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Abstra
t. This paper gives an overview of the use of adjoint equations in aeronauti
al

design optimisation to obtain the sensitivity of an obje
tive fun
tion to 
hanges in any

number of design variables. Both the 
ontinuous and the dis
rete adjoint approa
h are

outlined and the author's preferen
e for the latter is explained.
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1 Introdu
tion

There is a long history of the use of adjoint equations in optimal 
ontrol theory [27℄.

In 
uid dynami
s, the �rst use of adjoint equations for design was by Pironneau [32℄.

However, within the �eld of aeronauti
al 
omputational 
uid dynami
s, it is Jameson

who has applied the methods of optimal 
ontrol theory to formulate optimal design meth-

ods. The term `optimal' refers to the fa
t that one is trying to �nd the geometry whi
h

minimises some obje
tive fun
tion, su
h as the drag. In a sequen
e of papers [20, 21, 23℄

Jameson has developed the adjoint approa
h for potential 
ow, the Euler equations and

the Navier-Stokes equations. The 
omplexity of the appli
ations within these papers also

progressed from 2D airfoil optimisation, to 3D wing design and �nally to 
omplete air
raft


on�gurations [22, 33, 34℄. A number of other resear
h groups have also developed adjoint

CFD 
odes [26, 36, 4, 3, 5℄ using the same `
ontinuous' approa
h in whi
h the �rst step is

to linearise the original partial di�erential equations. The adjoint p.d.e. and appropriate

boundary 
onditions are then formulated, and �nally the equations are dis
retised.

The alternative `dis
rete' approa
h takes a dis
retisation of the Euler or Navier-Stokes

equations, linearises the dis
rete equations and then uses the transpose of the linear

operator to form the adjoint problem. This approa
h has been developed by Elliott [7℄,

Anderson [31, 1℄, Mohammadi [28, 29℄ and Kim [25℄, and it is the approa
h favoured by

the present author.

This paper outlines both approa
hes, emphasising the underlying similarity in their

mathemati
s. The adjoint theory is presented �rstly in the 
ontext of linear algebra, in

whi
h it is most easily understood. This is the basis for the dis
rete adjoint CFD approa
h

in whi
h one works with the algebrai
 equations that 
ome from the dis
retisation of the

original 
uid dynami
 equations. The paper then treats the extension to p.d.e.'s as used

in Jameson's 
ontinuous adjoint approa
h. Here the emphasis is on the 
onstru
tion of

the adjoint p.d.e. and its boundary 
onditions, in
luding the manner in whi
h geometri


perturbations are introdu
ed.

The pros and 
ons of the two approa
hes are then dis
ussed, but in the end it is a

matter of personal judgement. There are advo
ates for ea
h approa
h, but no suggestions

that one approa
h is 
learly better than the other. The paper 
on
ludes with a few simple

numeri
al test 
ases illustrating the 
omputation of lift and mass 
ow sensitivities.

For further information, see the ex
ellent review by Newman et al [30℄ whi
h surveys

both 
ontinuous and adjoint methods, and the papers by Giles [12, 11℄, and Giles & Pier
e

[17℄ whi
h present a more extensive introdu
tion to the adjoint approa
h to design and

some of the related design optimisation issues.
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2 Dis
rete adjoint approa
h

2.1 Fundamental linear algebra

Suppose one wishes to evaluate the ve
tor dot produ
t g

T

u, with u being the solution

of the linear system of equations

Au = f;

for some given matrix A and ve
tor f . An equivalent dual form is to evaluate v

T

f where

the adjoint solution v satis�es the linear system of equations

A

T

v = g:

Note the use of the transposed matrix A

T

, and the inter
hange in the roles of f and g.

The equivalen
e of the two forms is easily proved as follows,

v

T

f = v

T

Au = (A

T

v)

T

u = g

T

u:

Given a single f and a single g, nothing would be gained (or lost) by using the dual

form. However, if we want the value of the obje
tive fun
tion for p di�erent values of

f , and m di�erent value of g, the standard approa
h needs the solution of p di�erent

primal equations, whereas the adjoint approa
h needs the solution of m di�erent adjoint


al
ulations. Therefore, the adjoint approa
h is mu
h 
heaper when m�p.

