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Abstract. This paper gives an overview of the use of adjoint equations in aeronautical
design optimisation to obtain the sensitivity of an objective function to changes in any
number of design variables. Both the continuous and the discrete adjoint approach are
outlined and the author’s preference for the latter is explained.
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1 Introduction

There is a long history of the use of adjoint equations in optimal control theory [27].
In fluid dynamics, the first use of adjoint equations for design was by Pironneau [32].
However, within the field of aeronautical computational fluid dynamics, it is Jameson
who has applied the methods of optimal control theory to formulate optimal design meth-
ods. The term ‘optimal’ refers to the fact that one is trying to find the geometry which
minimises some objective function, such as the drag. In a sequence of papers [20, 21, 23]
Jameson has developed the adjoint approach for potential flow, the Euler equations and
the Navier-Stokes equations. The complexity of the applications within these papers also
progressed from 2D airfoil optimisation, to 3D wing design and finally to complete aircraft
configurations [22, 33, 34]. A number of other research groups have also developed adjoint
CFED codes [26, 36, 4, 3, 5] using the same ‘continuous’ approach in which the first step is
to linearise the original partial differential equations. The adjoint p.d.e. and appropriate
boundary conditions are then formulated, and finally the equations are discretised.

The alternative ‘discrete’ approach takes a discretisation of the Euler or Navier-Stokes
equations, linearises the discrete equations and then uses the transpose of the linear
operator to form the adjoint problem. This approach has been developed by Elliott [7],
Anderson [31, 1], Mohammadi [28, 29] and Kim [25], and it is the approach favoured by
the present author.

This paper outlines both approaches, emphasising the underlying similarity in their
mathematics. The adjoint theory is presented firstly in the context of linear algebra, in
which it is most easily understood. This is the basis for the discrete adjoint CF'D approach
in which one works with the algebraic equations that come from the discretisation of the
original fluid dynamic equations. The paper then treats the extension to p.d.e.’s as used
in Jameson’s continuous adjoint approach. Here the emphasis is on the construction of
the adjoint p.d.e. and its boundary conditions, including the manner in which geometric
perturbations are introduced.

The pros and cons of the two approaches are then discussed, but in the end it is a
matter of personal judgement. There are advocates for each approach, but no suggestions
that one approach is clearly better than the other. The paper concludes with a few simple
numerical test cases illustrating the computation of lift and mass flow sensitivities.

For further information, see the excellent review by Newman et al [30] which surveys
both continuous and adjoint methods, and the papers by Giles [12, 11], and Giles & Pierce
[17] which present a more extensive introduction to the adjoint approach to design and
some of the related design optimisation issues.
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2 Discrete adjoint approach
2.1 Fundamental linear algebra

Suppose one wishes to evaluate the vector dot product ¢’ u, with u being the solution
of the linear system of equations

Au = f,

for some given matrix A and vector f. An equivalent dual form is to evaluate v* f where
the adjoint solution v satisfies the linear system of equations

ATy =yg.

Note the use of the transposed matrix A”, and the interchange in the roles of f and g.
The equivalence of the two forms is easily proved as follows,

vl f = vl Au = (ATv) ' = gTu.

Given a single f and a single g, nothing would be gained (or lost) by using the dual
form. However, if we want the value of the objective function for p different values of
f, and m different value of ¢, the standard approach needs the solution of p different
primal equations, whereas the adjoint approach needs the solution of m different adjoint
calculations. Therefore, the adjoint approach is much cheaper when m < p.

2.2 Design sensitivities

Given a set of design variables, a, which control the geometry of the airfoil, wing or
aircraft being designed, and a set of flow variables at discrete grid points, U, the aim is
to determine the sensitivity of a single objective function J(U,«) to changes in «. The
discrete flow equations, together with the boundary conditions, can be expressed as

R(U,X(a)) =0,

where X is the vector of grid point coordinates which depends on «. For a single design
variable, we can linearise about a baseline geometry and flow solution to get

4 _osdv 9
do U da 0o’

The flow sensitivity dU/da satisfies the linearised flow equations

oU da 0o
By defining dU ON o0J ON
YT v Y "o T
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we can convert this into the standard form

dJ . 0]

I u_|__7
do g o

subject to
Au = f.

