β > 0 if

∣
∣E[f(Sm)] − E[f(S(T ))]

∣
∣ ≤ c∆tβ , (1.14)

for some constant c and for all f in a set C2β+2.

The general Euler scheme, which is described by (1.12) with µ , σ not necessarily constants - they
can be functions of S(t) -, typically has a strong order of 1/2, while it often achieves a weak order
of 1. The weak order of convergence is of greater interest in derivative pricing, because the bias of
the Monte Carlo estimator E[f(Sm)] of the true price E[f(S(T ))], where f is the discounted payoff,
depends only on the distribution of S(T ). Thus in this thesis we concentrate on the weak order of
convergence. The Euler scheme achieves a weak order of 1 under some smoothness conditions on µ,
σ and f , see Kloeden and Platen [KP92]. However, in several pricing problems, these smoothness
conditions are not satisfied, as a result the Euler scheme has a slower weak convergence rate. We
will discuss such cases in chapter 2.

1.1.4 Sensitivities

After pricing a derivative security, it is of vital importance to hedge the risks incurred by the position
that we have on this derivative security. It is possible to replicate the payoff of a derivative security
by a dynamic trading strategy, so that the risk is eliminated. For example, the risk in a short
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position in a derivative security V is hedged by holding delta units of the underlying asset, where
delta is the partial derivative of the derivative security price with respect to the current price of the
underlying asset. This strategy is known as delta-hedging.

Hence, the implementation of hedging strategies, such as delta-hedging, requires the knowledge
of the sensitivities of the derivative security prices, with respect to the price of the underlying asset
as well as to the other model parameters. These sensitivities are known as Greeks. We introduce
some standard notation for the Greeks.

Definition 1.1.3. Greeks

∆ = ∂V
∂S

Γ = ∂2V
∂S2

ρ = ∂V
∂r

Θ = ∂V
∂t

V = ∂V
∂σ .

An obvious approach to this numerical problem is to compute by Monte Carlo simulation
the finite difference approximations of these derivatives. Let Y (x) be the discounted payoff of a
contingent claim, with respect to the parameter of interest x. We can simulate n independent values
of Y (x) and n independent values of Y (x + ∆x) for small ∆x. Then, by averaging we can get the
Monte Carlo estimators Ȳ (x) and Ȳ (x+∆x) of Y (x)and Y (x+∆x), respectively. Thus the forward
difference estimator of the derivative of Y with respect to x is

Y
′

F (x) =
Ȳ (x + ∆x) − Ȳ (x)

∆x
. (1.15)

If the simulation of the two estimators are drawn independently then it has been proved that the
convergence rate is O(n−1/4). We can improve the convergence rate to O(n−1/3) by using the central
difference estimator

Y
′

C(x) =
Ȳ (x + ∆x) − Ȳ (x − ∆x)

2∆x
. (1.16)

Furthermore, by using the common random numbers for both Monte Carlo estimators, one can
achieve a convergence rate of nearly n−1/2 (see section 7.1 in [Gla04]). However, an important
drawback of the finite difference method is that it usually performs very poorly, when the payoff
function Y (x) is not smooth enough.

In this thesis, we discuss an alternative method for estimating sensitivities which is called
pathwise method, see [Gla04]. The pathwise method differentiates each simulated outcome with
respect to the parameter of interest. Let again Y (x) be the discounted payoff of a contingent claim
with respect to the parameter of interest x. Then assuming that the payoff of the claim is almost
surely continuous3, we can estimate the derivative of the claim price V (x) = E[Y (x)] with respect
to parameter θ, using the pathwise derivative of Y at x

Y
′

(x) = lim
∆x→0

Y (x + ∆x) − Y (x)

∆x
. (1.17)

3Although this does not guarantee that the pathwise method is applicable, in many practical problems

this requirement is sufficient. Mathematical conditions that ensure the applicability of pathwise method are

discussed in page 393 in [Gla04].
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We assume that this derivative exists with probability one at each x. To make (1.17) consistent, we
can choose a collection of random variables {Y (x), x ∈ X}, which is defined on a probability space
(Ω,F , P ). Then we can fix ω ∈ Ω so that the mapping x 7→ Y (x, ω) is a random function on X.
Thus we can think Y

′

(x) = Y
′

(x, ω) as the derivative of the random function with respect to the x,
with ω held fixed. In other words Y

′

(x, ω) is the derivative of the simulation output with respect to
x, with the random numbers held fixed.

Under the above assumption the expectation of Y
′

(x) is an unbiased estimator of the derivative
of the price of contingent claim with respect to x. This means that we can write

dV

dx
=

d

dx
E[Y (x)] = E

[dY (x)

dx

]

. (1.18)

Generally the pathwise method yields an unbiased estimate of the derivative of an option if
the option’s discounted payoff is almost surely continuous4 in the parameter of differentiation.
The discounted payoff is a stochastic quantity, so this rule of thumb requires continuity as the
parameter varies with all random elements not depending on the parameter held fixed. However,
this rule excludes digital and barrier options. To overcome this obstacle, we use a smooth function
to approximate the discounted payoff function of those two options and then apply the pathwise
method. We describe this method in chapter 3.

4A process {Y (x) → x ∈ R} is almost surely continuous at x0 if Y (x) → Y (x0) almost surely as x → x0.

In mathematics, the phrase almost surely is a subtle, precise way to say that something is certain except for

cases that almost never happen, though still possible.



Chapter 2

Pricing Exotics Options

In this chapter, we discuss and apply enhanced Monte Carlo methods to price exotic options. Exotic
options have more complicated payoffs than the standard European or American options. Most
exotic options trade in the over-the-counter1 market and have been designed to meet particular
needs of investors. In this chapter we use Monte Carlo methods to price Barrier and Lookback
options. Both of these types of options are known as path-dependent options, because their payoff
depends on the path of the price of the underlying asset. In the following section we describe two
enhanced Monte Carlo methods and we use them to price specific types of Barrier and Lookback
options. We compare the convergence rate of those methods with that of the crude Monte Carlo
simulation and we comment on the numerical results that we get from the experiments. We used
the high level programming language C to implement these Monte Carlo methods.

2.1 Barrier Options

Barrier options are options where the payoff depends on whether the price of the underlying asset
reaches a certain barrier level during a certain period of time. These options are attractive because
they are less expensive than the corresponding standard options. Barrier options can be classified
in two basic categories, the knock-out options and the knock-in option. A knock-out option is
extinguished when the underlying asset price reaches a certain barrier. On the other hand, a knock-
in option is activated only when the underlying asset price reaches this barrier. The simplest such
options are otherwise standard calls and puts that are knocked-in or knocked-out by the price of
the underlying asset. We consider the case of continuous monitoring of the barrier. Improving the
estimates of the prices of the continuously monitored barrier options is of practical importance, since
there are option markets such as the currency option market, where the barrier is monitored almost
continuously.

First, in section 2.1.1 we describe how we can price barrier options by Monte Carlo simulation,
as well as the discretization error that is introduced. In sections 2.1.2 and 2.1.3, we describe two
alternatives to crude Monte Carlo simulation methods. We present and comment on numerical
results in section 2.1.4.

1The market for securities not listed and traded on an organized exchange.

7
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2.1.1 Discretization Error in Pricing

We consider the usual Black-Scholes model where the underlying asset price S(t) follows the
stochastic differential equation (1.8), while the price of a contingent claim on S(t) is given by (1.10).
Let now B denote the level of the barrier. Then an up option has S(0) > B and a down option has
S(0) < B. The asset price reaches the barrier for the first time at

τB = inf {t > 0 : S(t) = B} . (2.1)

A knock-in call option with maturity time T and strike price K has payoff

f(S(T )) =

{
(S(T ) − K)+ , if τB ≤ T
0 , otherwise

, (2.2)

where (S(T ) − K)+ = max {S(T ) − K, 0}. The option’s price at current time t, is

Cin(t) = e−r(T−t)
E

Q[(S(T ) − K)+1 {τB ≤ T}] , (2.3)

where 1 {τB ≤ T} denotes the indicator function and is defined as follows

1 {τB ≤ T} =

{
1 , if τB ≤ T
0 , otherwise

. (2.4)

We obtain the price of a knock-in put option by replacing (S(T ) − K)+ with (K − S(T ))+ in
(2.3). For knock-out options we replace the event {τB ≤ T} with its complement {τB > T}. Analytic
pricing formulas for all eight types of this kind of barrier options are provided by Rubinstein and
Reiner in [RR91].

We can price these options using the Monte Carlo method by simulating S(T ) and the indicator
function 1 {τB ≤ T}. We can do this by setting

τ̂B = inf {i : Si > B} , (2.5)

for i = 1, . . .m and S0 = S(0). We suppose that B > S(0). Thus it is possible to approximate
(S(T ),1 {τB ≤ T}) by (Sm,1 {τ̂B ≤ m}) with ∆t = T/m for some discretization2 of S(t). However,
even if we could simulate S exactly on the discrete grid 0, ∆t, 2∆t, . . . , m∆t this would not sample
1 {τB ≤ T} exactly. It is possible for a simulated path of S to cross the barrier at some time t
between two grid points i∆t and (i + 1)∆t and never be above the barrier at any of the times
0, ∆t, 2∆t, . . . , m∆t, see figure 2.1. This means that the knock-in call option will not be activated in
this case. Thus, its payoff will be 0 instead of (S(T )−K)+ and error is introduced in our estimation.

In the following two sections, we show how we can reduce the discretization error in the sampling
of indicator 1 {τB ≤ T} using two smart ideas before we apply the Monte Carlo simulation to price
the barrier options.

2.1.2 Correction Method

Broadie, Glasserman and Kou show in [BGK97] how to adjust the pricing formula of a continuously
monitored barrier option to obtain a better approximation to the price of the discretely monitored
barrier option. They showed that to use the continuous price as an approximation to the discrete

2 We denote by Si the approximation of S(i∆t).
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Figure 2.1: Asset price path that follows Geometric Brownian Motion.

price, we should first shift the barrier B away from S(0) by a factor eβσ
√

∆t, if B > S(0) (up options)

and e−βσ
√

∆t, if B < S(0) (down options). In the latter expressions β ≈ 0.5826 and ∆t = T
m is the

time interval between the m monitoring points. Also, they showed that the corrected pricing formula
reduces the error from O(1/

√
m) to o(1/

√
m). The above are summarized in the following theorem.

Theorem 2.1.1. Let Vm(B) be the price of a discretely monitored knock-in or knock-out down call

or up put with barrier H. Let V (B) be the price of the corresponding continuously monitored barrier

option. Then

Vm(B) = V (Be±βσ
√

∆t) + o(
1√
m

) , (2.6)

where + and − applies if B > S(0) and B < S(0), respectively, and β = −ζ(1
2)/

√
2π ≈ 0.5826 where

ζ is the Riemann zeta function.

We apply similar corrections in pricing continuously monitored barrier options by Monte Carlo.
In particular, we first shift the barrier by a quantity3 know −Bβσ

√
∆t if B > S(0) and +Bβσ

√
∆t

if B < S(0) and then we apply the regular Monte Carlo method to price the options.

2.1.3 Probabilistic Method

In this section, we present a probabilistic method, which allows us to estimate the probabilities pi

that the indicator 1 {τB ≤ T} takes the value 1 in time interval [i∆t, (i + 1)∆t) or for simplicity

3By Taylor series expansion we have that e±βσ
√

∆t ≈ 1 ± βσ
√

∆t.

chapter1/barrier_bias.eps
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[ti, ti+1) and i = 0, 1, . . . , m − 1, i.e. the probabilities that the asset price crosses the barrier over
this time interval.

We consider a random path of the underlying asset price S, starting from an initial level Si

at time ti, ending to a final level Si+1 at time ti+1 where ti+1 − ti = ∆t. We are looking for the
conditional probability that S hits the barrier during time interval [ti, ti+1) given its initial and final
values Si and Si+1, respectively. This is equivalent to calculating the probability that the process
Z(t) = lnS(t) hits the barrier B in time interval [ti, ti+1) given its initial and final values Zi = lnSi

and Zi+1 = lnSi+1, respectively. By considering a Brownian bridge from Zi to Zi+1 over [ti, ti+1), we
can calculate the probability that the barrier is crossed. We can do this by deriving the probability
that the maximum or minimum of the Brownian bridge is above or below the barrier, depending on
whether we are pricing up or down barrier option. Results can be extended easily for double barrier
options.

We consider the case in which B > Si or equivalently lnB = b > Zi. The asset price S follows
the stochastic differential equation

dS(t) = rS(t) dt + σS(t) dW (t) (2.7)

and by Ito’s Lemma, we obtain

dZ(t) = d lnS(t) = (r − σ2

2
) dt + σ dW (t) . (2.8)

From the last equation, we see that the process Z(t) follows a Brownian motion with drift r − σ2

2

and diffusion coefficient σ2. Hence we have that dZ ∼ N((r − σ2

2 ) dt, σ
√

dt), while dW ∼ N(0, dt).
We consider now a random path of the Z, starting from an initial level Zi at time ti, ending at a

final level Zi+1 at time ti+1, see figure 2.2. Because of the symmetry with respect to barrier b of the
Brownian motion starting at (ti, Zi) crossing the barrier at some time ti < τb < ti+1 and ending at
(ti+1, Zi+1), the probability of doing this is the same as the probability of going from point (ti, Zi)
to the point (ti+1, Z

′

i+1). This is known as the reflection principle of Brownian motion and further
details can be found in pages 78-79 in [KS91]. The probability that a path of Z starts from Zi at
time ti and ends at Zi+1 at time ti+1 is given by the transition probability density function4

p(Zi+1, ti+1; Zi, ti) =
1

σ
√

2π∆t
exp

[
− (Zi+1 − Zi − a∆t)2

2σ2∆t

]
,

where a = r − σ2

2 is the drift. Hence, we can state that

p {Z(ti) = Zi, Z(ti+1) = Zi+1} =
1

σ
√

2π∆t
exp

[
− (Zi+1 − Zi − a∆t)2

2σ2∆t

]
. (2.9)

Thus, the probability that such a path crosses the barrier b at some time ti < τb < ti+1 given the
initial and final values of Z, is

P {ti < τb < ti+1|Zi, Zi+1} =
p {ti < τb < ti+1, Z(ti) = Zi, Z(ti+1) = Zi+1}

p {Z(ti) = Zi, Z(ti+1) = Zi+1}
. (2.10)

4Generally a Brownian motion Z(t) = µt+σW (t) is a Markov process, i.e. it has independent increments,

and its transition probability density, namely the probability that X(t + s) = y given that X(s) = x, is

p(y, t;x, s) = 1
σ
√

2πt
exp

[
− (x−y−µt)2

2σ2t

]
.
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Figure 2.2: Brownian motion path and its reflected path.