2.2 Design sensitivities

Given a set of design variables, �, whi
h 
ontrol the geometry of the airfoil, wing or

air
raft being designed, and a set of 
ow variables at dis
rete grid points, U , the aim is

to determine the sensitivity of a single obje
tive fun
tion J(U; �) to 
hanges in �. The

dis
rete 
ow equations, together with the boundary 
onditions, 
an be expressed as

R(U;X(�)) = 0;

where X is the ve
tor of grid point 
oordinates whi
h depends on �. For a single design

variable, we 
an linearise about a baseline geometry and 
ow solution to get

dJ

d�

=

�J

�U

dU

d�

+

�J

��

:

The 
ow sensitivity dU=d� satis�es the linearised 
ow equations

�R

�U

dU

d�

+

�R

��

= 0:

By de�ning

u =

dU

d�

; A =

�N

�U

; g

T

=

�J

�U

; f = �

�N

��
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we 
an 
onvert this into the standard form

dJ

d�

= g

T

u+

�J

��

;

subje
t to

Au = f:

The term �J=�� is relatively easy to evaluate. The term g

T

u � v

T

f 
an be 
omputed

either by the dire
t approa
h, solving Au = f , or by the adjoint approa
h, solving A

T

v =

g. For a single design variable there would be no bene�t in using the adjoint approa
h,

but for multiple design variables, ea
h has a di�erent f , but the same g, so the adjoint

approa
h is 
omputationally mu
h more eÆ
ient.

2.3 Implementation issues

The above des
ription of the dis
rete adjoint approa
h makes it seem straightforward,

and this is one of the strengths of the dis
rete approa
h. However, in implementing it, a

number of important issues arise, of whi
h the most important are:

� Programming of adjoint matrix-ve
tor produ
t

We have written by hand our adjoint 
ode [13℄ to evaluate A

T

v, but this is not a

very easy task. A better alternative may be to follow Mohammadi [28, 29℄ in using

automati
 di�erentiation software [8, 9, 19℄, however this too is not without its

diÆ
ulties. For the evaluation of f = ��N=�� we have used the \
omplex variable

te
hnique" [35℄ used by Anderson et al [2℄. This is a very e�e
tive te
hnique whi
h

is easily implemented.

� Solid wall boundary 
onditions for node-based dis
retisations

The implementation of solid wall boundary 
onditions for node-based dis
retisations

involves the dis
arding of momentum residuals at wall nodes, to be repla
ed by a

no-
ux or no-slip 
ondition for invis
id and vis
ous 
ases, respe
tively. In addition,

the dis
arded momentum residuals sometimes form part of the fun
tional to be eval-

uated. Both of these features introdu
e some additional 
omplexity in formulating

the adjoint problem [13℄.

� Iterative solution of adjoint equations

The eigenvalues of A

T

are exa
tly the same as those of A. Therefore, many stan-

dard iterative methods, su
h as the GMRES method used by Anderson [3℄, are

guaranteed to 
onverge with the same asymptoti
 rate of 
onvergen
e as for the

original nonlinear 
ode. In our work [13℄, we use a spe
ial form of pre
onditioned

time-mar
hing with multigrid, and obtain exa
tly the same 
onvergen
e history for

the sensitivity from the adjoint 
ode as we do from a linearised 
ow perturbation


ode. This also provides a very useful 
he
k on the 
orre
tness of our programming.
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3 Continuous adjoint approa
h

3.1 Fundamental theory

Duality in the 
ase of p.d.e.'s is a natural extension of duality in the linear algebra

formulation. Using (V; U) to denote an integral inner produ
t over some domain 
,

(V; U) �

Z




V

T

U dx;

suppose one wants to evaluate the fun
tional (g; u), where u is the solution of the p.d.e.

Lu = f;

on the domain 
 subje
t to homogeneous boundary 
onditions on the boundary �
.

Using the adjoint formulation, the identi
al fun
tional takes the form (v; f) where v is

the solution of the adjoint p.d.e.

L

�

v = g;

plus appropriate homogeneous adjoint b.
.'s. The adjoint operator L

�

is de�ned by the

identity

(V; LU) = (L

�

V; U);

whi
h must hold for all fun
tions V; U satisfying the respe
tive homogeneous boundary


onditions. Given the de�nitions, the proof of the equivalen
e of the two forms of the

problem is trivial

(v; f) = (v; Lu) = (L

�

v; u) = (g; u):

Thus far, the theory looks extremely similar to the linear algebra behind the dis
rete

approa
h. However, in general, the obje
tive fun
tion of interest involves integrals over

the boundary, rather than over the domain, and the boundary 
onditions are not ho-

mogeneous. To handle this, the following more general form of the adjoint identity is

required.