The term 0./« is relatively easy to evaluate. The term g'u = v’ f can be computed
either by the direct approach, solving Au = f, or by the adjoint approach, solving ATv =
g. For a single design variable there would be no benefit in using the adjoint approach,
but for multiple design variables, each has a different f, but the same g, so the adjoint
approach is computationally much more efficient.

2.3 Implementation issues

The above description of the discrete adjoint approach makes it seem straightforward,
and this is one of the strengths of the discrete approach. However, in implementing it, a
number of important issues arise, of which the most important are:

e Programming of adjoint matrix-vector product

We have written by hand our adjoint code [13] to evaluate ATv, but this is not a
very easy task. A better alternative may be to follow Mohammadi [28, 29] in using
automatic differentiation software [8, 9, 19], however this too is not without its
difficulties. For the evaluation of f = —0ON/0Ja we have used the “complex variable
technique” [35] used by Anderson et al [2]. This is a very effective technique which
is easily implemented.

e Solid wall boundary conditions for node-based discretisations

The implementation of solid wall boundary conditions for node-based discretisations
involves the discarding of momentum residuals at wall nodes, to be replaced by a
no-flux or no-slip condition for inviscid and viscous cases, respectively. In addition,
the discarded momentum residuals sometimes form part of the functional to be eval-
uated. Both of these features introduce some additional complexity in formulating
the adjoint problem [13].

e [terative solution of adjoint equations

The eigenvalues of AT are exactly the same as those of A. Therefore, many stan-
dard iterative methods, such as the GMRES method used by Anderson [3], are
guaranteed to converge with the same asymptotic rate of convergence as for the
original nonlinear code. In our work [13], we use a special form of preconditioned
time-marching with multigrid, and obtain exactly the same convergence history for
the sensitivity from the adjoint code as we do from a linearised flow perturbation
code. This also provides a very useful check on the correctness of our programming.
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3 Continuous adjoint approach
3.1 Fundamental theory

Duality in the case of p.d.e.’s is a natural extension of duality in the linear algebra
formulation. Using (V,U) to denote an integral inner product over some domain £,

(V,U) z/ VU de,
Q

suppose one wants to evaluate the functional (g, u), where u is the solution of the p.d.e.
Lu=f,

on the domain €2 subject to homogeneous boundary conditions on the boundary 0f2.
Using the adjoint formulation, the identical functional takes the form (v, f) where v is
the solution of the adjoint p.d.e.
L'v =g,
plus appropriate homogeneous adjoint b.c.’s. The adjoint operator L* is defined by the
identity
(V,LU) = (L*V,U),
which must hold for all functions V, U satisfying the respective homogeneous boundary
conditions. Given the definitions, the proof of the equivalence of the two forms of the
problem is trivial
(Uaf) = (v,Lu) = (L*Uvu) = (g,u).

Thus far, the theory looks extremely similar to the linear algebra behind the discrete
approach. However, in general, the objective function of interest involves integrals over
the boundary, rather than over the domain, and the boundary conditions are not ho-
mogeneous. To handle this, the following more general form of the adjoint identity is
required.

(V,LU)q + (C*V,BU)sq = (L*V,U)q + (B*V,CU)sq
for all functions U, V', with the notation (.,.)sq denoting an inner product over the bound-
ary. B and C are both boundary operators (possibly involving normal derivatives) given
in the definition of the original problem. B* and C* are the corresponding adjoint bound-
ary operators which can be found by integration by parts. Using this adjoint identity, it
follows immediately that

(v, fla + (C*v, f2)aa = (g, u)a + (g2, Cu)aq
when the primal problem is
Lu= fin €, and Bu= fy on 01,
and the adjoint problem is

L'v=g¢in ), and B*v = gy on 0f).
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There are some restrictions on what can be imposed as b.c.’s and objective functions.
The analysis is complicated (see [23] and [14] for details) but it reveals that on a solid
surface, the boundary integral term in the objective function must be a weighted integral
of the linear perturbation in the pressure when using the Euler equations. Similarly, for
the Navier-Stokes equations it must be a weighted integral of the linear perturbation in
the normal and tangential forces on the surface, and either the heat flux or the surface
temperature (depending whether one is specifying the surface temperature or adiabatic
conditions, respectively).