We already know the denominator of (2.10), which is given by (2.9) and therefore, it remains to
calculate the numerator. First note that

p {ti < τb < ti+1, Zi, Zi+1} = p {ti < τb < ti+1} p {Z(ti) = Zi, Z(ti+1) = Zi+1|ti < τb < ti+1}

= p {ti < τb < ti+1} p
{

Z(ti) = Zi, Z(ti+1) = Z
′

i+1|ti < τb < ti+1

}

= p
{

Z(ti) = Zi, Z(ti+1) = Z
′

i+1, ti < τb < ti+1

}

.

(2.11)
In the second line of the above equation we used the reflection principle of the Brownian motion,
which states that the probability of a path of Z starting at (ti, Zi) crossing the barrier at some time
ti < τb < ti+1 and ending at (ti+1, Zi+1) is equal to the probability of a path starting from the same
point and ending to the point (ti+1, Z

′

i+1). Also from figure 2.2 is easy to see that Z
′

i+1 = 2b−Zi+1.
Now, it can be shown that the probability that we want, is given by

p {ti < τb < ti+1, Zi, Zi+1} = e
2a(b−Zi)

σ2
1

σ
√

∆t
n

(

−(2b − Zi+1 − Zi + a∆t)

σ
√

∆t

)

, (2.12)

where n(x) is the density of the standard normal distribution. The derivation of the latter probability
is given in section A.1 in Appendix A. Further details for expectation pricing of barrier options can
be found in chapter 4 in [Kwo98], as well as in chapter 8 in [Jos03].

chapter1/reflect_path.eps
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Substituting (2.9) and (2.12) in (2.10) we get

P {ti < τb < ti+1|Zi, Zi+1} =
p {ti < τb < ti+1, Z(ti) = Zi, Z(ti+1) = Zi+1}

p {Z(ti) = Zi, Z(ti+1) = Zi+1}

=
e

2a(b−Zi)

σ2 1
σ
√

2π∆t
exp

[
− (2b−Zi+1−Zi+a∆t)2

2σ2∆t

]

1
σ
√

2π∆t
exp

[
− (Zi+1−Zi−a∆t)2

2σ2∆t

]

and by doing some algebra we obtain

P {ti < τb < ti+1|Zi, Zi+1} = exp
[
− 2(b − Zi+1)(b − Zi)

σ2∆t

]
. (2.13)

We can write the above equation in terms of the underlying asset price S, by replacing Zi = lnSi,
Zi+1 = lnSi+1 and b = lnB to get

P {ti < τB < ti+1|Si, Si+1} = exp
[
− 2(lnB − lnSi)(lnB − lnSi+1)

σ2∆t

]
. (2.14)

Similarly, we can show that when the initial value Si of the asset price is above the barrier B, then
the probability that a random path of S crosses the barrier during time interval [ti, ti+1), given its
initial and final values Si and Si+1, respectively, is given by

P {ti < τB < ti+1|Si, Si+1} = exp
[
− 2(lnSi − lnB)(lnSi+1 − lnB)

σ2∆t

]
. (2.15)

Baldi first derived these probabilities in [Bal95], and later Baldi, Caramellino and Iovino in [BCI99]
extended these probabilities for the case where the barrier is not constant but depends on time. They
used these probabilities to evaluate single and double barrier options using Monte Carlo simulation.

Now, we can use the probability (2.14) to calculate the probability that the asset price path
crosses the barrier B at some time τB ∈ [0, T ]. This probability is the complement of the probability
that the asset path does not cross the barrier during the time interval [0, T ]. The latter probability
can be calculated as the product of the probabilities p̂i = 1 − pi, for i = 0, 1, . . .m − 1, that S does
not cross the barrier during the time interval [ti, ti+1). Of course the probability pi is known and is
given by (2.14). Thus, we have that

P {tB ≤ T |S(T ) = Sm} = 1 − P {tB > T |S(T ) = Sm}

= 1 − ∏m−1
i=0 p̂i

= 1 − ∏m−1
i=0

(
1 − pi

)

= 1 − ∏m−1
i=0

(

1 − exp
[
− 2(ln B−ln Si)(ln B−ln Si+1)

σ2∆t

])+
.

(2.16)

We return now to our initial goal, which is to evaluate a knock-in call option, which has a value
that is given by (2.3). We can approximate the payoff of the option by

(Sm − K)+
m−1∏

i=0

1 {ti ≤ τB < ti+1} (2.17)
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and hence the conditional expectation of this expression, given the approximated discrete values of
asset price S at times ti for i = 0, 1, . . . , m, is

E
Q
[

(Sm − K)+
∏m−1

i=0 1 {ti ≤ τB < ti+1}
∣
∣S0, S1 . . . Sm

]

= (Sm − K)+
∏m−1

i=0 E
Q
[
1 {ti ≤ τB < ti+1}

∣
∣Si, Si+1

]

= (Sm − K)+P {tB ≤ T |S(T ) = Sm}
]

.

(2.18)

Finally by (2.16) and (2.18) we can approximate the payoff of the knock-in call option as follows

(Sm − K)+P {tB ≤ T |S(T ) = Sm} , (2.19)

where the probability in the above expression is given by (2.16), in the case in which the asset price
is below the barrier initially. We can easily modify this probability using (2.15) to price down barrier
options, i.e. when the asset price is below the barrier initially. Furthermore these results can be
extended to double barrier options pricing.

In summary, using the reflection principle of the Brownian motion we can calculate explicitly
the probability that the underlying asset price S crosses the barrier B in a time interval [ti, ti+1)
given the initial and final values of S. This method reduces the discretization error that the Euler
scheme introduces in estimation of the barrier option pricing by Monte Carlo simulation. The latter
is verified by numerical experiments that we present in the next section.

2.1.4 Simulation Results

In this section, we present the numerical results from our experiments. We use the two Monte Carlo
methods that we described in previous sections as well as the crude Monte Carlo simulation to price
a Down-and-Out call option. Next, we describe briefly the implementation. Finally, we compare
the convergence rate of the crude Monte Carlo simulation with that of the enhanced Monte Carlo
methods and we comment on the results.

We consider the case of a continuously monitored Down-and-Out call barrier option. A Down-
and-Out barrier option remains active5, provided the price of the underlying asset S does not cross
a barrier B at any time t ∈ [0, T ] during the life of the option, where S0 > B. We will use the
exact price of that option, which is calculated by the analytical pricing formulas provided by Reiner
and Rubinstein [RR91], to compare with the prices we get by Monte Carlo simulation methods.
Assuming that the barrier level is lower than or equal to the strike price, the Down-and-Out call
option price is given by the following formula

cdown−out = cBS − cdown−in , (2.20)

where cBS is the value of the European call option under the Black-Scholes formula and cdown−in is
the Down-and-In call option, both with the same characteristics with Down-and-Out barrier option.
The value of the Down-and-In barrier option is given by the following formula.

cdown−in = S0

( B

S0

)2m
Φ(y) − Ke−rT

( B

S0

)2m−2
Φ(y − σ

√
T ) , (2.21)

5The holder of the option gains the right to exercise the option.
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where

y =
ln

(
B2/(S0K)

)

σ
√

T
+ mσ

√
T ,

m = r−0.5σ2

σ2 .

Φ(x) is the cumulative normal distribution of x, B is the barrier value, S0 is the initial underlying
asset price, K is the strike price, r is the risk-free interest rate, T is the maturity time of the option
and σ is the volatility of the asset price.

We calculate the prices of a Down-and-Out call option with fixed values S = 100, K = 100,
r = 0.1, T = 1 and for varying values of barrier B, time step ∆t and volatility σ. We use 106 Monte
Carlo replications in each experiment. Table 2.1 shows the prices of the Down-and-Out call option
calculated by the three Monte Carlo methods, when barrier B is equal to 75, 85, 92 and 99, for
constant volatility σ = 0.5. In the same table we give the absolute error of those methods, as well
as the standard error which is estimated as sn√

n
6. We call Correction 1 the method of section 2.1.2

and Correction 2 the method of section 2.1.3. Crude or Without Correction Monte Carlo method is
compared with the above methods. Also, we give graphs which show the convergence rate of each
method in logarithmic scale. We give graphs for the cases where σ = 0.3, 0.5, 0.8.

Price Absolute Error

Barrier ∆t sn/
√

n Without Cor/tion Cor/tion Without Cor/tion Cor/tion

Cor/tion (1) (2) Cor/tion (1) (2)

0.050000 0.041610 22.13807 20.79079 20.75181 1.59926 0.25198 0.21300

0.025000 0.041785 21.66408 20.60121 20.57608 1.12527 0.06240 0.03727

75 0.012500 0.042033 21.40599 20.60248 20.59383 0.86718 0.06367 0.05503

0.006250 0.041996 21.10827 20.52295 20.51415 0.56946 0.01586 0.02465

0.003125 0.042025 20.98937 20.56308 20.56022 0.45057 0.02427 0.02142

0.050000 0.040370 18.72014 15.73397 15.50707 3.57909 0.59292 0.36602

0.025000 0.040353 17.79299 15.44254 15.38068 2.65194 0.30148 0.23963

85 0.012500 0.040028 17.02166 15.24815 15.22180 1.88061 0.10709 0.08074

0.006250 0.039725 16.51273 15.23136 15.21365 1.37167 0.09031 0.07259

0.003125 0.039579 16.15809 15.21323 15.20914 1.01703 0.07218 0.06808

0.050000 0.038067 14.88035 10.81302 9.49655 5.71225 1.64492 0.32845

0.025000 0.037022 13.25541 9.87960 9.43394 4.08731 0.71150 0.26584

92 0.012500 0.035859 12.03064 9.41718 9.31648 2.86254 0.24908 0.14838

0.006250 0.035119 11.25417 9.30504 9.28269 2.08607 0.13694 0.11459

0.003125 0.034394 10.63492 9.21871 9.21056 1.46682 0.05061 0.04246

0.050000 0.033369 10.11251 5.91648 1.23780 8.83189 4.63586 0.04283

0.025000 0.030084 7.68624 4.37868 1.26985 6.40561 3.09806 0.01077

99 0.012500 0.026712 5.82726 3.28129 1.28171 4.54664 2.00067 0.00108

0.006250 0.023687 4.44832 2.53110 1.28511 3.16770 1.25048 0.00449

0.003125 0.021065 3.48525 2.02422 1.29933 2.20462 0.74359 0.01871

Table 2.1: Down-and-Out Call, when σ = 0.5 and the exact price is 20.53881, 15.14105, 9.16810,

1.28062 for B = 75, 85, 92, 99 respectively.

6Standard sample deviation sn is estimated as sn =
√

1
n−1

∑n
i (Xi − µ̄)2, where n is the number of Monte

Carlo replications, Xi is the options price in i − th simulation and µ̄ = 1
n

∑n
i=1 Xi the mean of option price.
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From the results of table 2.1 and the figures 2.3, 2.4, 2.5 we can make the following remarks :

1. No matter what is the value of the barrier, Monte Carlo methods with correction are much
more accurate and have faster convergence rate than the crude Monte Carlo simulation.

2. In extreme case where B = 99, i.e. the barrier is very close to initial asset price S0 = 100,
we see that Correction 2 gives remarkably accurate results even if the time step ∆t is not so
small, i.e. ∆t = 0.05. On the other hand, in this extreme case Correction 1 does not improve
enough the efficiency of Monte Carlo estimates.

3. The Euler scheme has weak order of convergence 1/2 which is smaller than the optimal weak
order of convergence that it can achieve, namely 1.
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Figure 2.3: Down-and-Out Call - Convergence rate, σ = 0.5.
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Figure 2.4: Down-and-Out Call - Convergence rate, σ = 0.3.
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Figure 2.5: Down-and-Out Call - Convergence rate, σ = 0.8.
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2.2 Lookback Options

The payoffs of Lookback options depend on the maximum or the minimum underlying asset price
reached during the life of the option. There are several types of such options. The two basic types
are the floating strike Lookback options and the fixed strike Lookback options.

The payoff of a floating strike Lookback call option is the difference between the minimum
underlying asset price Smin achieved during the life of the option and the final asset price S(T ).
Thus the payoff is

Float Call = (S(T ) − Smin) . (2.22)

Similarly, the payoff of a floating strike Lookback put option is the difference between the maximum
underlying asset price Smax achieved during the life of the option and the final asset price S(T ).
Hence, the payoff is

Float Put = (Smax − S(T )) . (2.23)

The payoff of a fixed strike Lookback option has similar payoff to that of a standard option, with
strike price K, except that the final underlying asset price S(T ) is replaced by the maximum and
minimum asset price reached during the life of the option for a call and put, respectively. Thus, the
payoffs of the fixed strike Lookback options are the following

Fixed Call = (Smax − K)+ (2.24)

Fixed Put = (K − Smin)+ . (2.25)

In this thesis, we concentrate on floating strike Lookback options. However, similar techniques
can be applied to the other types of Lookback options. The floating strike Lookback options
allow investors with special information on the range of the asset price to take advantage of such
information, according to Goldman, Sosin and Gatto [GSG97], who introduced this type of option
in 1979. A Lookback call is a way that the investor can buy the underlying asset at the lowest price
during the life of the option, while a Lookback put allows an investor to sell the asset at the highest
price achieved during the life of the option.

In particular, in section 2.2.1, we describe how we can price floating strike Lookback options by
Monte Carlo simulation. Also, we present the discretization error that is introduced. In section 2.2.2,
we describe an alternative to crude Monte Carlo simulation method that eliminates the discretization
error which is introduced by the estimation of the maximum or the minimum of the underlying asset
price. Finally in section 2.2.3, we give some numerical results and compare the crude and the
enhanced Monte Carlo methods.

2.2.1 Discretization Error in Pricing

Again, we consider the usual Black-Scholes model where the underlying asset price S follows the
stochastic differential equation (1.8), while the price of an option on S is given by (1.10).

