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Abstract. Motivated by applications in aero-acoustics and electromagnetics, this pa-
per discusses the combined use of defect correction to improve the order of accuracy
of numerical solutions, and adjoint error correction to improve the order of accuracy
of derived output functionals such as far-field boundary integrals. Numerical results
for the 1D Helmholtz equation on an irregular grid show fourth order accuracy for the
numerical solution, and sixth order accuracy for the boundary value.

1 Introduction

The primary motivation for the work in this paper is the need for high order ac-
curacy for aeroacoustic and electromagnetics calculations. In steady CFD calcu-
lations, grid adaptation can be used to provide high grid resolution in the limited
areas which require it. However, using standard second order accurate methods,
the wave-like nature of aeroacoustic and electromagnetic solutions would lead
to grid refinement throughout the computational domain in order to reduce the
wave dispersion and dissipation to acceptable levels. The preferable alternative
is to use higher order methods, allowing one to use fewer points per wavelength,
which can lead to a very substantial reduction in the total number of grid points
for 3D calculations. The difficulty with this is that one often wants to use un-
structured grids because of their geometric flexibility, and the construction of
higher order approximations on unstructured grids is complicated and compu-
tationally expensive.

The current research also followed from previous research by Pierce and Giles
on the use of adjoint error correction to obtain improved values for output func-
tionals [6]. The relevance of this to aero-acoustic and electromagnetics is that one
is often interested in the value of a far-field boundary integral giving the radiated
acoustic energy in aeroacoustics, or the radar cross-section in electromagnetics
[5]. Pierce and Giles achieved superconvergent results by using a reconstruction
process to formulate a smooth approximate numerical solution. The residual er-
ror in approximating the original p.d.e. was then evaluated, and an approximate
adjoint solution was used to relate this residual error to the consequential error
in the output functional of interest. Removing this estimate of the error gave a
doubling of the order of accuracy of the functional in a number of test cases, in-
cluding the 2D Laplace and quasi-1D Euler equations [3]. An alternative use for
the reconstruction and residual error evaluation would have been to use it to im-
prove the whole solution through the well-known established of defect correction
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(e.g. [1,4,7,8]). However, defect correction and adjoint error correction are not
mutually exclusive; the best accuracy is to be achieved through the simultaneous
use of both techniques.

Accordingly, in this paper we examine the use of both to improve the accu-
racy in approximating the scalar Helmholtz equation on an irregular 1D grid.
The first section describes the model problem and the simple second-order accu-
rate, piecewise linear, Galerkin finite element method which is used as the basic
approximation. The second section describes the defect correction in which a
smooth solution is reconstructed by cubic spline interpolation. The residual error
then produces the source term in a calculation of a correction using the Galerkin
solver; this step is repeated if necessary. The third section very briefly recaps
the adjoint error correction procedure. The final section presents the numerical
results, showing global fourth order accuracy for the solution obtained with de-
fect correction. For the output functional, which in this case in the solution at
one end of the domain, fourth order accuracy is achieved using either defect or
adjoint error correction on their own, but sixth order accuracy is obtained when
using both.

2 Problem description and Galerkin method

The model problem to be solved is the 1D Helmholtz equation
u" +7?u=0, 0<z <10,

subject to the Dirichlet boundary condition u =1 at x = 0 and the radiation
boundary condition u'—imu=0 at £ =10. The analytic solution is u=exp(irx)
and the domain contains precisely five wavelengths. The output functional of
interest is the value u(10) at the right hand boundary. This can be viewed as
a model of a far-field boundary integral giving the radiated acoustic energy in
aeroacoustics, or the radar cross-section in electromagnetics [5].

Integrating by parts, the weak form of the inhomogeneous equation

W+ mnu=f, 0<az<10,
subject to the same boundary conditions is
(') + 7w, u) + irw (10) u(10) = (w, f)

for any differentiable w(z) with w(0)=0. Here the inner product (w, u) is defined
as

10
(w,u) E/ w*u dz,
0

with w* denoting the complex conjugate of w.
The Galerkin solution on the irregular grid z;,7 = 0,1,2,..., N, is defined
as

N
Ule) = 3 Uyt (@)
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where the ¢;(x) are the usual piecewise linear ‘hat’ functions for which ¢;(z;)=
d;j. The value Up is given by the Dirichlet boundary condition. The values of
the other coefficients U; for j >0 are obtained from the equations

—(¢4,U") 4+ 72(¢s, U) +img;(10) U(10) = 0, i=1,2,...,N.

It is well established that this discretisation is second order accurate, producing
dispersion but no dissipation on a uniform grid.

3 Defect correction

The first step in the defect correction is to define a new approximate solution
up(z) by cubic spline interpolation of the nodal values U;. The choice of end
conditions for the cubic spline is very important. A natural cubic spline would
have uj =0 at both ends, but this would introduce small errors at each end since
u"' #0 for the analytic solution. Instead, at z =10 we require the splined solution
to satisfy the analytic boundary condition by imposing u}, —imu, = 0. At =0,
the analytic boundary condition is already imposed through having the correct
value for the end point U(0). Therefore, here we require that u} + 72up = 0 so
the splined solution satisfies the o.d.e. at the boundary.