3.2 Design sensitivities

The most complicated step in the continuous approach to design sensitivities is formu-
lating the linearised flow equations. In two dimensions, Jameson uses curvilinear coordi-
nates (£, 1) corresponding to grid lines of a structured grid, with the airfoil surface being
defined as n=0 [21]. The transformed Euler equations can be written as

0 dy ox 0 ay ox
e _ g2+ & -
o€ ( Gan> o ( o€ +Ga§> 0

where F' and G represent the usual inviscid fluxes in the z and y directions. A small
perturbation & to a design parameter produces changes such as

oF dU
F F+
— U da
ox ox 0%x

8_77 - 8_77+8778a

2

Terms not depending on « all cancel, and terms depending on & are neglected. Hence,

we get the linearised equations,

0 dy ox 0 ay 8 B
20505+ 4 (% 2)) -

2 2 2 2
3<F8y _G8x>_2<_F0y+Gax>,

C0c\" oo Onda ) On 90 | 9D
where OF oG dU
A = @, B = w, u = @

The boundary condition on an inviscid wall is that there is no flow normal to the surface
n=0. This remains true as a changes but one needs to consider the linearised perturbation
to the unit normal, which eventually leads an inhomogeneous boundary term.

For complex geometries, it is often not possible to use structured grids. However, the
same idea of using perturbed curvilinear coordinates can be extended to unstructured
grids [11, 17].



Michael B. Giles

nonlinear linear adjoint
p.d.e.
[
|
¥
discrete
equations

Figure 1: Alternative approaches to forming discrete adjoint equations

3.3 Implementation issues

With the continuous adjoint approach, the discretisation of the adjoint equations can be
carried out without regard for the discretisation of the nonlinear flow problem. However,
the standard issues of accuracy, stability and convergence remain to be addressed.

When considering flows with shocks, the analytic formulation should treat the shocks
as discontinuities across which the Rankine-Hugoniot shock jump relations are enforced.
This leads to the important result that the adjoint variables are continuous across the
shock and that an additional adjoint boundary condition must be imposed [16]. However,
imposing such a b.c. would be complicated, as it would require the automatic identification
of the shock location in the nonlinear flow calculation, so in practice, the standard practice
is not to enforce this condition. Quasi-one-dimensional results have demonstrated that
the inclusion of numerical smoothing automatically leads to satisfaction of the adjoint
boundary condition at the shock [15], and results in higher dimensions do not indicate
any particular anomalies.

4 Relative advantages of two approaches

The difference between the discrete and continuous approaches is shown schematically
in Figure 1. In both cases one obtains a set of discrete adjoint equations. In the discrete
approach one starts by discretising the nonlinear p.d.e.; these equations are then linearised
and transposed. In the the continuous adjoint approach, the discretisation is the final
step, after first linearising and forming the adjoint problem. One could even follow an
intermediate path, linearising the original equations, discretising them and then taking
the transpose. In principle, if each of the steps is performed correctly, and all of the
solutions are sufficiently smooth (e.g. no shocks) then in the limit of infinite grid resolution
all three approaches should be consistent and converge to the correct analytic value for
design sensitivity.

However, there are important conceptual differences between the different approaches,
and for finite resolution grids there will be differences in the computed results. In the
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author’s opinion, the main advantages of the discrete approach are:

e Creation of the adjoint program is conceptually straightforward, and in the future
will hopefully be relatively easy using automatic differentiation software.

e Iterative methods based on those used for the solution of the nonlinear flow equations
are guaranteed to be stable, and with the same highly-optimised rate of convergence.

e There are numerous self-consistency checks which can be performed, comparing
nonlinear flux routines with their adjoint counterparts, to identify programming
errors.

On the other hand, the advantages of the continuous approach are:

e The physical significance of the adjoint variables and the role of adjoint b.c.’s is
much clearer. Only by constructing the adjoint flow equations can one develop a
good understanding of the nature of adjoint solutions, such as the continuity at
shocks, the logarithmic singularity at a sonic point in quasi-1D flows [16] but not in
2D or 3D (in general) and the inverse square-root singularity along the stagnation
streamline upstream of an airfoil in 2D [14].

e The adjoint program is simpler and requires less memory because one is free to
discretise the adjoint p.d.e. in any consistent way.