As we have seen, a floating strike Lookback call option, with maturity time T , has payoff

f(S(T )) = (S(T ) − Smin) (2.26)

and thus, its price at current time t is

Cfloat(t) = e−r(T−t)
E

Q[(S(T ) − Smin)] . (2.27)
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Similarly the price of a floating strike Lookback put option is given by

Pfloat(t) = e−r(T−t)
E

Q[(Smax − S(T ))] . (2.28)

We can price these Lookback options using Monte Carlo method, by simulating the final asset
price S(T ) and the maximum Smax or the minimum Smin of the asset price in time interval [0, T ]. We
concentrate on Lookback put option pricing and the estimation of Smax. The analysis is analogous
for the call option pricing. Let S0, S1, . . . , Sm be the Euler approximation of S over [0, m∆t], with
∆t = T/m. Then the estimate

Ŝmax = max {S0, S1, . . . , Sm} (2.29)

is the maximum of the Euler approximation to S over [0, m∆t].
However, even if we could simulate S exactly on the discrete grid 0, ∆t, 2∆t, . . . , m∆t this would

not sample Smax exactly. It is possible that the maximum of the asset price, for a simulated path
of S, to be achieved at some time t between two grid points ti = i∆t and ti+1 = (i + 1)∆t. This
means that the estimate Ŝmax will be below the true maximum of S, see figure 2.6. Hence, the
floating strike Lookback call option is underestimated in this case. On the other hand, the Euler
approximation Ŝmin is always bigger than the true minimum of S and therefore the floating strike
Lookback call option is overestimated.

Obviously, if we can find a better way to simulate the extremes of the asset price S, then we can
improve the estimates of the Lookback option prices. Fortunately, this can be done by calculating
the probability distributions of the maximum Smax

i and minimum Smin
i of S, over each time interval

[ti, ti+1] for i = 0, 1, . . . , m − 1. Then, we can approximate the maximum and minimum of S over
[0, T ] as

Ŝmax = max {Smax
i : i = 0, 1, . . .m}

Ŝmin = min
{
Smin

i : i = 0, 1, . . .m
}

.

We describe a method to do this in the next section.

2.2.2 Error Reduction

Andersen and Brotherton-Ratcliffe suggested a method in [ABR96], which reduces the discretization
error and improves the Monte Carlo estimate for a Lookback option price. They achieved this by
calculating the probability distributions of the maximum and minimum of the underlying asset
price over each time interval [ti, ti+1] for i = 0, 1, . . . , m − 1, conditional upon Si and Si+1. Their
calculation was based on the fact that these probability distributions are directly related to the
probability distribution of the time of the first hit of a barrier, where the barrier in this case is a
variable. Let τmax be the first time that the asset price S reaches its maximum value Smax

i over
[ti, ti+1]. Thus for any interval [ti, ti+1], we have that

P {τmax ∈ [ti, ti+1]|Si, Si+1} = P {max(S(t) : t ∈ [ti, ti+1]) ≥ Smax
i |Si, Si+1} . (2.30)

However, we have already calculated the above probability distributions in section 2.1.3, which is
given by the equation (2.14). In this case, we rewrite this probability as follows

P {max(S(t) : t ∈ [ti, ti+1]) ≥ Smax
i |Si, Si+1} = exp

[

−2(lnSmax
i − lnSi)(lnSmax

i − lnSi+1)

σ2∆t

]

.

(2.31)
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Figure 2.6: Discretization error in asset price maximum estimation.

Denoting by ξi the above probability and doing some algebra we can rewrite the above equation as

ξi = exp

(
2 ln(

Smax
i

Si
) ln( Si+1

Smax
i

)

σ2∆t

)

(2.32)

and consequently we have that

P {max(S(t) : t ∈ [ti, ti+1] < Smax
i |Si, Si+1} = 1 − ξi(S

max
i ) . (2.33)

Thus to simulate the maximum of the stock price over the interval [ti, ti+1], given Si and Si+1, we
should draw a uniform random variable ui ∼ U(0, 1) and set

ui = exp

(
2 ln(

Smax
i

Si
) ln( Si+1

Smax
i

)

σ2∆t

)

. (2.34)

Then, we have that
1

2
σ2∆t lnui = ln

(Smax
i

Si

)

ln
( Si+1

Smax
i

)

(2.35)

and by doing some algebra, we obtain the following quadratic polynomial with respect to Smax
i

ln2 Smax
i − ln(Si+1 · Si) lnSmax

i + lnSi · lnSi+1 +
1

2
σ2∆t lnui = 0 . (2.36)

chapter1/lookback_bias.eps
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The solutions of the above quadratic give the maximum and the minimum of the price over the
interval [ti, ti+1], given Si and Si+1. These extremes are obtained by exponentiating the following
formulas

lnSmax
i =

ln(Si+1 · Si) +

√

ln
(

Si

Si+1

)

− 2σ2∆t lnui

2
(2.37)

and

lnSmin
i =

ln(Si+1 · Si) −
√

ln
(

Si+1

Si

)

− 2σ2∆t lnui

2
. (2.38)

Thus, we can approximate the maximum and minimum of S over [0, T ] as

Ŝmax = max {Smax
i : i = 0, 1, . . .m} (2.39)

Ŝmin = min
{
Smin

i : i = 0, 1, . . .m
}

(2.40)

and therefore by simulating the asset price paths, we can estimate the prices of the floating Lookback
options as

Ĉfloat(t) = e−r(T−t)E[(S(T ) − Ŝmin)] . (2.41)

Similarly the price of a floating strike Lookback put option is given by

P̂float(t) = e−r(T−t)E[(Ŝmax − S(T ))] . (2.42)

Beaglehole, Dydvig and Zhou suggest a similar idea in [BDZ97] for pricing Lookback options.

2.2.3 Simulation Results

In this section we present the numerical results that we obtained by applying the crude and the
enhanced Monte Carlo method to price Lookback options. In particular, we consider the value of a
floating strike Lookback put option, which pays the difference between the maximum stock price over
the life of the option and its final price. Using the crude Monte Carlo simulation, we can estimate
the price of the option along one price path as

P̄float(t) = e−r(T−t)
(

max {Si : i = 0, 1 . . . , m} − Sm

)

. (2.43)

Alternatively, we can estimate the Lookback put option price using the enhanced Monte Carlo
method that we described in previous section. The estimate of the price using this technique is
given by (2.42).

Values of the Lookback options estimated by Monte Carlo simulation are compared with the
exact value of the continuous Lookback. In particular, we consider the floating strike Lookbacks
which were first introduced by Goldman, Sosin and Gatto [GSG97] and can be priced within a
Black-Scholes framework. A set of equations given for European floating strike Lookback puts are
the following

pfloat = S0

(σ2

r
N(−b2) + N(b2)

)

− Smaxe−rT
(

N(b1) −
σ2

2r
ex2N(−b3)

)

, (2.44)
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where

b1 =
ln

(
Smax

S0

)
+ (−r + σ2

2 )

σ
√

T
,

b2 = b1 − σ
√

T ,

b3 =
ln

(
Smax

S0

)
+ (r − σ2

2 )

σ
√

T
,

x2 =
ln

(
Smax

S0

)
2(r − σ2

2 )

σ2
.

We calculated the prices of a European Lookback put option for Smax = S0 = 100, r = 0.05,
T = 1 and various values of time step ∆t and volatility σ. We used 106 Monte Carlo replications
in each experiment. In table 2.2 we give the prices of the Lookback put option calculated by the
crude Monte Carlo simulation as well as the enhanced method of section 2.2.2. Figure 2.7 shows
the convergence rate of the crude and corrected Monte Carlo method for volatility σ = 0.25 (upper
graph) and σ = 0.5 (down graph). Again good results are obtained with the corrected Monte Carlo
method showing a substantial improvement in accuracy.

Price Absolute Error

σ ∆t sn/
√

n Crude Corrected Crude Corrected

Monte Carlo Monte Carlo Monte Carlo Monte Carlo

0.050000 0.01308 15.22128 18.74419 3.50200 0.02091

0.025000 0.01304 16.14978 18.70912 2.57349 0.01415

0.25 0.012500 0.01303 16.87865 18.72391 1.84462 0.00063

0.006250 0.01301 17.41949 18.74331 1.30378 0.02004

0.003125 0.01299 17.78333 18.72772 0.93994 0.00445

0.050000 0.02609 34.77775 43.17847 8.26423 0.13649

0.025000 0.02608 37.04758 43.17970 5.99440 0.13772

0.5 0.012500 0.02605 38.67337 43.09348 4.36861 0.05150

0.006250 0.02606 39.90766 43.08268 3.13432 0.04070

0.003125 0.02605 40.77608 43.04837 2.26591 0.00639

Table 2.2: European Lookback put option for Smax = S0 = 100, r = 0.05, T = 1. The exact price is

18.72327, 43.04198 for σ = 0.25, 0.5, respectively.
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Chapter 3

Estimating Sensitivities

3.1 Hedging Digital Options

Digital or binary options are options with discontinuous payoffs. The two most common types of
this kind of exotic options are the cash-or-nothing digital options and the asset-or-nothing digital
options. A cash-or-nothing call (put) option pays off a predetermined amount X, if the underlying
asset price S(T ) is above (below) the strike price K at maturity time T , otherwise pays off nothing.
Thus the risk neutral prices of those options are given by

Ccash−or−nothing(t) = e−r(T−t)
E

Q[X1 {S(T ) > K}] (3.1)

Pcash−or−nothing(t) = e−r(T−t)
E

Q[X1 {S(T ) < K}] . (3.2)

Similarly, asset-or-nothing call (put) option pays off the underlying asset price S(T ) at maturity
time T , if this price is above (below) the strike price K, otherwise pays off nothing. Thus the risk
neutral prices of those options are given by

Casset−or−nothing(t) = e−r(T−t)
E

Q[S(T )1 {S(T ) > K}] (3.3)

Passet−or−nothing(t) = e−r(T−t)
E

Q[S(T )1 {S(T ) < K}] . (3.4)

In the next section, we will show that the discontinuities in payoffs of digital options make
the pathwise method inapplicable, as we noted in introduction. We can overcome this obstacle by
choosing a smooth function that approximates the payoff function, and then applying the pathwise
method in estimating the sensitivities of the option. Next, we apply this smoothing technique in
estimating the sensitivities of a digital option.

3.1.1 Smoothing the Digital Payoff

We consider a European cash-or-nothing call option, which is the simplest digital (binary) call option.
As usual, we assume the underlying asset price S follows the Geometric Brownian motion which is
described by (1.8). Assume now that this option pays off a predetermined amount equal to 1, if

23
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the terminal underlying asset price S(T ) is above (below) the strike price K at maturity time T ,
otherwise nothing. Hence, its discounted payoff is

Y = e−rT1 {S(T ) ≥ K} , (3.5)

which can be written in the following form

Y = e−rT H(S(T ) − K) =







e−rT , if S(T ) − K ≥ 0

0 , if S(T ) − K < 0
, (3.6)

where H(x) is the Heaviside1 function. Thus, the price of the option at current time is

Cdig = e−rT
E

Q
[
H(S(T ) − K)

]
. (3.7)

Obviously this payoff function is discontinuous at S(T ) = K. The derivative of Y , with respect
to S(0), is 0 whenever it exists. This means that although the pathwise derivative exists with
probability 1, it is useless, since

0 = E
[ dY

dS(0)

]

6= d

dS(0)
E[Y ] . (3.8)

The change in E[Y ] with a change in S(0) is driven by the possibility that a change in S(0) will
cause S(T ) to cross the strike K, but this possibility is missed by the pathwise derivative. However,
we can choose a smooth function of the form

Hǫ (S(T ) − K) = h

(
S(T ) − K

ǫ

)

, (3.9)

which approximates well the discontinuous payoff, see figure 3.1. Parameter ǫ is a small positive
number, which determines the smoothness of function Hǫ. Now, since the function Hǫ is smooth,
we can apply the pathwise method in order to estimate the ∆ of the digital option, as

∆ǫ =
dCdig

dS(0)
= e−rT d

dS(0)
E[Hǫ] = e−rT E

[ dHǫ

dS(0)

]

. (3.10)

The last expectation in (3.10), is given by

E
[dHǫ (S(T ) − K)

dS(0)

]

=

∫ ∞

0

dHǫ(S − K)

dS(0)
p(S) dS , (3.11)

where p(S) is the lognormal density of S(T ). We know that

S(T ) = S(0)e(r−σ2

2
)T+σW (3.12)

where W ∼ N(0, T ), and therefore the distribution of S(T ) is given by

P (S(T ) ≤ S) = P

(

W ≤ log(S/S(0))−(r−σ2

2
)T

σ

)

= Φ

(

log(S/S(0))−(r−σ2

2
)T

σ
√

T

)

,

(3.13)

1The Heaviside function is defined as H(x) =

{

1 , if x ≥ 0

0 , if x < 0
.
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Figure 3.1: Smoothing the discontinuous payoff of a digital.

where Φ is the cumulative distribution function. Thus, by differentiating this with respect to S, we
get the density of S(T )

p(S) =
1

S
√

2πσ2T
exp

[

−
(
log(S/S(0)) − (r − σ2

2 )T
)2

2σ2T

]

. (3.14)

Now applying the chain rule, we get

dHǫ

dS(0)
=

dHǫ

dS(T )

dS(T )

dS(0)
(3.15)

and by (3.12), we have that dS(T )
dS(0) = S(T )

S(0) . Hence the expectation (3.11) becomes

E
[dHǫ (S(T ) − K)

dS(0)

]

=

∫ ∞

0

dHǫ (S − K)

dS

S

S(0)
p(S) dS . (3.16)

Similarly, the pathwise estimator of Gamma of a digital call option is given by

Γǫ =
d2Cdig

dS2(0)
= e−rT E

[d2Hǫ (S(T ) − K)

dS2(0)

]

(3.17)

where

E
[d2Hǫ (S(T ) − K)

dS2(0)

]

=

∫ ∞

0

d2Hǫ (S − K)

dS2

( S

S(0)

)2
p(S) dS . (3.18)

chapter2/dig_smooth_payoff.eps
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3.1.2 Delta and Gamma Estimates

In this section, we study the case in which the smooth function is the following

Hǫ (S(T ) − K) = h

(
S(T ) − K

ǫ

)

=
1

2

[

tanh
(S(T ) − K

ǫ

)

+ 1

]

, (3.19)

where the function h(x) − 1
2 = 1

2 tanh(x) is an odd function, i.e. h(x) = −h(−x). By differentiating
(3.19) along with (3.15), we obtain

dHǫ (S(T ) − K)

dS(0)
=

1

2ǫ

[

1 − tanh2
(S(T ) − K

ǫ

)
]

S(T )

S(0)
. (3.20)

Now, the density of S(T ) is given by (3.14) and therefore the pathwise estimator of delta (3.16) has
the following form

∆ǫ = e−rT E
[dHǫ (S(T ) − K)

dS(0)

]

= e−rT

∫ ∞

0

1

2ǫ

[

1 − tanh2
(S − K

ǫ

)
]

S

S(0)
p(S) dS . (3.21)

Similarly, we find that

d2Hǫ (S(T ) − K)

dS2(0)
= − tanh

(S(T ) − K

ǫ

)
[

1 − tanh2
(S(T ) − K

ǫ

)
]

1

ǫ2

(
S(T )

S(0)

)2

(3.22)

and therefore the pathwise estimator of Gamma (3.18) becomes

Γǫ = e−rT

∫ ∞

0
− tanh

(S(T ) − K

ǫ

)
[

1 − tanh2
(S(T ) − K

ǫ

)
]

1

ǫ2

(
S(T )

S(0)

)2

p(S) dS . (3.23)

We can easily calculate the integrals (3.21) and (3.23) either numerically or using Monte Carlo
simulation. We calculated numerically these integrals in Matlab, for a digital call option using the
input parameters K = 1, S0 = 1, T = 1, σ = 0.5, r = 0.05. We also estimated the above integrals
by Monte Carlo simulation, using 106 replications. Figure 3.2 shows the values of the Delta and
Gamma as parameter ǫ varies.