(V; LU)




+ (C

�

V;BU)

�


= (L

�

V; U)




+ (B

�

V; CU)

�


for all fun
tions U; V , with the notation (:; :)

�


denoting an inner produ
t over the bound-

ary. B and C are both boundary operators (possibly involving normal derivatives) given

in the de�nition of the original problem. B

�

and C

�

are the 
orresponding adjoint bound-

ary operators whi
h 
an be found by integration by parts. Using this adjoint identity, it

follows immediately that

(v; f)




+ (C

�

v; f

2

)

�


= (g; u)




+ (g

2

; Cu)

�


when the primal problem is

Lu = f in 
; and Bu = f

2

on �
;

and the adjoint problem is

L

�

v = g in 
; and B

�

v = g

2

on �
:
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There are some restri
tions on what 
an be imposed as b.
.'s and obje
tive fun
tions.

The analysis is 
ompli
ated (see [23℄ and [14℄ for details) but it reveals that on a solid

surfa
e, the boundary integral term in the obje
tive fun
tion must be a weighted integral

of the linear perturbation in the pressure when using the Euler equations. Similarly, for

the Navier-Stokes equations it must be a weighted integral of the linear perturbation in

the normal and tangential for
es on the surfa
e, and either the heat 
ux or the surfa
e

temperature (depending whether one is spe
ifying the surfa
e temperature or adiabati



onditions, respe
tively).

3.2 Design sensitivities

The most 
ompli
ated step in the 
ontinuous approa
h to design sensitivities is formu-

lating the linearised 
ow equations. In two dimensions, Jameson uses 
urvilinear 
oordi-

nates (�; �) 
orresponding to grid lines of a stru
tured grid, with the airfoil surfa
e being

de�ned as �=0 [21℄. The transformed Euler equations 
an be written as

�

��

 

F

�y

��

�G

�x

��

!

+

�

��

 

�F

�y

��

+G

�x

��

!

= 0;

where F and G represent the usual invis
id 
uxes in the x and y dire
tions. A small

perturbation ~� to a design parameter produ
es 
hanges su
h as

F �! F +

�F

�U

dU

d�

~�

�x

��

�!

�x

��

+

�

2

x

����

~�:

Terms not depending on ~� all 
an
el, and terms depending on ~�

2

are negle
ted. Hen
e,

we get the linearised equations,

�

��

  

A

�y

��

�B

�x

��

!

u

!

+

�

��

  

�A

�y

��

+B

�x

��

!

u

!

=

�

�

��

 

F

�

2

y

����

�G

�

2

x

����

!

�

�

��

 

�F

�

2

y

����

+G

�

2

x

����

!

;

where

A =

�F

�U

; B =

�G

�U

; u =

dU

d�

:

The boundary 
ondition on an invis
id wall is that there is no 
ow normal to the surfa
e

�=0. This remains true as � 
hanges but one needs to 
onsider the linearised perturbation

to the unit normal, whi
h eventually leads an inhomogeneous boundary term.

For 
omplex geometries, it is often not possible to use stru
tured grids. However, the

same idea of using perturbed 
urvilinear 
oordinates 
an be extended to unstru
tured

grids [11, 17℄.
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nonlinear linear

adjoint

Figure 1: Alternative approa
hes to forming dis
rete adjoint equations

3.3 Implementation issues

With the 
ontinuous adjoint approa
h, the dis
retisation of the adjoint equations 
an be


arried out without regard for the dis
retisation of the nonlinear 
ow problem. However,

the standard issues of a

ura
y, stability and 
onvergen
e remain to be addressed.

When 
onsidering 
ows with sho
ks, the analyti
 formulation should treat the sho
ks

as dis
ontinuities a
ross whi
h the Rankine-Hugoniot sho
k jump relations are enfor
ed.

This leads to the important result that the adjoint variables are 
ontinuous a
ross the

sho
k and that an additional adjoint boundary 
ondition must be imposed [16℄. However,

imposing su
h a b.
. would be 
ompli
ated, as it would require the automati
 identi�
ation

of the sho
k lo
ation in the nonlinear 
ow 
al
ulation, so in pra
ti
e, the standard pra
ti
e

is not to enfor
e this 
ondition. Quasi-one-dimensional results have demonstrated that

the in
lusion of numeri
al smoothing automati
ally leads to satisfa
tion of the adjoint

boundary 
ondition at the sho
k [15℄, and results in higher dimensions do not indi
ate

any parti
ular anomalies.