It remains an open question as to whether one approach is better when there are non-
linear discontinuities such as shocks. For quasi-1D Euler calculations, both approaches
give numerical results which converge to the analytic solution [16]. For the discrete ap-
proach, this follows because the integrated pressure can be proved to be predicted with
second order accuracy [10]. The linearised discretisation should therefore yield pertur-
bations to the integral of pressure that are at least first-order accurate. The discrete
adjoint formulation, which is constructed using this linearised operator, must therefore
behave correctly to first order at the shock. For the continuous approach, in the absence
of explicit enforcement of the correct adjoint b.c. at the shock, the correct asymptotic
behaviour can be explained as the effect of numerical smoothing, given that the correct
analytic solution is the only smooth solution at the shock [15].

However, in 2D and 3D there is no proof of second order accuracy for quantities such
as lift and drag, and there is a discontinuity in the gradient of the adjoint variables at
the location of the shock. Therefore it remains an open question as to whether either
approach will give a consistent approximation to the gradient of the objective function
in the limit of infinite grid resolution. Numerical results for test cases with strong shocks
indicate there may be a problem with the discrete approach [13], but results using both
approaches suggest that any inconsistency is very small when the shocks are weak.
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5 Nonlinear optimisation

Returning to the design problem, the aim is to find the set of design variables o which
minimise the nonlinear objective function J(U, ), where U is an implicit function of «
through the flow equations

N(U,«a) = 0.
These nonlinear flow equations and the corresponding linear adjoint equations are both
large systems which are usually solved by an iterative procedure.

There are two main optimisation strategies using the design sensitivities obtained from
the adjoint problem. The first is to use a simple steepest descent algorithm,

dJ

da
where € controls the step size. The advantage of this method is that partially-converged
flow and adjoint solutions may be used to evaluate the gradients as long as these gradients
are properly preconditioned (through numerical smoothing) prior to updating « [21]. As

a result, the cost per design cycle is relatively low.
In the second approach, approximations to the Hessian matrix of second derivatives

d*J

dOéidCYj ’

Aa =

are used to speed convergence via a quasi-Newton procedure such as BFGS [18]. This
method requires more accurate flow and adjoint solutions, which must generally be con-
verged almost fully during each design iteration. As a result, the cost of each design cycle
is significantly increased.

The relative efficiency and robustness of the two strategies is still subject to debate,
but the recent paper by Jameson and Vassberg [24] comparing the two techniques presents
convincing support for the first approach.

6 Numerical results

Figures 24 give some examples of adjoint results from another paper [13]. Figure 2
is an inviscid test case. The symbols show the variation in lift coefficient with angle of
attack for a NACAO0012 airfoil at a freestream Mach number of 0.68. Each of the lines has
a slope given by the lift sensitivity calculated by the adjoint code based on the nonlinear
flow conditions at the angle of attack at the central point.

Figure 3 is similar, but for a viscous test case, the RAE2822 airfoil at a freestream Mach
number of 0.725 and a Reynolds number of 6.5 x 10°. The Spalart-Allmaras turbulence
model is used, and the adjoint code incorporates the linearisation of the turbulence model.
Again there is good agreement between the nonlinear and adjoint results.

Finally, Figure 5 shows an example of a different kind of adjoint calculation. This is
a test case of unsteady flow over a cascade of flat plate airfoils, with the unsteadiness
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Figure 2: Cj vs. angle of attack for a NACA 0012 profile at M = 0.68.
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Figure 3: Lift vs. angle of attack for a RAE 2822 profile at M = 0.725, Re = 6.5 x 10°.
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Figure 4: Bending mode worksum components due to wake interaction, versus interblade phase angle
associated with wake pitch.
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being caused by incoming wakes with a sinusoidal profile. This test case is relevant to the
problems of structural vibration due to forced response and flutter in turbomachinery. The
standard analysis uses harmonic linear unsteady flow analysis to compute the unsteady
flow for a single frequency of unsteady forcing. This is expressed as the real part of a
complex amplitude multiplying a harmonic unsteady term,

u(z,y,t) = RA{a(z,y) exp(iwt)} .