From the graphs, we can see that the smaller the value of the parameter ǫ the better estimates
of Greeks are obtained by numerical integration. Also, we can see that as the ǫ increases, the Monte
Carlo estimates converge to those, which are obtained by numerical integration. However, as ǫ tends
to zero, the Monte Carlo simulation gives very poor estimates. The above observations become more
apparent in the case of Gamma estimation. We observe that Monte Carlo method gives poor results,
even if the value of ǫ is not so small.

3.1.3 Asymptotic Analysis

In this section, we carry out the asymptotic analysis for our problem. We have seen that the value
of the option, which is calculated as the expectation of its discounted payoff, is given by

V = e−rT

∫ ∞

0
p(S)H(S − K) dS , (3.24)
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while the value of the option, which is estimated through the smooth approximation Hǫ (S(T ) − K)
of its payoff, is

Vǫ = e−rT

∫ ∞

0
p(S)Hǫ(S − K) dS . (3.25)

Thus, we have that

V − Vǫ = e−rT

∫ ∞

0
p(S)

[

H(S − K) − Hǫ (S(T ) − K)
]

dS (3.26)

and by changing variable S = K + ǫx, we get

V − Vǫ ≈ e−rT

∫ ∞

−∞
p(K + ǫx)

[

H(ǫx) − h(x)
]

ǫ dx , (3.27)

since Hǫ(ǫx) = h(x). Now H(ǫx) = H(x), and therefore (3.27) becomes

V − Vǫ ≈ e−rT

∫ ∞

−∞
p(K + ǫx)

[

H(x) − h(x)
]

ǫ dx . (3.28)

By Taylor series expansion of p(K + ǫx), we have

p(K + ǫx) = p(K) + ǫx
dp

dS
+

(ǫx)2

2!

d2p

dS2
+

(ǫx)3

3!

d3p

dS3
+

(ǫx)4

4!

d4p

dS4
+ . . . (3.29)
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Hence inserting this expansion in (3.28), we have

V − Vǫ ≈ ǫ e−rT
∫ ∞
−∞ p(K)

[

H(x) − h(x)
]

dx

+ǫ2 e−rT
∫ ∞
−∞

dp
dS x

[

H(x) − h(x)
]

dx

+ǫ3 e−rT
∫ ∞
−∞

1
2

d2p
dS2 x2

[

H(x) − h(x)
]

dx

+ǫ4 e−rT
∫ ∞
−∞

1
6

d3p
dS3 x3

[

H(x) − h(x)
]

dx

+O(ǫ6)

(3.30)

But the odd power terms of the above series vanish, since H(x)−h(x) is an odd function. Therefore,
we can write (3.30) as follows

V − Vǫ = c2(S0) ǫ2 + c4(S0) ǫ4 + O(ǫ6) (3.31)

with

ci(S0) =







e−rT
∫ ∞
−∞

1
(i−1)!

d(i−1)p
dS(i−1) x

(i−1)
[

H(x) − h(x)
]

dx , if i is even

0 , if i is odd

(3.32)

for i = 1, 2, . . ..
However, we are interested in the error of the Delta approximation, which is

∆ − ∆ǫ =
d

dS0
[V − Vǫ] =

dc2(S0)

dS0
ǫ2 +

dc4(S0)

dS0
ǫ4 + O(ǫ6) (3.33)

and therefore we need to calculate the coefficients of the above series, which have the following form

dci(S0)

dS0
=







∫ ∞
−∞

1
(i−1)!

d
dS0

[
d(i−1)p
dS(i−1)

]

x(i−1)
[

H(x) − h(x)
]

dx , if i is even

0 , if i is odd

(3.34)

for i = 1, 2, . . .. Thus the coefficient of the first term in series (3.33), is

dc2(S0)

dS0
=

∫ ∞

−∞

d

dS0

[ dp

dS

]

x
[

H(x) − h(x)
]

dx . (3.35)

We calculated numerically this coefficient for the smooth function Hǫ of (3.19) and we found that it
is about 1.1956. This means that the error of the estimation of Delta using numerical integration,
as we explain at the previous section, must be

∆ − ∆ǫ ≈ 1.1956ǫ2 + O(ǫ4) . (3.36)

Using the results from the previous section, we can see that the approximation error of Delta through
numerical integration has a similar behavior to the theoretical error, which is given by (3.36). In
particular, figure 3.3 shows the theoretical error matches well with the error in calculation of Delta
using numerical integration, as parameter ǫ varies. Figure 3.4 shows the error of estimates as well
as the error of numerical integration. In the same figure, we plot the upper and the lower bound of
Monte Carlo error2.

2For example in the case of Delta estimation these bounds define the interval
[

∆ − ∆ǫ − 2 sn√
n
,∆ − ∆ǫ + 2 sn√

n

]

.
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Similarly, we can show that
Γ − Γǫ ∼ O(ǫ2) . (3.37)

Now differentiating the asymptotic error expansion (3.31) with respect to ǫ, we have

− d

dǫ
Vǫ = 2 c2(S0) ǫ + 4 c4(S0) ǫ3 + O(ǫ5) . (3.38)

The above equation can be written as follows

−1

2
ǫ

d

dǫ
Vǫ = c2(S0) ǫ2 + 2 c4(S0) ǫ4 + O(ǫ6) (3.39)

and thus by subtracting this from (3.31), we can reduce the leading order term from O(ǫ2) to O(ǫ4),
i.e. we obtain

V −
(

Vǫ −
1

2
ǫ

d

dǫ
Vǫ

)

= −c4(S0) ǫ4 + O(ǫ6) . (3.40)

Thus by approximating the value of the option using the estimator

Vǫ −
1

2
ǫ

d

dǫ
Vǫ , (3.41)

we obtain an approximation with error of order O(ǫ4). The latter quantity is calculated as follows

Vǫ −
1

2
ǫ

d

dǫ
Vǫ = e−rT

∫ ∞

0
p(S)

[

Hǫ(S − K) − 1

2
ǫ

d

dǫ
Hǫ(S − K)

]

dS . (3.42)

We can repeat the same procedure in order to reduce further the leading order term of the error.
Similarly, we can apply the above arguments to reduce the error of Delta and Gamma estimation.

In particular, we can show that

∆ −
(

∆ǫ −
1

2
ǫ

d

dǫ
∆ǫ

)

∼ O(ǫ4) (3.43)

and

Γ −
(

Γǫ −
1

2
ǫ

d

dǫ
Γǫ

)

∼ O(ǫ4) . (3.44)

We calculate again the value of Delta and Gamma of the digital option of section 3.1.2 by numerical
integration, using the corrected approximations of Delta and Gamma. Figures 3.5 and 3.6 verify the
above theoretical results. For example, we can see from the lower graphs of those figures that the
error after the correction is of order O(ǫ4), while without correction it is O(ǫ2).
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3.1.4 Monte Carlo Variance

In this section, we study the variance in Monte Carlo estimates. In general it holds

Var[f(x)] = E[f2(x)] − E[f(x)]2 . (3.45)

First, we consider the variance of delta. In this case, we need to calculate the variance of the function
dHǫ(S(T )−K)

dS(0) , with

Hǫ (S(T ) − K) =
1

2

[

tanh
(S(T ) − K

ǫ

)

+ 1

]

. (3.46)

By differentiating the above function with respect to S(0), we get

dHǫ(S(T ) − K)

dS(0)
=

1

2 ǫ

[

1 − tanh2
(S(T ) − K

ǫ

)
]

S(T )

S(0)
. (3.47)

As before, we have used the chain rule and the fact that dS(T )
dS(0) = S(T )

S(0) . Thus the variance of delta is
given by the following expression

Var

[

e−rT dHǫ

dS(T )

S(T )

S(0)

]

= e−2rT E

[ (
dHǫ

dS(T )

S(T )

S(0)

)2
]

− e−2rT E

[

dHǫ

dS(T )

S(T )

S(0)

]2

. (3.48)

The first expectation of the right hand side of (3.48) is the following

E

[ (
dHǫ

dS(T )

S(T )

S(0)

)2
]

=

∫ ∞

0

{
1

2ǫ

[

1 − tanh2

(
S − K

ǫ

)]
S

S(0)

}2

p(S) dS , (3.49)

where p(S) is the probability density of S(T ) and is given by (3.14). By setting S = K + ǫx the
above expectation becomes

E

[ (
dHǫ

S(T )

S(T )

S(0)

)2
]

≈
∫ ∞

−∞

1

ǫ2

(
1

2

[
1 − tanh2(x)

] K + ǫx

S(0)

)2

p(K + ǫx) ǫ dx (3.50)

and by Taylor expansion of p(K + ǫx), we get

E

[(
dHǫ

dS(T )

S(T )

S(0)

)2
]

≈ 1

ǫ

∫ ∞

−∞

(
1

2

[
1 − tanh2(x)

] K + ǫx

S(0)

)2

p(K)dx

︸ ︷︷ ︸

O(ǫ−1)

+O(1) . (3.51)

Thus the first expectation in (3.48) is of order O(ǫ−1). Now the second expectation in (3.48) is given
by

E

[

dHǫ

dS(T )

S(T )

S(0)

]

=

∫ ∞

0

1

2 ǫ

[
1 − tanh2(x)

] S

S(0)
p(S) dS . (3.52)

So by setting S = K + ǫx as previously, we have

E

[

dHǫ

dS(T )

S(T )

S(0)

]

≈
∫ ∞

−∞

1

2 ǫ

[
1 − tanh2(x)

] K + ǫx

S(0)
p(K + ǫx) ǫ dx . (3.53)
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and therefore

E

[

dHǫ

dS(T )

S(T )

S(0)

]

≈
∫ ∞

−∞

1

2

[
1 − tanh2(x)

] K + ǫx

S(0)
p(K) dx

︸ ︷︷ ︸

O(1)

+O(ǫ) . (3.54)

Hence, the second expectation in (3.48) is of order O(1) and consequently we have that

Var

[

e−rT dHǫ

dS(T )

dS(T )

dS(0)

]

= O(ǫ−1) + O(1) ∼ O(ǫ−1) . (3.55)

We have shown that the variance of Monte Carlo estimate of Delta is of order O(ǫ−1). This means
that as ǫ → 0 then the variance tends to infinity. The latter explains the poor Monte Carlo estimates
of Delta when ǫ takes small values, as we saw in the previous section.

In the case of Gamma estimation, we need to calculate the variance of the second derivative of
Hǫ(S(T ) − K) with respect to S(0). By differentiating (3.47) with respect to S(0), we get

d2Hǫ(S(T ) − K)

dS2(0)
= − 1

ǫ2
tanh

(S(T ) − K

ǫ

)
[

1 − tanh2
(S(T ) − K

ǫ

)
] (

S(T )

S(0)

)2

. (3.56)

Thus we have to calculate the variance

Var

[

e−rT d2Hǫ(S(T ) − K)

dS2(0)

]

= E

[(

e−rT d2Hǫ(S(T ) − K)

dS2(0)

)2]

− E

[

e−rT d2Hǫ(S(T ) − K)

dS2(0)

]2

.

(3.57)
Similarly as above, we can show that the first expectation in (3.57) is of order O(ǫ−3), while the
second expectation is of order O(ǫ−2) and consequently

Var

[

e−rT d2Hǫ

dS2(0)

]

∼ O(ǫ−3) . (3.58)

This means that the variance of Monte Carlo estimate of Gamma grows extremely fast as ǫ decreases.
This explains the error behavior of Monte Carlo simulation and the inaccuracy of Gamma estimator
even when ǫ takes relatively large values.

Figure 3.7 shows the variance (in logarithmic scale) of Delta and Gamma Monte Carlo estimates,
for the call digital option of the previous section. It is obvious that, as we expected, the variance in
Delta behaves like ǫ−1, while the variance in Gamma behaves like ǫ−3.

3.1.5 Variance Reduction through Stratified Sampling

Stratified sampling, as it is defined in [Gla04], refers broadly to any sampling mechanism that
constrains the fraction of observations drawn from specific subsets (or strata) of the sample space.
Suppose, for example, that our goal is to estimate E[X] with X real-valued, and let A1, A2, . . . , AI

be disjoint subsets of the real line for which P (X ∈ ∪I
i=1Ai) = 1. Then

E[X] =
I∑

i=1

P (X ∈ Ai)E[X|X ∈ Ai] =
I∑

i=1

piµi , (3.59)
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where pi = P (X ∈ Ai) and µi = E[X|X ∈ Ai]. In stratified sampling, we decide in advance what
fraction of samples should be drawn from each stratum Ai. Also each observation drawn from Ai is
constrained to have the distribution of X conditional on X ∈ Ai.