4 Relative advantages of two approa
hes

The di�eren
e between the dis
rete and 
ontinuous approa
hes is shown s
hemati
ally

in Figure 1. In both 
ases one obtains a set of dis
rete adjoint equations. In the dis
rete

approa
h one starts by dis
retising the nonlinear p.d.e.; these equations are then linearised

and transposed. In the the 
ontinuous adjoint approa
h, the dis
retisation is the �nal

step, after �rst linearising and forming the adjoint problem. One 
ould even follow an

intermediate path, linearising the original equations, dis
retising them and then taking

the transpose. In prin
iple, if ea
h of the steps is performed 
orre
tly, and all of the

solutions are suÆ
iently smooth (e.g. no sho
ks) then in the limit of in�nite grid resolution

all three approa
hes should be 
onsistent and 
onverge to the 
orre
t analyti
 value for

design sensitivity.

However, there are important 
on
eptual di�eren
es between the di�erent approa
hes,

and for �nite resolution grids there will be di�eren
es in the 
omputed results. In the

7
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author's opinion, the main advantages of the dis
rete approa
h are:

� Creation of the adjoint program is 
on
eptually straightforward, and in the future

will hopefully be relatively easy using automati
 di�erentiation software.

� Iterative methods based on those used for the solution of the nonlinear 
ow equations

are guaranteed to be stable, and with the same highly-optimised rate of 
onvergen
e.

� There are numerous self-
onsisten
y 
he
ks whi
h 
an be performed, 
omparing

nonlinear 
ux routines with their adjoint 
ounterparts, to identify programming

errors.

On the other hand, the advantages of the 
ontinuous approa
h are:

� The physi
al signi�
an
e of the adjoint variables and the role of adjoint b.
.'s is

mu
h 
learer. Only by 
onstru
ting the adjoint 
ow equations 
an one develop a

good understanding of the nature of adjoint solutions, su
h as the 
ontinuity at

sho
ks, the logarithmi
 singularity at a soni
 point in quasi-1D 
ows [16℄ but not in

2D or 3D (in general) and the inverse square-root singularity along the stagnation

streamline upstream of an airfoil in 2D [14℄.

� The adjoint program is simpler and requires less memory be
ause one is free to

dis
retise the adjoint p.d.e. in any 
onsistent way.

It remains an open question as to whether one approa
h is better when there are non-

linear dis
ontinuities su
h as sho
ks. For quasi-1D Euler 
al
ulations, both approa
hes

give numeri
al results whi
h 
onverge to the analyti
 solution [16℄. For the dis
rete ap-

proa
h, this follows be
ause the integrated pressure 
an be proved to be predi
ted with

se
ond order a

ura
y [10℄. The linearised dis
retisation should therefore yield pertur-

bations to the integral of pressure that are at least �rst-order a

urate. The dis
rete

adjoint formulation, whi
h is 
onstru
ted using this linearised operator, must therefore

behave 
orre
tly to �rst order at the sho
k. For the 
ontinuous approa
h, in the absen
e

of expli
it enfor
ement of the 
orre
t adjoint b.
. at the sho
k, the 
orre
t asymptoti


behaviour 
an be explained as the e�e
t of numeri
al smoothing, given that the 
orre
t

analyti
 solution is the only smooth solution at the sho
k [15℄.

However, in 2D and 3D there is no proof of se
ond order a

ura
y for quantities su
h

as lift and drag, and there is a dis
ontinuity in the gradient of the adjoint variables at

the lo
ation of the sho
k. Therefore it remains an open question as to whether either

approa
h will give a 
onsistent approximation to the gradient of the obje
tive fun
tion

in the limit of in�nite grid resolution. Numeri
al results for test 
ases with strong sho
ks

indi
ate there may be a problem with the dis
rete approa
h [13℄, but results using both

approa
hes suggest that any in
onsisten
y is very small when the sho
ks are weak.
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5 Nonlinear optimisation

Returning to the design problem, the aim is to �nd the set of design variables � whi
h

minimise the nonlinear obje
tive fun
tion J(U; �), where U is an impli
it fun
tion of �

through the 
ow equations

N(U; �) = 0:

These nonlinear 
ow equations and the 
orresponding linear adjoint equations are both

large systems whi
h are usually solved by an iterative pro
edure.