The key output is a complex quantity called the “worksum” which represents the gen-
eralised force for a particular vibration mode within the context of classical Lagrangian
mechanics. The figure shows the real and imaginary components of this quantity for the
bending mode of vibration, and its variation as a function of the interblade phase angle
which is related to the pitch of the incoming wakes. The adjoint calculation computes
the same quantity using the complex conjugate transpose of the linear harmonic discrete
matrix [13, 6]. The linear and adjoint codes produces identical values for the worksum,
and they agree well with the values produced by another code LINSUB based on semi-
analytic theory [37]. The benefit of the adjoint approach for such unsteady problems is
that it can give the level of forced response for any incoming wake of a particular fre-
quency, which is useful in certain design applications aiming to minimise forced response
vibrations [6]. There is also the potential of using it for the design of blades which a
reduced susceptibility to flutter.

7 Conclusions

This paper has reviewed the underlying theory for optimal design using adjoint methods
to obtain the sensitivity of an objective function with respect to a large number of design
variables. Both the continuous and the discrete approaches have been covered, and their
relative strengths have been commented on. It is hoped that this will encourage and help
others to develop adjoint techniques as an integral part of engineering design systems.
Although the ideas have been presented in the context of aeronautical design, the ideas are
equally relevant to any area of engineering design involving large numbers of continuous
design variables.

Acknowledgements

This research has been supported by the Engineering and Physical Sciences Research
Council under grant GR/L95700, and by Rolls-Royce ple (technical monitor: Leigh Lap-
worth) DERA (technical monitor: John Calvert), and BAESystems plc (technical moni-
tor: David Standingford). I would also like to acknowledge the contributions of M.S. Cam-
pobasso, M.C. Duta, J.-D. Miiller and N.A. Pierce to the development and validation of
the adjoint HYDRA codes.

11



Michael B. Giles

REFERENCES

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

W.K. Anderson and D.L. Bonhaus. Airfoil design on unstructured grids for turbulent
flows. ATAA J., 37(2):185-191, 1999.

W.K. Anderson, J. Newman, D. Whitfield, and E. Nielsen. Sensitivity analysis for
the Navier-Stokes equations on unstructured grids using complex variables. AIAA
Paper 99-3294, 1999.

W.K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on un-
structured grids with a continuous adjoint formulation. Comput. & Fluids, 28(4-
5):443-480, 1999.

O. Baysal and M. Eleshaky. Aerodynamic design optimization using sensitivity anal-
ysis and computational fluid dynamics. AIAA J., 30(3):718-725, 1992.

A. Dadone and B. Grossman. Progressive optimization of inverse fluid dynamic
design problems. Comput. & Fluids, 29(1), 2000.

M. Duta, M.B. Giles, and M.S. Campobasso. The harmonic adjoint approach to
unsteady turbomachinery design. ICFD Conference, Oxford, 2001.

J. Elliott and J. Peraire. Practical 3D aerodynamic design and optimization using
unstructured meshes. AIAA J., 35(9):1479-1485, 1997.

C. Faure and Y. Papegay. Odyssée User’'s Guide version 1.7.
Technical  Report  RT-0224, INRIA, Sophia-Antipolis, 1998. See
www.inria.fr/safir/SAM/0dyssee/odyssee.html.

R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Trans.
Math. Software, 24(4):437-474, 1998.

M.B. Giles. Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler
equations. Comput. Fluid Dynamics J., 5(2):247-258, 1996.

M.B. Giles. Aerodynamic design optimisation for complex geometries using unstruc-
tured grids. Lecture notes for VKI Lecture Course on Inverse Design. Technical Re-
port NA97/08, Oxford University Computing Laboratory, Wolfson Building, Parks
Road, Oxford, OX1 3QD, 1997.

M.B. Giles. Aerospace design: a complex task. Lecture notes for VKI Lecture Course
on Inverse Design. Technical Report NA97/07, Oxford University Computing Labo-
ratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, 1997.

M.B. Giles, M.C. Duta, and J.-D. Miiller. Adjoint code developments using the exact
discrete approach. AIAA Paper 2001-2596, 2001.