The simplest case of stratified sampling is that with proportional allocation of sampling.
According to this technique, we draw ni = npi samples from the stratum Ai, where n is the
total sample size and assume that ni is rounded such that it is always integer. Let now Xij , with
j = 1, . . . , ni for each i = 1, . . . , I, be independent draws from the conditional distribution of X,
given that X ∈ Ai. Then an unbiased estimator of E[X|X ∈ Ai] is provided by the sample mean of
the observations from the i-th stratum. It follows from (3.59) that the unbiased estimator of E[X]
is given by

X̂ =
I∑

i=1

pi
1

ni

ni∑

j=1

Xij =
1

n

I∑

i=1

ni∑

j=1

Xij . (3.60)

If now we allow the stratum allocations n1, . . . , nI to be arbitrary rather than proportional to
probabilities p1, . . . , pI and we assume that qi = ni/n is the fraction of observations drawn from the
i-th stratum, then the above estimator becomes

X̂ =
I∑

i=1

pi
1

ni

ni∑

j=1

Xij =
1

n

I∑

i=1

pi

qi

ni∑

j=1

Xij . (3.61)

The stratified estimators of (3.60), (3.61) should be contrasted with the crude Monte Carlo estimator

chapter2/MC_var.eps
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X̄ =
n∑

i=1

Xi

n
. (3.62)

Compared with X̄, the stratified estimator X̂ eliminates sampling variability across strata, without
affecting sampling variability within strata. Stratified sampling with a proportional allocation can
only decrease the variance in our estimation, while by optimizing the allocation we can achieve
further variance reduction. Next, we study the variance of this method in comparison with the
variance of the standard Monte Carlo estimator.

The variance of the estimate X̂ is calculated as follows

Var(X̂) = Var
(

∑I
i=1 pi

1
ni

∑ni

j=1 Xij

)

=
∑I

i=1 Var
(

pi
1
ni

∑ni

j=1 Xij

)

=
∑I

i=1 p2
i Var

(
1
ni

∑ni

j=1 Xij

)

=
∑I

i=1 p2
i

σ2
i

ni

(3.63)

and thus in the case of proportional allocation the latter expression reduces to

Var(X̂) =
1

n

I∑

i=1

pi σ
2
i . (3.64)

On the other hand, the standard Monte Carlo estimator has variance σ2/n, where σ2 =Var(X).
Therefore, if we show that

∑I
i=1 piσ

2
i < σ2, we will have proved that the proportional stratified

estimator has a lower variance than the usual Monte Carlo estimator. The proof is based on the
conditional variance formula, which states

Var(X) = E
[
Var(X|X ∈ Ai)

]
+ Var

(
E[X|X ∈ Ai]

)
(3.65)

but we have that

E
[
Var(X|X ∈ Ai)

]
=

I∑

i=1

pi σ
2
i (3.66)

and therefore

σ2 = Var(X) ≥ E
[
Var(X|X ∈ Ai)

]
=

I∑

i=1

pi σ
2
i , (3.67)

since by Jensen’s inequality3

Var
(
E[X|X ∈ Ai]

)
=

I∑

i=1

pi µ
2
i −

( I∑

i=1

pi µi

)2
≥ 0 , (3.68)

3If f is a convex function on the interval [a, b], then

n∑

i=1

pi f(µi) ≥ f

(
n∑

i=1

pi µi

)

,

where 0 ≤ pi ≤ 1, p1 + p2 + . . . + pn = 1 and each µi ∈ [a, b].
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with strict inequality unless all µi are all equal. In general and particularly in our problem, µi are
not equal. Thus, we have proved that in case of stratified sampling with a proportional allocation,
it always holds that

I∑

i=1

piσ
2
i ≤ σ2 . (3.69)

The latter inequality means that the variance of stratified estimator is always equal or less than that
of standard Monte Carlo estimator.

Back to our problem, in order to estimate the values of Delta and Gamma, which are given by
(3.21) and (3.23), respectively, we need to simulate the terminal value S(T ) of the underlying asset’s
price. We remember that the latter is given by

S(T ) = S(0)e(r−σ2

2
)T+σ

√
TZ , (3.70)

where Z ∼ N(0, 1), and we choose Z to be our stratification variable.
Initially, we consider the case of I equiprobable strata and a proportional allocation of the total

sample size, i.e. pi = 1/I and ni = n/I, for i = 1, . . . , I. Note that we implicitly assume that ni is
always integer. Then, we can easily draw ni independent identically distributed random variables
Z ∼ N(0, 1) from each stratum, by drawing equal number of independent uniform random variables
U1, . . . , UI over [0, 1] and then setting

Vi =
i − 1

I
+

Ui

I
, i = 1, . . . , I . (3.71)

Finally, Φ−1(Vi) is a stratified sample from the standard normal distribution. We denote with Φ−1

the inverse cumulative standard normal distribution function4. We summarize this procedure in the
algorithm of table 3.1.

Stratified Sampling Algorithm

Inputs : I = #strata, n= total sample size

for i = 1, . . . , I

set ni = n/I

for j = 1, . . . , ni

1. Generate U ∼ Unif[0, 1]

2. Set V = i−1+U
I , such that V ∼ Unif[ i−1

I , i
I ]

3. Calculate Zi,j = Φ−1(V )

end for

end for

Table 3.1: Generation of stratification variables.

Now, using the stratified samples Zi,j , we can first draw a sample of terminal asset price S(T )
and then compute the Monte Carlo estimator of Delta and Gamma. The algorithm of table 3.2
describes the steps of this procedure.

4An algorithm inverse for calculating a value of this function, as well as a C routine implementation, can

be found in Peter J. Acklam’s web page http://www.math.uio.no/̃jacklam .
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Monte Carlo with Proportional Stratified Sampling - Algorithm

Inputs : I = #strata, n= total sample size, vector p with probabilities pi

Use Stratified Sampling Algorithm to draw a sample of Zi,j

for i = 1, . . . , I

set ni = I/n

for j = 1, . . . , ni

1. Use Zi,j to calculate Si,j(T ) by (3.70)

2. Calculate the value of Delta as

∆i,j = e−rT 1
2ǫ

[

1 − tanh2
(

Si,j(T )−I
ǫ

)]
Si,j(T )
S(0)

3. Calculate the value of Gamma as

Γi,j = −e−rT tanh
(

Si,j(T )−I
ǫ

)[

1 − tanh2
(

Si,j(T )−I
ǫ

)]
1
ǫ2

(
Si,j(T )
S(0)

)2

end for

Calculate the means ∆̂i = 1
ni

∑ni

i=1 ∆i,j and Γ̂i = 1
ni

∑ni

i=1 Γi,j

Calculate the variances σ2
i,∆ and σ2

i,Γ of the i − th stratum

end for

Calculate the stratified estimates ∆̂ǫ =
∑I

i=1 ∆̂ipi and Γ̂ǫ =
∑I

i=1 Γ̂ipi

Calculate the total variances Var(∆̂ǫ) =
∑I

i=1 p2
i

σ2
i,∆

ni
and Var(Γ̂ǫ) =

∑I
i=1 p2

i

σ2
i,Γ

ni

Table 3.2: Estimation of Greeks through stratified Monte Carlo with proportional allocation.

Using the algorithm of table 3.2, we estimated the Delta and Gamma for the Digital options of
the previous sections. We used I = 10000 strata and ni = 20 samples per strata. Figure 3.8 shows
the values of both Greeks for different values of parameter ǫ. In the graphs of this figure we plot the
values of Delta and Gamma, which have been estimated by numerical integration and Monte Carlo
with proportional allocated stratified sampling. We compare these values with the exact values of
Greeks. The latter are given by the following formulas

∆ = e−rT n(d2)

S0σ
√

T
,

Γ = e−rT n(d2)d1

S2
0σ2T

,

where n(x) is the density of the standard univariate normal distribution, with

d2 =
log(S0/K) + (r − σ2/2)T

σ
√

T
and d1 = d2 + σ

√
T .

From the upper graph of figure 3.8, we can see that the Monte Carlo estimator of Delta is almost
identical to the Delta value which is computed by numerical integration, even if the ǫ is very small.
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Also, from the lower graph, we observe again that the Monte Carlo simulation and the numerical
integration give almost the same results, at least when ǫ > 0.02. The latter observations show how
stratified sampling can improve the efficiency of Monte Carlo estimator compared to the standard
Monte Carlo estimator. Figure 3.9 shows the error in the estimates as well as the error of the
numerical integration. In the same figure, although it is not visible, we plot the upper and the lower
bound of the Monte Carlo error.
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Figure 3.8: ∆ and Γ of a digital call option. Input parameters K = 1, S0 = 1, T = 1, σ = 0.5,

r = 0.05.

As we have noticed, further variance reduction can be achieved by using optimal allocation
instead of proportional allocation. In particular, we can minimize the variance

Var(X̂) =
I∑

i=1

p2
i

σ2
i

ni
, (3.72)

by solving the following constrained optimization problem

mini Var(X̂) =
∑I

i=1 p2
i

σ2
i

ni

subject to n1 + . . . + nI = n

(3.73)

Solving this problem using Langrange multipliers, we get the following optimal solution

n∗
i =

(

pi σi
∑I

l=1 pl σl

)

n , i=1,. . . , I . (3.74)
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Figure 3.9: Error in digital call option estimation, for I = 10000, ni = 20. Input parameters K = 1,

S0 = 1, T = 1, σ = 0.5, r = 0.05.

Consequently the optimized variance is given by

Var(X̂n∗

i
) =

(
∑I

i=1 piσi

)2

n
. (3.75)

By 3.74, we can see that the optimal allocation for each stratum is proportional to the product of
the stratum probability and the stratum standard deviation. This makes intuitive sense and it can
be interpreted as follows. If pi is large and other things being equal, then it makes sense to put
more effort simulating from the i−th stratum. Similarly if σi is large and other things being equal,
it make sense to draw more often from the i−th stratum, so as to get a more accurate estimate
from this stratum. A drawback of using the optimal allocation is that σi are unknowns and thus we
may firstly run a pilot simulation to estimate σi, and then run the original Monte Carlo simulation.
A subject of discussion is how much computational effort we should put into pilot simulations. In
general, we should put such an effort so as to obtain a reasonably good estimate of the σi’s but
without increasing too much the total computational effort. For example, when we have a large
number of strata, then these pilot simulations can be computationally very expensive and thus it
may not worthwhile using optimal allocation at all.

Using a similar algorithm to that of table 3.2, except that we now use the optimal allocation5,
instead of the proportional one, we estimate the values of Delta and Gamma again for the digital call
option of the previous sections. However, in this case we cannot estimate in the same internal loop

5The optimal allocation is predetermined through a pilot simulations, as we have described.
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both Greeks, since in general the number of draws per stratum ni is different for these two Greeks.
Thus, we should have two internal loops something which adds more computational effort in our
calculations. In particular, we use the algorithm of table 3.3 as a pilot simulation to estimate the
variances in each stratum. Then, we estimate the optimal number of samples per stratum through
the expression (3.74). Next we use a loop, in which the Monte Carlo estimates of Delta and Gamma
are estimated in two separate loops, for each stratum. Finally, we combine all the estimates from
each stratum and we calculate the total estimates of Delta and Gamma. The algorithm for this
procedure is given in table 3.3.

Figure 3.10 shows the variance of standard Monte Carlo (solid line) in contrast with that of Monte
Carlo with proportional (dash-dot line) and optimal allocation (dash line) of stratified sampling.
We see that by using Monte Carlo with proportional stratified sampling a significant reduction of
variance is achieved, while further reduction is achieved using optimal allocation. Figure 3.11 shows
the error6 of each method against the parameter ǫ. From the graphs, we observe that the stratified
sampling with optimal allocation allows us to get good estimates even when the crude Monte Carlo
and the stratified sampling with proportional allocation fail to give an accurate estimate, i.e. when
the ǫ is very small.

10
−2

10
−1

10
−10

10
−5

10
0

 ε

V
ar

ia
nc

e

Monte Carlo Variance in ∆

10
−2

10
−1

10
−10

10
0

10
10

 ε

V
ar

ia
nc

e

Monte Carlo Variance in Γ

Crude MC
Proportional Stratif.
Optimal Stratif.

Crude MC
Proportional Stratif.
Optimal Stratif.

Figure 3.10: Digital Call - Monte Carlo variance, for total sample = 2000. Input parameters K = 1,

S0 = 1, T = 1, σ = 0.5, r = 0.05.

6Note that the error in the case of crude Monte Carlo simulation varies smoothly as ǫ varies because we

use the same sample for all simulation loops for all values of ǫ.
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Monte Carlo with Adaptive Stratified Sampling - Algorithm

Inputs : I = #strata, n= total sample size , vector p with probabilities pi

1.1 Use the Algorithm of table 3.2 to estimate the standard deviations

σ̂∆,i and σ̂Γ,i of each stratum Ai, for i = 1, . . . , I.

1.2 Calculate the optimal number of samples per stratum n∗
∆,i and n∗

Γ,i

according to the equation (3.74).

for i = 1, . . . , I

for j = 1, . . . , n∗
∆,i

1. Generate the variable Zi,j as in Stratified Sampling Algorithm.

2. Use Zi,j to calculate Si,j(T ) by (3.70)

3. Calculate the value of Delta as

∆i,j = e−rT 1
2ǫ

[

1 − tanh2
(

Si,j(T )−I
ǫ

)]
Si,j(T )
S(0)

end for

for j = 1, . . . , n∗
Γ,i

1. Generate the variable Wi,j as in Stratified Sampling Algorithm.

2. Use Wi,j to calculate Si,j(T ) by (3.70)

3. Calculate the value of Gamma as

Γi,j = −e−rT tanh
(

Si,j(T )−I
ǫ

)[

1 − tanh2
(

Si,j(T )−I
ǫ

)]
1
ǫ2

(
Si,j(T )
S(0)

)2

end for

2.1 Calculate the means ∆̂i = 1
n∗

∆,i

∑ni

i=1 ∆i,j and Γ̂i = 1
n∗

Γ,i

∑ni

i=1 Γi,j

2.2 Calculate the variances σ2
i,∆ and σ2

i,Γ of the i − th stratum

end for

1.3 Calculate the stratified estimates ∆̂ǫ =
∑I

i=1 ∆̂ipi and Γ̂ǫ =
∑I

i=1 Γ̂ipi

1.4 Calculate the total variances Var(∆̂ǫ) =
∑I

i=1 p2
i

σ2
i,∆

n∗

∆,i
and Var(Γ̂ǫ) =

∑I
i=1 p2

i

σ2
i,Γ

n∗

Γ,i

Table 3.3: Estimation of Greeks through stratified Monte Carlo with optimal allocation.
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Figure 3.11: Digital Call - Monte Carlo error, for total sample = 2000. Input parameters K = 1,

S0 = 1, T = 1, σ = 0.5, r = 0.05.