There are two main optimisation strategies using the design sensitivities obtained from

the adjoint problem. The �rst is to use a simple steepest des
ent algorithm,

�� = ��

dJ

d�

;

where � 
ontrols the step size. The advantage of this method is that partially-
onverged


ow and adjoint solutions may be used to evaluate the gradients as long as these gradients

are properly pre
onditioned (through numeri
al smoothing) prior to updating � [21℄. As

a result, the 
ost per design 
y
le is relatively low.

In the se
ond approa
h, approximations to the Hessian matrix of se
ond derivatives

d

2

J

d�

i

d�

j

;

are used to speed 
onvergen
e via a quasi-Newton pro
edure su
h as BFGS [18℄. This

method requires more a

urate 
ow and adjoint solutions, whi
h must generally be 
on-

verged almost fully during ea
h design iteration. As a result, the 
ost of ea
h design 
y
le

is signi�
antly in
reased.

The relative eÆ
ien
y and robustness of the two strategies is still subje
t to debate,

but the re
ent paper by Jameson and Vassberg [24℄ 
omparing the two te
hniques presents


onvin
ing support for the �rst approa
h.

6 Numeri
al results

Figures 2{4 give some examples of adjoint results from another paper [13℄. Figure 2

is an invis
id test 
ase. The symbols show the variation in lift 
oeÆ
ient with angle of

atta
k for a NACA0012 airfoil at a freestream Ma
h number of 0.68. Ea
h of the lines has

a slope given by the lift sensitivity 
al
ulated by the adjoint 
ode based on the nonlinear


ow 
onditions at the angle of atta
k at the 
entral point.

Figure 3 is similar, but for a vis
ous test 
ase, the RAE2822 airfoil at a freestream Ma
h

number of 0.725 and a Reynolds number of 6:5� 10

6

. The Spalart-Allmaras turbulen
e

model is used, and the adjoint 
ode in
orporates the linearisation of the turbulen
e model.

Again there is good agreement between the nonlinear and adjoint results.

Finally, Figure 5 shows an example of a di�erent kind of adjoint 
al
ulation. This is

a test 
ase of unsteady 
ow over a 
as
ade of 
at plate airfoils, with the unsteadiness

9



Mi
hael B. Giles

0 0.2 0.4 0.6 0.8 1 1.2
−0.05

0

0.05

0.1

0.15

0.2

angle of attack
c
l

Figure 2: C
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Figure 3: Lift vs. angle of atta
k for a RAE 2822 pro�le at M = 0:725, Re = 6:5�10
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being 
aused by in
oming wakes with a sinusoidal pro�le. This test 
ase is relevant to the

problems of stru
tural vibration due to for
ed response and 
utter in turboma
hinery. The

standard analysis uses harmoni
 linear unsteady 
ow analysis to 
ompute the unsteady


ow for a single frequen
y of unsteady for
ing. This is expressed as the real part of a


omplex amplitude multiplying a harmoni
 unsteady term,

u(x; y; t) = Rfû(x; y) exp(i!t)g :

The key output is a 
omplex quantity 
alled the \worksum" whi
h represents the gen-

eralised for
e for a parti
ular vibration mode within the 
ontext of 
lassi
al Lagrangian

me
hani
s. The �gure shows the real and imaginary 
omponents of this quantity for the

bending mode of vibration, and its variation as a fun
tion of the interblade phase angle

whi
h is related to the pit
h of the in
oming wakes. The adjoint 
al
ulation 
omputes

the same quantity using the 
omplex 
onjugate transpose of the linear harmoni
 dis
rete

matrix [13, 6℄. The linear and adjoint 
odes produ
es identi
al values for the worksum,

and they agree well with the values produ
ed by another 
ode LINSUB based on semi-

analyti
 theory [37℄. The bene�t of the adjoint approa
h for su
h unsteady problems is

that it 
an give the level of for
ed response for any in
oming wake of a parti
ular fre-

quen
y, whi
h is useful in 
ertain design appli
ations aiming to minimise for
ed response

vibrations [6℄. There is also the potential of using it for the design of blades whi
h a

redu
ed sus
eptibility to 
utter.

7 Con
lusions

This paper has reviewed the underlying theory for optimal design using adjoint methods

to obtain the sensitivity of an obje
tive fun
tion with respe
t to a large number of design

variables. Both the 
ontinuous and the dis
rete approa
hes have been 
overed, and their

relative strengths have been 
ommented on. It is hoped that this will en
ourage and help

others to develop adjoint te
hniques as an integral part of engineering design systems.

Although the ideas have been presented in the 
ontext of aeronauti
al design, the ideas are

equally relevant to any area of engineering design involving large numbers of 
ontinuous

design variables.
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