12



Michael B. Giles

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

M.B. Giles and N.A. Pierce. Adjoint equations in CFD: duality, boundary conditions
and solution behaviour. ATAA Paper 97-1850, 1997.

M.B. Giles and N.A. Pierce. On the properties of solutions of the adjoint Euler
equations. In M. Baines, editor, Numerical Methods for Fluid Dynamics VI. ICFD,
Jun 1998.

M.B. Giles and N.A. Pierce. Analytic adjoint solutions for the quasi-one-dimensional
Euler equations. J. Fluid Mech., 426:327-345, 2001.

M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to design. Flow,
Turbulence and Control, to appear, 2001.

P. Gill, W. Murray, and M. Wright. Practical optimization. Academic Press, 1981.

A. Griewank. FEvaluating derivatives : principles and techniques of algorithmic dif-
ferentiation. STAM, 2000.

A. Jameson. Aerodynamic design via control theory. J. Sci. Comput., 3:233-260,
1988.

A. Jameson. Optimum aerodynamic design using control theory. In M. Hafez and
K. Oshima, editors, Computational Fluid Dynamics Review 1995, pages 495-528.
John Wiley & Sons, 1995.

A. Jameson. Re-engineering the design process through computation. J. Aircraft,
36:36-50, 1999.

A. Jameson, N. Pierce, and L. Martinelli. Optimum aerodynamic design using the
Navier-Stokes equations. J. Theor. Comp. Fluid Mech., 10:213-237, 1998.

A. Jameson and J. Vassberg. Studies of alternate numerical optimization methods
applied to the brachistochrone problem. OptiCON ’99 Conference, 1999.

H.-J. Kim, D. Sasaki, S. Obayashi, and K. Nakahashi. Aerodynamic optimization
of supersonic transport wing using unstructured adjoint method. Proceedings of the
ICCFD conference, Kyoto, 2000.

V.M. Korivi, A.C. Taylor III, and G.W. Hou. Sensitivity analysis, approximate
analysis and design optimization for internal and external viscous flows. AIAA Paper
91-3083, 1991.

J.L. Lions. Optimal Control of Systems Governed by Partial Differential Equations.
Springer-Verlag, 1971. Translated by S.K Mitter.

13



Michael B. Giles

[28] B. Mohammadi. Practical applications to fluid flows of automatic differentiation for
design problems. VKI Lecture Series 1997-05 on Inverse Design, 1997.

[29] B. Mohammadi and O. Pironneau. Mesh adaption and automatic differentiation in a
CAD-free framework for optimal shape design. Internat. J. Numer. Methods Fluids,
30(2):127-136, 1999.

[30] J.C. Newman, A.C. Taylor, R.W. Barnwell, P.A. Newman, and G. J.-W. Hou.
Overview of sensitivity analysis and shape optimization for complex aerodynamic
configurations. J. Aircraft, 36(1):87-96, 1999.

[31] E. Nielsen and W.K. Anderson. Aerodynamic design optimization on unstructured
meshes using the Navier-Stokes equations. AITAA J., 37(11):957-964, 1999.

[32] O. Pironneau. On optimum design in fluid mechanics. J. Fluid Mech., 64:97-110,
1974.

[33] J. Reuther, A. Jameson, J.J. Alonso, M.J. Remlinger, and D. Saunders. Constrained
multipoint aerodynamic shape optimisation using an adjoint formulation and parallel
computers, part 1. J. Aircraft, 36(1):51-60, 1999.

[34] J. Reuther, A. Jameson, J.J. Alonso, M.J. Remlinger, and D. Saunders. Constrained
multipoint aerodynamic shape optimisation using an adjoint formulation and parallel
computers, part 2. J. Aircraft, 36(1):61-74, 1999.

[35] W. Squire and G. Trapp. Using complex variables to estimate derivatives of real
functions. STAM Rewv., 10(1):110-112, 1998.

[36] S. Ta’asan, G. Kuruvila, and M.D. Salas. Aerodynamic design and optimization in
one shot. ATAA Paper 92-0025, 1992.

[37] D. S. Whitehead. Classic two-dimensional methods. In M. Platzer and F. O. Carta,
editors, Aeroelasticity in Axial-Flow Turbomachines, AG-298, volume 1. AGARD,
1987.

14