3.1.6 Comparison with Likelihood Ratio Estimators

In this section we compare our estimators of Gamma and Delta of digital option, with the Likelihood
Ratio estimators. Before we give the numerical results, we review the derivation of likelihood ratio
estimators. Suppose that the option payoff, is expressed as a function f of a random vector X =
(X1, . . . , Xm), where the components of X represent the underlying asset price at different times.
Also we assume that θ is a parameter of the probability density of X. If we denote this density by
gθ(x), then the derivative with respect to θ is written as

a
′

(θ) =
d

dθ
E[f(X)] =

∫

Rm

f(x)
d

dθ
gθ(x) dx . (3.76)

Now if we multiply and divide the above integrand by gθ(x), we obtain

a
′

(θ) =

∫

Rm

f(x)
g
′

θ(x)

gθ(x)
gθ(x) dx , (3.77)

where we have written g
′

θ(x) for dgθ/dθ. Thus the expression f(X)
g
′

θ
(x)

gθ(x) is an unbiased estimator of

a
′

(θ), while the quantity g
′

θ(x)/gθ(x) is known as the score function.
It can be shown (see [Gla04],[BK04]) that the likelihood ratio estimators for Delta and Gamma
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of digital call option are given by

∆LR = e−rT1 {ST ≥ K}
(

d

S0σ
√

T

)

ΓLR = e−rT1 {ST ≥ K}
(

d2 − dσ
√

T − 1

S2
0σ2T

)

with

d =
ln(ST /S0) − (r − σ/2)2T

σ
√

T
. (3.78)

Figure 3.12 shows the estimates of Delta and Gamma of the digital call option, which are obtained
from our method (solid line with x) as well as the Likelihood Ratio method (dash-dot line with plus
signs). We use the estimators of our methods after the first correction, such that the smoothing error
to be O(ǫ4). Also, we note that every time, we use a value of parameter ǫ = 0.2, to ensure that the
variances and especially in Gamma estimate will not be so big. The estimates of both methods are
compared with the exact values of Greeks (solid line). Figure 3.13 shows the error in estimates of
the previous methods and finite-difference approximations as well. From the graphs of that figure,
we can see that the estimates of Delta of our method, are competitive to that of the Likelihood
Ratio method. This is consistent with the fact that the variances (see upper graph in figure 3.14)
of the two estimators are almost identical, and much smaller than the variance of finite-difference
estimator. In the case of Gamma, the estimates of our method seems to be worse than that of
the Likelihood Ratio method, while the finite-difference approximations are very poor. The latter
observations are explained from the variances of the three methods, see upper graph in figure 3.14.
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Figure 3.12: Digital Call - Pathwise (PW) vs Likelihood Ratio (LR) estimators, with ∆t = 1/1024.

Input parameters K = 1, S0 = 1, T = 1, σ = 0.5, r = 0.05.
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3.2 Hedging Barrier Options

In this section, we apply the method of payoff smoothing to path dependent options such as Barrier
options. In particular, we consider the case of a down-and-out call option. This kind of barrier
options pays off S(T ) − K, unless the underlying asset price reaches a barrier B < S(0) during
the life of the option, otherwise pays off nothing. Thus we can write the discounted payoff of a
down-and-out call option with continuously monitored barrier, as follows

Y = e−rT (S(T ) − K)+1

{

min
0≤t≤T

S(t) > B

}

(3.79)

and therefore, its risk neutral price is given by

Cdo(t) = e−r(T−t)
E

Q[(S(T ) − K)+1

{

min
0≤t≤T

S(t) > B

}

. (3.80)

The payoff of this option depends on the whole path of the asset price and not only on the terminal
value. In addition, the possibility of the option being knocked-out, makes its payoff discontinuous in
the path of the asset price. Again, we can overcome these obstacles by choosing a continuous function
that approximates the payoff function, and then applying the pathwise method in estimating the
sensitivities of the option. Next, we will apply this smoothing technique in estimating the sensitivities
of a down-and-out call option.

3.2.1 Smoothing the Down-and-Out Call Option Payoff

In this case, the payoff of the down-and-out call option is

P
(
Smin, S(T )

)
= H(Smin − B)R(S(T ) − K) , (3.81)

where H(x) is the Heaviside function again, and

R(x) = max(x, 0) =

∫ x

−∞
H(s)ds . (3.82)

This payoff is approximated by a smooth function

Pǫ

(
Smin, S(T )

)
= Hǫ(Smin − B)Rǫ(S(T ) − K) , (3.83)

with
Smin = min

0≤t≤T
S(t) . (3.84)

Again the function

Hǫ(x) = h
(x

ǫ

)

(3.85)

is a smooth approximation of Heaviside function H(x) and

Rǫ(x) =

∫ x

−∞
Hǫ(s)ds . (3.86)

Thus, the price of the option is given by the following expectation

Vǫ

(
Smin, S(T )

)
= e−rT E

[
Hǫ(Smin − B)Rǫ(S(T ) − K)

]
(3.87)
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Parameter ǫ is a small positive number, which determines the smoothness of the function Pǫ. Now,
since the function Pǫ is smooth, we can apply the pathwise method in order to estimate the Delta
of the option, as

∆ǫ =
∂Cdo

∂S(0)
= e−rT ∂

∂S(0)
E

[
Pǫ

(
Smin, S(T )

)]
= e−rT E

[∂Pǫ(Smin, S(T ))

∂S(0)

]

. (3.88)

Using the chain rule we get

∂Pǫ(Smin, S(T ))

∂S(0)
=

∂Hǫ

∂Smin

dSmin

dS(0)
Rǫ(S(T ) − K) +

∂Rǫ

∂S(T )

dS(T )

dS(0)
Hǫ(Smin − B) (3.89)

and by substituting dSmin

dS(0) = Smin

S(0) and dS(T )
dS(0) = S(T )

S(0) , we get

∂Pǫ(Smin, S(T ))

∂S(0)
=

∂Hǫ

∂Smin

Smin

S(0)
Rǫ(S(T ) − K) +

S(T )

S(0)
Hǫ(S(T ) − K)Hǫ(Smin − B) . (3.90)

Thus the last expectation of (3.88), can be written as

E
[∂Pǫ(Smin, S(T ))

∂S(0)

]

=

∫ ∞

0

∫ ∞

0

∂Pǫ(x, y)

∂S(0)
p(x, y) dx dy , (3.91)

where p(x, y) is the joint probability density function of
(
Smin, S(T )

)
. Hence, before calculating

the expectation, we should first find this joint density function. First, note that the probability
distribution P (Smin ≤ x|S(0), S(T )) is known and it has the following form

P (Smin ≤ x|S(0), S(T )) = exp
[

− 2(lnS(0) − lnx)(lnS(T ) − lnx)

σ2∆t

]

(3.92)

and thus by differentiating the above quantity, we obtain the conditional density p(x|y). Also, we
have seen in previous section that the density of S(T ) is given by

p(y) =
1

y
√

2πσ2T
exp

[

−
(
log(y/S(0)) − (µ − σ2

2 )T
)2

2σ2T

]

. (3.93)

Now, we can calculate the unknown joint probability density function p(x, y) as

p(x, y) = p(y)p(x|y)

= 1

y
√

2πσ2T
exp

[

−
(

log(y/S(0))−(µ−σ2

2
)T

)2

2σ2T

]

× d
dx

(

exp
[

− 2(ln S(0)−ln x)(ln S(T )−ln x)
σ2∆t

]
)

.

(3.94)

Similarly, the Gamma estimate of the option is given by

Γǫ =
∂2Cdo

∂S2(0)
= e−rT ∂2

∂S2(0)
E

[
Pǫ

(
Smin, S(T )

)]
= e−rT E

[∂2Pǫ(Smin, S(T ))

∂S2(0)

]

, (3.95)
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with

∂2Pǫ(Smin, S(T ))

∂S2(0)
=

∂2Hǫ(Smin − B)

∂S2
min

S2
min

S2(0)
Rǫ(S(T ) − K)

+
2SminS(T )

S2(0)

∂Hǫ(Smin − B)

∂Smin
Hǫ(S(T ) − K)

+
S2(T )

S2(0)

∂Hǫ(S(T ) − K)

∂S(T )
Hǫ(Smin − B) .

The last expectation of equation (3.95) is given by the following double integral

E
[∂2Pǫ(Smin, S(T ))

∂S2(0)

]

=

∫ ∞

0

∫ ∞

0

∂2Pǫ(x, y)

∂S2(0)
p(x, y) dx dy , (3.96)

where the joint probability density function p(x, y) is given by (3.94). In the following section we
describe how we can estimate the Delta and Gamma by calculating the expectations (3.92) and
(3.96), respectively. As in the case of digital option, we use numerical integration as well as Monte
Carlo simulation in order to calculate the expectations.

3.2.2 Delta and Gamma Estimates

Again, we use the following smooth function

Hǫ(x) =
1

2

[

tanh
(x

ǫ

)

+ 1

]

(3.97)

to approximate the Heaviside function H(x) and therefore

Rǫ(x) =

∫ x

−∞

1

2

[

tanh
(s

ǫ

)

+ 1

]

ds . (3.98)

Thus, we have the following derivatives

dHǫ(x)

dx
=

1

2ǫ

[

1 − tanh2
(x

ǫ

)
]

,

d2Hǫ(x)

dx2
= − 1

ǫ2
tanh

(x

ǫ

)
[

1 − tanh2
(x

ǫ

)
]

,

dRǫ(x)

dx
= Hǫ(x) =

1

2

[

tanh
(x

ǫ

)

+ 1

]

.

Using the above results, we can find explicit forms of partial derivatives ∂Pǫ(x, y)/∂S(0) and
∂2Pǫ(x, y)/∂S2(0) and therefore we can calculate the expectations (3.92) and (3.96) through
numerical integration.
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Alternatively, the expectations (3.92) and (3.96), which give the values of Delta and Gamma
respectively, can be expressed as double integrals, as follows

∆ǫ = e−rT

∫ 1

0

∫ 1

0

{
Smin

S(0)

dHǫ(Smin − B)

dSmin
Rǫ(S(T )−K)

+
S(T )

S(0)
Hǫ (Smin−B) Hǫ(S(T )−K)

}

dU1 dU2 ,

and

Γǫ = e−rT

∫ 1

0

∫ 1

0

{
S2

min

S2(0)

d2Hǫ(Smin − B)

dS2
min

Rǫ(S(T )−K)

+
2SminS(T )

S2(0)

dHǫ(Smin − B)

dSmin
Hǫ(S(T )−K)

+
S(T )2

S2(0)
Hǫ (Smin−B)

dHǫ(S(T ) − K)

dS(T )

}

dU1 dU2 ,

where
S(T ) = S(0) exp

(

(r − 1
2σ2)T + σ

√
T Φ−1(U1)

)

(3.99)

and

Smin = exp

[

1
2

(

log S(0) + log S(T ) −
√

(log S(0) − log S(T ))2 − 2σ2T log U2

)
]

. (3.100)

This last equation comes from (2.40), which has been derived in section 2.2.2. This is a standard
result for geometric Brownian interpolation, see also [ABR96].

We can calculate the above integrals either numerically or using Monte Carlo simulation. We did
this in Matlab for a down-and-out call option, with input parameters K = 3, S0 = 9, T = 1, σ = 0.5,
r = 0.05 and barrier B = 1. Also, we estimated the above integrals through Monte Carlo simulation,
using M = 105 replications and N = 1024 timesteps. Unlike in the case of digital option, where
we simulated only the terminal value of the underlying asset, here we should simulate the whole
path of the asset price. We consider the case of continuous monitoring of barrier, for which analytic
formulas exist for both Delta and Gamma. Explicit formulas, for all the Greeks of barrier options,
can be found in [Wys02]. Figure 3.15 shows the values of Delta and Gamma as the parameter ǫ
varies.

From the graphs, we can see that the smaller the value of the parameter ǫ the better estimates of
Greeks are obtained by numerical integration. On the other hand, when the ǫ is relatively big, the
Monte Carlo estimates converge to those obtained by numerical integration. However, as ǫ tends to
zero, the Monte Carlo estimates become very poor.
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Figure 3.15: Delta and Gamma of a down and out call option, for M = 105, N = 1024. Input

parameters : K = 3, S0 = 9, T = 1, σ = 0.5, r = 0.05 and B = 1.
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Figure 3.16: Error in Delta and Gamma estimations of a down and out call option, for M = 105,

N = 1024. Input parameters : K = 3, S0 = 9, T = 1, σ = 0.5, r = 0.05 and B = 1.
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3.2.3 Asymptotic Analysis

Now, by doing asymptotic analysis as in digital options, we can show that the error for both Delta
and Gamma is of order O(ǫ2).

The value of the option is given by the expected value of its discounted payoff, which is

V = e−rT

∫ ∞

0

∫ ∞

0
H(Smin − B)R(S(T ) − K) p(Smin, S(T )) dSmin dS(T ) , (3.101)

while the value of the option, which is estimated through the smooth approximation Pǫ (Smin, S(T ))
of its payoff, is given by

Vǫ = e−rT

∫ ∞

0

∫ ∞

0
Hǫ(Smin − B)Rǫ(S(T ) − K) p(Smin, S(T )) dSmin dS(T ) . (3.102)

Thus we have that

V − Vǫ = e−rT

∫ ∞

0

∫ ∞

0
[H(Smin − B)R(S(T ) − K)

− Hǫ(Smin − B)Rǫ(S(T ) − K)] p(Smin, S(T )) dSmin dS(T )

which can be written in the following form

V − Vǫ = e−rT

∫ ∞

0

∫ ∞

0

(

[H(Smin − B) − Hǫ(Smin − B)] R(S(T ) − K)

+ [R(S(T ) − K) − Rǫ(S(T ) − K)] Hǫ(Smin − B)
)

p(Smin, S(T )) dSmin dS(T )

or

V − Vǫ = e−rT







∫ ∞

0

∫ ∞

0

(

[H(Smin − B) − Hǫ(Smin − B)] R(S(T ) − K)
)

p(Smin, S(T )) dSmin dS(T )

︸ ︷︷ ︸

I1

+

∫ ∞

0

∫ ∞

0

(

[R(S(T ) − K) − Rǫ(S(T ) − K)] Hǫ(Smin − B)
)

p(Smin, S(T )) dSmin dS(T )

︸ ︷︷ ︸

I2







.

