
gSOAP for web services in C and C++

Mike Giles
Computing Laboratory

June 20, 2003

� web services
� gSOAP
� a simple example
� additional features

gSOAP 1

Web Services

Most web services operate in a client/server RPC
(remote procedure call) manner:

� the server is running permanently (or at least
is started first)

� the client makes a request to the server
� the server returns an answer

NOTE: unlike the Globus model, the server does
not run under the client’s userid, so the client
does not have to have an account on the server
machine.

gSOAP 2

Web Services

Within the basic client/server arrangement, there
are a number of subtle distinctions.

A standard web server can offer services through
CGI executables: it listens to port 80, and if a
requests asks for a particular CGI to be executed
to generate a response then it does it.

Alternatively, can have a standalone web service
which listens to a particular port and deals with
requests.

gSOAP 3

Web Services

What about handling multiple requests from
different clients?

� could queue then up and process them one
at a time

� could spin off a separate thread to deal with
each one

� could spin off a separate process (through a
factory?) to deal with each one

gSOAP 4

Web Services

What about handling multiple requests from the
same client?

If the history of the interaction needs to be
maintained (persistence), this can be done by
opening a communication channel and
maintaining it (keepalive) until the client closes it,
or there’s a timeout.

(In this case, should use a separate thread or
process for each client.)

gSOAP 5

Web Services

Standards are crucial for interoperability of web
services.

SOAP (Simple Object Access Protocol) defines
the RPC interaction:

� XML for the main content (request and
response)

� optional MIME attachment (just like email)
� http/https to send the SOAP messages

There is no restriction on the choice of language
for implementing the server or client application.

gSOAP 6

Web Services

Language-specific support for creating web
services includes:

� Java: IBM Websphere, Sun ONE,
Borland JBuilder, lots of others

� C#: Microsoft .NET
� Python: ZSI (Zolera Soap Infrastructure)
� C/C++: gSOAP

gSOAP 7

Web Services

There is also a standard (UDDI) for directories for
� publishing information about a service
� looking for services to carry out certain tasks

gSOAP does not address this aspect.

gSOAP 8

gSOAP

gSOAP is a package for generating web service
servers and clients in C/C++ (and FORTRAN)

� a pre-processor generates additional C/C++
files given a header file specification of the
RPC routines

� there are also some gSOAP files which
contain the code to do all the conversion of
data to/from XML

� the distribution includes 150 pages of
documentation and lots of example
applications

gSOAP 9

gSOAP

Evidence of the maturity of gSOAP includes:
� now developed through SourceForge after

initial development at Florida State University
� IBM is using it as part of their Web Services

Toolkit for Mobile Devices (maybe because
of its low memory requirements?)

� reviews in Web Services magazines
� assessed as being very efficient by a rival

project at Indiana University
� being used by GridLab, a major EU project

gSOAP 10

gSOAP

Server development and deployment

gSOAP 11

gSOAP

Client development and deployment

gSOAP 12

gSOAP

The example is a web service calculator which
takes two numbers and adds or subtracts them.

For this application, the user writes 3 files:
� calc.h: a header file defining the RPC

routines
� calcserver.c: the server code
� calcclient.c: the client code

gSOAP 13

calc.h

//gsoap ns service name: calc
//gsoap ns schema namespace: urn:calc

int ns add(double a,double b,double *result);

int ns sub(double a,double b,double *result);

The ns prefix and the gSOAP declarations avoid
ambiguities if an application needs to use two
services with the same RPC names

gSOAP 14

calcserver.c

#include <math.h>
#include "soapH.h"
#include "calc.nsmap"

int main(int argc, char **argv)
{ int m, s; /* master and slave sockets */
struct soap soap;
soap init(&soap);

m = soap bind(&soap,NULL,atoi(argv[1]),100);

for (; ;)
{ s = soap accept(&soap);
soap serve(&soap);
soap end(&soap);

}

return 0;
}

gSOAP 15

calcserver.c

int ns add(struct soap *soap,
double a, double b, double *result)

{ *result = a + b;
return SOAP OK;

}

int ns sub(struct soap *soap,
double a, double b, double *result)

{ *result = a - b;
return SOAP OK;

}

gSOAP 16

calcclient.c

#include "soapH.h"
#include "calc.nsmap"

const char server[] =
"http://bsaires.acm.caltech.edu:18083";

int main(int argc, char **argv)
{ struct soap soap;
double a, b, result;

soap init(&soap);

a = strtod(argv[2], NULL);
b = strtod(argv[3], NULL);

gSOAP 17

calcclient.c

switch (*argv[1])
{ case ’a’:

soap call ns add(&soap, server, "",
a, b, &result);

break;
case ’s’:
soap call ns sub(&soap, server, "",

a, b, &result);
break;

}

if (soap.error)
soap print fault(&soap, stderr);

else
printf("result = %g

�
n", result);

return 0;
}

gSOAP 18

gSOAP

Additional features:
� multiple results handled by a result structure
� dynamic arrays handled by a structure with

size and pointer
� keepalive for services needing persistence
� https and SSL for security
� Globus GSI plugin from GridLab group in

Italy
� zlib and gzip compression
� MIME attachments

gSOAP 19

Conclusions

I think gSOAP may be very useful for eScience
groups who primarily program in C/C++

� short learning curve
� easy to develop simple applications
� plenty of sophisticated features for more

advanced use
� very efficient, with compression for reduced

bandwidth
� https, SSL and GSI plugin for security
� main limitation is lack of any UDDI support

gSOAP 20