By setting Smin = B + ǫx the first double integral I1, becomes

I1 ≈
∫ ∞

0

∫ ∞

−∞

(

[H(ǫx) − Hǫ(ǫx)] R(S(T ) − K)
)

p(B + ǫx, S(T )) ǫ dx dS(T ) . (3.103)

Now, we have that
Hǫ(ǫx) − H(ǫx) = h(x) − H(x) (3.104)

and thus integration with respect to x gives

1

ǫ
[Rǫ(ǫx) − R(ǫx)] = r(x) − R(x) , (3.105)
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where

r(x) =

∫ x

−∞
h(s) ds and R(x) =

∫ x

−∞
H(s) ds . (3.106)

Hence,
Rǫ(ǫx) − R(ǫx) = ǫ(r(x) − R(x)) . (3.107)

The above result along with the fact that r(x) − R(x) → 0 as |x| → ∞, because r(x) − R(x) is an
even function (since the integral of an odd function is even) and it clearly goes to zero as x → −∞
because h(x)−H(x) decays exponentially as x → −∞, see figures 3.18 and 3.17, means that I1 can
be written as follows

I1 ≈
∫ ∞

0

(

ǫ [R(x) − r(x)] R(S(T ) − K)
)

p(B + ǫx, S(T )) ǫ dS(T ) . (3.108)

Now expanding the Taylor series for the function p(B + ǫx, S(T )), we have

p(B + ǫx, S(T )) = p(B, S(T )) + ǫ x
dp

dB
+ O(ǫ2) (3.109)

and by substituting (3.109) in (3.108), we obtain

I1 ≈
∫ ∞

0

(

ǫ [R(x) − r(x)] R(S(T ) − K)
)

p(B, S(T )) ǫ dS(T )

︸ ︷︷ ︸

O(ǫ2)

+O(ǫ4) .

since r(x)−R(x) is an even function. Now by setting Smin = B + ǫx and S(T ) = K + ǫy, and using
the above statements we obtain

I2 ≈
∫ ∞

−∞

∫ ∞

−∞

(

ǫ [R(y) − r(y)] h(x)
)

(p(B + ǫx, K + ǫy)) ǫ2 dx dy

︸ ︷︷ ︸

O(ǫ3)

+O(ǫ5) ,

since by Taylor series expansion, we have

p(B + ǫx, K + ǫy) = p(B, K) + ǫy
dp

dB
+ ǫx

dp

dK
+ O(ǫ2) . (3.110)

From the above results, we have that V −Vǫ ∼ O(ǫ2). Hence, the error of the Delta approximation,
is given by

∆ − ∆ǫ =
d

dS0
[V − Vǫ] ∼ O(ǫ2) , (3.111)

while the error in Gamma estimation is given by

Γ − Γǫ =
d2

dS2
0

[V − Vǫ] ∼ O(ǫ2) . (3.112)

Figure 3.19 shows the error in estimation of Delta and Gamma of the down-and-out option of
the previous section through numerical integration, for different values of ǫ.
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3.2.4 Monte Carlo Variance

In this section, we study the Monte Carlo variance. In general it holds

Var[g(x)] = E[g2(x)] − E[g(x)]2 (3.113)

First, we consider the variance of delta. In this case, we need to calculate the variance of the function
∂Pǫ (Smin, S(T )) /∂S(0), where

Pǫ (Smin, S(T )) = Hǫ (Smin − B) Rǫ (S(T ) − K) , (3.114)

with

Hǫ(x) =
1

2

[

tanh
(x

ǫ

)

+ 1

]

and

Rǫ(x) =

∫ x

−∞
Hǫ(s)ds .

Thus by differentiating (3.114) with respect to S(0), we get

∂Pǫ(Smin, S(T ))

∂S(0)
=

dHǫ (Smin − B)

dSmin

Smin

S(0)
+

S(T )

S(0)
Hǫ (Smin − B)Hǫ (S(T ) − K) (3.115)
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As before, we have used the chain rule and the fact that dS(T )/dS(0) = S(T )/S(0) and
dSmin/dS(0) = Smin/S(0). Thus the variance of delta is given by the following expression

Var

[

e−rT dPǫ

dS(T )
dS(T )
dS(0)

]

= e−2rT E

[
(

dHǫ(Smin−B)
dSmin

Smin

S(0) Rǫ (S(T ) − K)

+S(T )
S(0) Hǫ (Smin − B)Hǫ (S(T ) − K)

)2
]

−e−2rT E

[
(

dHǫ(Smin−B)
dSmin

Smin

S(0) Rǫ (S(T ) − K)

+S(T )
S(0) Hǫ (Smin − B)Hǫ (S(T ) − K)

)
]2

.

(3.116)

Using similar arguments to those of the previous section, we can show that the variance of Monte
Carlo estimate of Delta is of order O(1), i.e.

Var
[
e−rT ∆ǫ

]
= Var

[

e−rT ∂Pǫ(Smin, S(T ))

∂S(0)

]

∼ O(1) . (3.117)

This means that the variance of ∆ǫ is independent of parameter ǫ, something which is verified from
the experimental results that we provided in section 3.2.2.

In the case of Gamma estimation, we need to calculate the variance of the second derivative of
Pǫ with respect to S(0). That is

∂2Pǫ(Smin, S(T ))

∂S2(0)
=

d2Hǫ(Smin − B)

dS2
min

S2
min

S2(0)
Rǫ(S(T ) − K)

+
2SminS(T )

S2(0)

dHǫ(Smin − B)

dSmin
Hǫ(S(T ) − K)

+
S2(T )

S2(0)

dHǫ(S(T ) − K)

dS(T )
Hǫ(Smin − B) .

Again, using similar procedure to that of the previous section, we can show that the variance of
Gamma estimate is of order O(ǫ−1) , i.e.

Var

[

e−rT ∂2Pǫ(Smin, S(T ))

∂S2(0)

]

∼ O(ǫ−1) . (3.118)

Figure 3.20 shows the variance for both estimates of Delta and Gamma of the down-and-out call
option. We can see that the variance in Delta estimate is constant as ǫ varies. On the other hand
the variance in Gamma estimate behaves like ǫ−1.
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Figure 3.20: Variance of Delta and Gamma Monte Carlo estimators, for M = 105, N = 1024. Input

parameters : K = 3, S0 = 9, T = 1, σ = 0.5, r = 0.05 and B = 1.

3.2.5 Variance Reduction

Again, we can reduce the variance of the Monte Carlo estimators of Greeks, by using stratified
sampling. In this case, in order to estimate the values of Greeks, we need to simulate both the
terminal asset price S(T ) and its minimum during the life of the option. Thus we should simulate
the whole asset price path. Using the Euler scheme, we have

Sk+1 = Sk + r Sk ∆t + σ Sk (Wk+1 − Wk) (3.119)

for k = 0, . . . , N − 1 and (Wk+1 − Wk) ∼ N(0, ∆t). Also we assume that the current stock price
S(0) = S0 is known and that W0 = 0.

Now, much of the variability in the option’s and Greeks values can be eliminated by stratifying
the terminal asset price S(T ). We can do this by stratifying a number of Brownian paths. This is
consequence of the fact that S(T ) is a monotone transformation7 of W (T ). First, we consider the
case of I equiprobable strata and a proportional allocation, namely pi = P (W (T ) ∈ Ai) = 1/I and
ni = pin. Then, we can generate I × ni Brownian paths, i.e. ni paths from each stratum, stratified
along W (T ). We can do this using the algorithm of table 3.4.
In the fourth step of that algorithm we use the notation Φ−1, which denotes the inverse cumulative

7Remember that S(T ) = S(0)e(r−σ2/2)T+σW (T ).
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Brownian Bridge Algorithm

Inputs : I =#strata, m s.t. 2m = #timesteps

for i = 1, . . . , I

set ni = n/I

for j = 1, . . . , ni

1. generate U ∼ Unif[0, 1]

2. calculate V = i−1+U
I , where V ∈ [ i−1

I , i
I ]

3. calculate Wj(T ) =
√

T Φ−1(V )

4. given W0,j = 0 and WN,j = Wj(T ) calculate the intermediate values Wk,j

k = 1, . . . , N − 1, using the Brownian Bridge construction

end for

end for

Table 3.4: Generation of I × ni Brownian paths stratified along W (T ).

standard normal distribution function8.
Figure 3.21 shows K simulated Brownian motion paths using terminal stratification. The paths in

figure were constructed using the above algorithm, with I = 10 and ni = 1 . It is worth studying the
4th step of the algorithm, which is given in table 3.4 and it refers to Brownian Bridge construction.
It is possible by conditioning a Brownian motion on its endpoints to construct a Brownian bridge.
Once we determine the value of WN , we can sample the point W⌊N/2⌋, conditional on W0 and WN

since it is known that (see page 84 in [Gla04])

(

W (t)|W (tk+1), W (tk)
)

= N

(

(tk+1 − t)W (tk) + (t − tk)W (tk+1)

(tk+1 − tk)
,

√

(tk+1 − t)(t − tk)

(tk+1 − tk)

)

. (3.120)

Thus, to sample the point W⌊N/2⌋, we may set

W⌊N/2⌋ =
(tN − t⌊N/2⌋)W0 + (t⌊N/2⌋ − t0)WN

(tN − t0)
+

√

(tN − t⌊N/2⌋)(t⌊N/2⌋ − t0)

(tN − t0)
Z , (3.121)

where Z ∼ N(0, 1). Similarly, in the next step we can sample W⌊N/4⌋ conditional on W0 and W⌊N/2⌋
as well as W⌊3N/4⌋ conditional on WN and W⌊N/2⌋. By repeating this procedure, we compute all the
components Wk, k = 0, . . . N of the Brownian path. This technique is known as Brownian bridge
construction. For convenience, we assume that N is a power of 2, such that N/2m is always integer,
where m = log2 N is the total number of steps are needed to sample all the points of the Brownian
path. An algorithm for the implementation of Brownian bridge construction, when the number of
time indices is a power of 2, can be found in page 85 of Glasserman’s book [Gla04].

8An implementation of C routine, which estimates the value of this function, is available on Peter J.

Acklam’s site http://www.math.uio.no/ jacklam .
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Figure 3.21: Simulation of K Brownian paths using terminal stratification.

After having calculated all the components of the Brownian path Wk, k = 0, . . . N , we can
continue, as in the standard Monte Carlo simulation, and compute the underlying prices Sk at each
time step through the Euler scheme (3.119). Having constructed the whole asset price path, we
can draw samples of both S(T ) and Smin. These values are used to calculate the Greeks for this
single asset price path. We repeat the same procedure sufficiently many times and we calculate the
mean of the discounted payoffs. The algorithm in table 3.5 summarizes the standard Monte Carlo
algorithm, which can be used to estimate the greeks of a down-and-out call option. This algorithm
is modified when we want to use Monte Carlo with stratified sampling with proportional or optimal
allocation like the algorithms of tables 3.2 and 3.3, respectively.

Figure 3.22 shows the variance of the crude Monte Carlo simulation as well as the variance of
the Monte Carlo with stratified sampling. We executed the experiments using a total sample size
equal to 105. We can see that the use of stratified sampling results in a reduction of variance in both
Delta and Gamma estimations. Also figure 3.23 shows the estimates of all Monte Carlo methods
against the parameter ǫ. We can see that in Delta case, stratified sampling with both proportional
and optimal allocation improves significantly the accuracy of the Monte Carlo method. In the case
of Gamma estimation, we see that the stratified sampling with optimal allocation gives by far better
approximations than that with proportional allocation. We can see that in this case the stratified
sampling with proportional allocation does not help much when the ǫ is very small. However it
gives better approximations than the standard Monte Carlo. Note that as the Monte Carlo sample
increases we expect the Monte Carlo estimates to converge to the values which are obtained by the
numerical integration (line with crosses) and not to the exact values (solid line) of Greeks.
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Delta and Gamma Estimation Algorithm

Inputs : M =#paths, m s.t. 2m = #timesteps

for i = 1, . . . , M

1. Construct a Brownian path using the Brownian Bridge Algorithm

2. Use the values of the Brownian path components Wk+1 and Wk

to calculate the stock prices Sk at each time tk, for k = 0, 1, . . . 2m.

3. Determine the final asset price ST as well as its minimum value Smin

over the whole path.

4. Calculate ∆i and Γi as the dicounted first and second derivatives of

Pǫ with respect of S(0), for this path.

end for

Calculate the means ∆ǫ = 1
M

∑M
i=1 ∆i and Γǫ = 1

M

∑M
i=1 Γi.

Table 3.5: Algorithm for call option pricing through Monte Carlo, with stratified sampling.
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Figure 3.22: Monte Carlo variance, for I = 1000, ni = 100 N = 1024. Input parameters : K = 3,

S0 = 9, T = 1, σ = 0.5, r = 0.05 and B = 1.
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Figure 3.23: Monte Carlo error, for I = 1000, ni = 100 N = 1024. Input parameters : K = 3,

S0 = 9, T = 1, σ = 0.5, r = 0.05 and B = 1.

3.2.6 Comparison with Likelihood Ratio Estimators

It can be shown (see [Gla04],[BG96],[BK04]) that the likelihood estimators of Delta and Gamma of
a down-and-out Barrier9 call option are given by

∆LR = e−rT (ST − K)+1

{

min
0≤t≤T

S(t) > B

} (
d1

S0σ
√

∆t

)

ΓLR = e−rT (ST − K)+1

{

min
0≤t≤T

S(t) > B

} (

d2
1 − d1σ

√
∆t − 1

S2
0σ2∆t

)

with

d1 =
ln(S1/S0) − (r − σ/2)2∆t

σ
√

∆t
. (3.122)

Figure 3.24 shows the estimates of Delta and Gamma of the down-and-out barrier option of the
previous sections, which are obtained from our method (solid line with x) as well as the Likelihood
Ratio method (dash-dot line with plus signs). In this case, we choose ǫ to be fixed and equal to
0.1, i.e. ǫ = 0.1. The Monte Carlo estimates are compared with the exact values of Greeks (solid
line). Figures 3.25 and 3.26 show the error and the variance in estimates of the previous methods,
respectively. From the graphs of that figure, we can see that the estimates of both Delta and
Gamma of our method are much better than that of Likelihood Ratio method. In this case the
finite-difference approximations are extremely bad and this is why we do not plot their results.

9Again, we consider the case of continuous monitoring of the barrier.
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Figure 3.24: Comparison of Pathwise (smoothing) and Likelihood Ratio (LR) estimators. ∆t =

1/1024. Input parameters : K = 3, S0 = 9, T = 1, σ = 0.5, r = 0.05 and B = 1.
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Figure 3.25: Error in estimates with ∆t = 1/1024. Input parameters : K = 3, S0 = 9, T = 1,
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Figure 3.26: Variance in estimates with ∆t = 1/1024. Input parameters : K = 3, S0 = 9, T = 1,
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Chapter 4

Conclusion

In this thesis, we study how Monte Carlo simulation can be applied in pricing and hedging financial
options. We focus on valuation and on Greeks estimation of exotic options such as Barrier, Lookback
and Digital options.

In particular, in the first part of this work we consider enhanced Monte Carlo methods for
pricing path-dependent options, which reduce the discretization error - the bias in Monte Carlo
estimates that results from time-discretization of stochastic differential equations. We apply a similar
correction for pricing continuously monitored barrier options, to that Broadie, Glasserman and Kou
applied for pricing discretely monitored barrier options in [BGK97]. We shift the barrier B by a
quantity −Bβσ

√
∆t if B > S(0) and +Bβσ

√
∆t if B < S(0) and then we apply the regular Monte

Carlo method to price the options. Moreover, we use a probabilistic method, which allows us to
simulate the extremals of the geometric Brownian motion, given the endpoints of that process for a
single time interval. A similar method is applied in pricing a Lookback option, the value of which
depends on the maximum or minimum of an underlying asset price over the life of the option. These
methods are suggested in [ABR96], [BDZ97] and [BCI99]. We implemented the above methods in
C, and we compare the latter methods with the crude Monte Carlo in terms of weak convergence
rate. The numerical results from the experiments confirm the superiority of those methods against
the standard Monte Carlo.

In the second part, we propose a Monte Carlo method for estimating sensitivities of derivative
securities, which is based on smoothing the discontinuities of the discounted payoff of an option.
This smoothing technique allows us to apply the pathwise method to estimate the Greeks. We apply
this method in order to estimate the Delta and Gamma of Digital and Barrier options, for which
the pathwise method is otherwise inapplicable. Extensive numerical results (see section 7.4 [Gla04])
indicate that the pathwise method, when applicable, provides the best estimates of sensitivities.
Compared with the finite-difference methods, pathwise estimates require less computational effort
and they directly estimate derivatives rather than differences. Furthermore, compared with the
likelihood ratio method, pathwise estimators usually have smaller variance - often much smaller.
The main limitation of the use of the likelihood ratio method is the need for explicit knowledge of
a density. In cases in which the transition density of the underlying price process is not explicitly
known, ideas from Malliavin Calculus can be used. For example, for Asian options, stochastic
volatility models or interest rate models the densities are not explicitly known. Kohatsu-Higa and
Montero give a basic introduction to Malliavin Calculus and its applications within the area of Monte
Carlo simulation in Finance, in [KHM04]. Several authors, including Benhamou [Ben00] and Fournié
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et.al. [FLLT99], used ideas from Malliavin Calculus to estimate greeks.
As we have mentioned in this thesis, we use a smooth function to approximate the discontinuous

payoff of an option and then we apply the pathwise method to estimate the delta and gamma through
Monte Carlo simulation. Particularly, we estimate the delta and gamma of a digital call option and
down-and-out barrier option. Moreover, we carry out asymptotic analysis in order to determine the
error that the smoothing introduces in our estimations and we show how we can reduce this error.
Also, we study how the smoothing parameter ǫ affects the variance of Monte Carlo estimates. In
particular, we show that when ǫ becomes too small the Monte Carlo error becomes huge. On the
other hand, when ǫ becomes too big the smoothing error, which is introduced, becomes big as well.
Thus, there is a tradeoff between the Monte Carlo and smoothing error. This makes a matter of
investigation the value of ǫ that we should use, so that the total error is minimized. Finally, we use
the stratified sampling method to reduce the variance and thus to improve further the efficiency of
Monte Carlo method. We show that using stratified with proportional allocation of sampling we can
achieve a significant variance reduction, while further variance reduction is achieved using optimal
allocation. Numerical results support the theoretical analysis.

The major advantage of the proposed technique is that it extends the pathwise method in
problems in which is otherwise inapplicable. This allows us to exploit all the advantages of the
pathwise method in estimating sensitivities. Furthermore, the simplicity of the method makes it
easily applicable in several problems. Also, using a variance reduction method such as the stratified
sampling, we can significantly improve the convergence rate of the Monte Carlo estimates.

This research is in its early stages and much work remains to be done. The method could
be applied in more complex or multidimensional problems, in which its advantages can be more
apparent. In general, sensitivity estimation presents both theoretical and practical challenges to
Monte Carlo simulation.
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Appendix A

Appendix

A.1 Transition Density of a Brownian motion with

Upstream Absorbing Barrier

We first consider a Brownian motion Wt that starts at zero, with constant volatility σ and zero drift.
Initially, we will apply the reflection principle to calculate the probability P

{
mT ≤ b, WT ≥ x

}
,

where x ≥ 0, b ≤ 0 and mT is the minimum value of the Brownian motion over [0, T ]. Now if the
event

{
mT ≤ b, WT ≥ x

}
occurs, then for some time tb we have that W (tb) = b and there is certainly

some value of t for which Wt is less than or equal to b. The Brownian motion therefore descends
at least as far as b and then comes up back to the level x, see figure A.1. Suppose that instead of
continuing the Brownian motion after time tb, we restart it and replace it by its value reflected in
the level b. We define this random process as

W ′
t =







Wt , for t < tb

2b − Wt , for t ≥ tb

(A.1)

Then the event {WT ≥ x} becomes {W ′
T ≤ 2b − x}. However, the event {W ′

T ≤ 2b − x} occurs
only if mT ≤ b occurs also and therefore, we have that the event

{
mT ≤ b, WT ≥ x

}
is equivalent to

{W ′
T ≤ 2b − x}. Also by the reflection principle we have

W ′
tb+s − W ′

tb
= − (Wtb+s − Wtb) , for s ≥ 0, (A.2)

where tb is stopping time and therefore it only depends on the path history
{
W t

0 : 0 ≤ t ≤ tb
}

and it
does not affect the Brownian motion at later times. By the Markov strong property we argue that
the two Brownian increments have the same distribution. Thus we have that

P
{
mT ≤ b, WT ≥ x

}
= P {W ′

T ≤ 2b − x}

= P {WT ≤ 2b − x}

= N
(

2b−x
σ
√

T

)

(A.3)
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Figure A.1: Brownian motion path.

Next, we can apply the Girsanov Theorem to find the above joint distribution in case where
the Brownian motion has non-zero drift. We suppose that under the measure Q, Wt is a Brownian
motion with drift rate a. Now we change the measure from Q to Q′ such that Wt becomes Brownian
motion with zero drift under Q′. So we can write

P
{
mT ≤ b, WT ≥ x

}
= EQ

[

1{mT≤b}1{WT≥x}
]

= EQ′

[

1{mT≤b}1{WT≥x} exp
(

aWT

σ2 − a2T
2σ2

)]

,
(A.4)

where the term exp
(

aWT

σ2 − a2T
2σ2

)

is the Radon-Nykodym derivative. For the derivation of this, see

chapter 4 in [Kwo98] as well as in chapter 8 in [Jos03]. Thus by applying the reflection principle for

appendices/BM_reflected_path.eps
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the driftless Brownian motion under Q′, we obtain

P
{
mT ≤ b, WT ≥ x

}
= EQ′

[

1{mT≤b}1{WT≥x} exp
(

aWT

σ2 − a2T
2σ2

)]

= EQ′

[

1{2b−WT >x} exp
(

a(2b−WT )
σ2 − a2T

2σ2

)]

= e
2ab

σ2 EQ′

[

1{WT <2b−x} exp
(

−aWT

σ2 − a2T
2σ2

)]

= e
2ab

σ2
∫ 2b−x
−∞

1√
2πσ2T

e
z2

2σ2T exp
(

−aWT

σ2 − a2T
2σ2

)

dz

= e
2ab

σ2
∫ 2b−x
−∞

1√
2πσ2T

exp
(

− (z+aT )2

2σ2T

)

dz

= e
2ab

σ2 N
(

2b−x+aT
σ
√

T

)

(A.5)

and by applying the law of total probabilities, we get

P
{
mT > b, WT ≥ x

}
= P {WT ≥ x} − P

{
mT ≤ b, WT ≥ x

}

= N
(
−x+aT
σ
√

T

)

− e
2ab

σ2 N
(

2b−x+aT
σ
√

T

)

.
(A.6)

The above result can be extended to the case where the barrier B is above the initial value of
Brownian motion Wt. We denote by MT the maximum of Brownian motion over the time interval
[0, T ]. Then we can write

MT = max
0≤t≤T

{σZt + at} = − min
0≤t≤T

{−σZt − at} , (A.7)

where Zt is the standard Brownian motion. Since −Zt has the same distribution as Zt, the
distribution of the maximum of Wt with drift a is the same as that of the negative of the minimum
of Wt with negative drift. Thus by replacing −a for a, −B for b and −y for x in (A.5), we obtain

P
{
MT ≥ B, WT ≤ y

}
= e

2aB

σ2 N

(
y − 2B − aT

σ
√

T

)

, (A.8)

with B > max(y, 0). Thus by differentiating with respect to y we obtain the following density
function

P
{
MT ≥ B, WT ∈ dy

}
= e

2aB

σ2
1

σ
√

T
n

(
y − 2B − aT

σ
√

T

)

(A.9)

and finally the transition function pB(x, t; x0, t0) for the restricted Brownian motion which hits the
barrier B at some time tb ∈ [t0, t] is found to be

pB(x, t; x0, t0) = e
2a(B−x0)

σ2
1

σ
√

t − t0
n

(
(x − x0) − 2(B − x0) − a(t − t0)

σ
√

t − t0

)

(A.10)

and therefore we obtain the following probability

p {tb ∈ [t0, t], Wt0 = x0, Wt = x} = e
2a(B−x0)

σ2
1

σ
√

t − t0
n

(
x + x0 − 2B − a(t − t0)

σ
√

t − t0

)

. (A.11)
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A.2 Delta and Gamma of Down-and-Out Barrier

The explicit formula for the Delta of Down-and-Out barrier option is given by

∆ = N(X)− 2(r − σ2/2)

σ2S0

(
B

S0

)2λ−2
[

S0

(
B

S0

)2

N(y) − e−rT N(y − σ
√

T )

]

+

(
B

S0

)2λ

N(y) (A.12)

with

X =
log

(
S0
K

)
+ (r + σ2/2)T

σ
√

T

y =
log

(
B2

S0K

)

+ (r + σ2/2)T

σ
√

T

λ =
1

2
+

r

σ2
.

Also, the explicit formula for the Gamma is the following

Γ =
n(X)

S0σ
√

T
− 2(r − σ2/2)

σ2S0

(
C

S0
− D

)

+
B2λ

S2λ+1
0

[

2λN(y) − n(y)

σ
√

T

]

(A.13)

with

C =

(
B

S0

)2λ−2
[

S0

(
B

S0

)2

N(y) − e−rT N(y − σ
√

T )

]

D = −2(r − σ2/2)

σ2S0
C −

(
B

S0

)2λ

N(y)

and X, y, λ are defined as before.
A complete list, with explicit formulas of Greeks for all kind of barrier options, is given in

[Wys02].

A.3 The Brownian Bridge

A Brownian bridge1 is a continuous-time stochastic process whose probability distribution is the
conditional probability distribution of a Wiener process W(t) (a mathematical model of Brownian
motion) given the condition that initially W (0) = a and finally W (T ) = b.

Suppose that Z(t) is a standard Brownian process. Let the points Z(ti), Z(tk) are known and
we want to draw the point Z(tj) with ti < tj < tk conditional on Z(ti), Z(tk). If now x, y ∼ N(0, 1)

1See http://en.wikipedia.org/wiki/Brownian bridge for a definition.
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and we know the point Z(ti) = Zi, then we can generate the points Z(tk) = Zk, Z(tj) = Zj as
follows

Zj = Zi + x
√

tj − ti (A.14)

Zk = Zj + y
√

tk − tj = Zi + x
√

tj − ti + y
√

tk − tj . (A.15)

However, we could generate the Zk directly as

Zk = Zi + z
√

tk − ti , (A.16)

where z ∼ N(0, 1). Since, we have shown that if we know Zi we know Zk as well, this means that
the above method for generating Zj is constrained. By (A.15) and (A.16), we have that

y =
z
√

tk − ti − x
√

tj − ti√
tk − tj

. (A.17)

The probability density of drawing the pair of standard random variables (x, y) given z, is

n(x, y|z) =
n(x)n(y)

n(z)
, (A.18)

since x, y are independent2. From equation (A.17), we can write y = y(x, z). Thus (A.18) becomes

n(x, y(x, z)|z) =
n(x)n(y(x, z))

n(z)
, (A.19)

and therefore

n(x, y(x, z)|z) =
1√
2π

exp

[

−
(
x2 + y2 − z2

)

2

]

. (A.20)

Now substituting (A.17) in (A.20) and doing some algebra, we obtain

n(x|z) =
1√
2π

exp

[

−(x − µz)2

2σ2

]

, (A.21)

with

µ =

√
tj − ti
tk − ti

, σ =

√
tk − tj
tk − ti

, (A.22)

i.e. x is normally distributed with mean µz and variance σ2. Now, since

z =
Zk − Zi√

tk − ti
, (A.23)

we can write

x =

√
tj − ti

tk − ti
(Zk − Zi) + φ

√
tk − tj
tk − ti

, (A.24)

where φ ∼ N(0, 1). Finally by substituting (A.24) into (A.14), we obtain

Zj =
tk − tj
tk − ti

Zi +
tj − ti
tk − ti

Zk + φ

√

(tj − ti)(tk − tj)

tk − ti
. (A.25)

This last equation is known as the Brownian Bridge. This elegant derivation of the Brownian Bridge
is based on P.A. Forsyth’s notes [For05].

2A Brownian motion has independent successive increments.
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