The solution error, e = u(z) — up(z) satisfies the inhomogeneous Helmholtz
equation

e + e = —(uj +7%up), 0<z <10,

the right-hand-side of which is the residual error of the approximation up(z).
Given the homogeneous Dirichlet boundary condition at z =0, and the same
radiation boundary condition at £ =10, the Galerkin approximation to the error
is given by the equations

—(¢h, B") + 7%(¢s, E) + im;(10) E(10) = —(¢;, uf +7%up), i=1,2,...,N.

Adding the nodal corrections E; to the original nodal values U; gives a corrected
solution. The whole procedure can then be repeated to improve the accuracy.
This follows the procedure described by Barrett et al who also showed that it
converges to a solution of an appropriately defined Petrov-Galerkin discretisa-
tion, with the trial space being the space of cubic splines, while the test space
is the space of piecewise linear functions [1].

4 Adjoint error correction

We begin with a presentation of the linear theory for adjoint error correction in
applications with inhomogeneous boundary conditions and boundary function-
als; for the nonlinear theory, see [3].

Let u be the solution of the linear differential equation

Lu = f,
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in the domain 2, subject to the linear boundary conditions
Bu =e,

on the boundary 9f2. In general, the operator B may be different on different
parts of the boundary, and in some applications (e.g. inflow and outflow sections
for the convection p.d.e.) even its dimension may differ.

The output functional of interest is taken to be

J = (g,u) + (h, Cu)aq,

where (.,.) represents an integral inner product over the domain {2 and (.,.)s0
represents an integral inner product over the boundary 9f2. In [3], the theory
was presented for real variables, but here we are considering complex variables
and so for the general case of vector variables u,v the inner product (v,u) is
defined as

(v, u) E/ vy dv
I7)

with v being the Hermitian (complex conjugate transpose) of v.
The boundary operator C' may be algebraic (e.g. Cu = u) or differential

(e.g. Cu = %), but must have the same dimension as the adjoint boundary
condition operator B* to be defined shortly. Note that the components of h may
be set to zero if the functional does not have a boundary integral contribution.

The corresponding linear adjoint problem is
L*v =g,
in 2, subject to the boundary conditions
B*v=h,

on the boundary 9f2. The fundamental identity defining L*, B* and the bound-
ary operator C* is

(L*v,u) + (B*v,Cu)on = (v, Lu) + (C*v, Bu)sq,

for all u,v. This identity is obtained by integration by parts, and in a previous

paper we describe the construction of the appropriate adjoint operators for the

linearized Euler and Navier-Stokes equations [2]. We will follow the same process

later to construct the adjoint boundary operators for the Helmholtz equation.
Given approximate solutions up, v, we define ey, fn, gn, hp, by

Luy, = fa, L*vy, = gn,
BUh = €h, B*Uh = hha

and hence obtain
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(g,u) + (h,Cu)sa = (g,un) + (h, Cup)on
— (gn,un — u) — (hn, Cup — u))on
+ (9n — g, un — u) + (hp, — h, C(un — u))an

= (g,un) + (h,Cun)oe
— (L*vh,uh — u) — (B*vh,C(uh — u))ag

+ (gh —g,Up — U) + (hh - h,O(Uh - u))59

= (gauh) + (ha Ouh)BQ
— (vn, L(up — u)) — (C*vp, B(up, — u))an
+ (gn — g,un — u) + (hp — h, Cup — u))sn

= (gauh) + (ha Ouh)BQ
= (v, fo — f) = (C*vn,en — €)og
+ (90 — g,un — u) + (hy, — h,C(up — u))asq-

In the final result, the first line is the functional based on the approximate
solution up. The second line is the adjoint correction term which now includes a
term related to the extent to which the primal solution does not correctly satisfy
the boundary conditions. The third line is the remaining error for which an a
posteriori error bound can be found, in principle [6].

To apply this theory to the Helmholtz problem, the first step is to construct
the appropriate adjoint problem. Integration by parts reveals that the Helmholtz
equation is self-adjoint, so

L*v =" + n?v,

and o
(v, Lu) = (L*v, u) = [v Au]
where
U v
U=1du > V= d />
dx dx
and

A= (00

Bu=u'—iru= Bu, B=(-ir 1),

At £ = 10 we have

and
Cu=u=Cu, C=(10).

To satisfy the adjoint identity [2], we require B* and C* such that

-G
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—C\ _ (B ym_( 1 0

B* —\C T\ —-ir -1
and hence B*v = —v' —imv and C*v = —v. Similarly, at =0, we obtain B*v = v
and C*v = v'.

Now, noting that in our application f=¢=0, and h has value 0 at =0 and
1 at =10, then the full specification of the adjoint problem is

Solving this gives

v +7%v=0, 0<az<10,

with v=0 at =0 and —v' —imv = 1 at z=10.

Let vy be an approximate solution of this problem, obtained by the same
Galerkin and cubic spline reconstruction approach as uy, with or without defect
correction. Noting that the cubic spline reconstruction ensures that the boundary
conditions are satisfied exactly, the corrected approximation to the value «(10)
is

up (10) — (vp, up +72up).

The theory gives the error in this corrected functional as being
(v, — v, uf +7up).

In the absence of defect correction, both terms in this inner product are second
order in the average grid spacing and so the error is fourth order. With defect
correction, the first term is fourth order while the second term remains second
order. Therefore, the error remaining after the adjoint error correction is sixth
order.

5 Numerical results

Numerical results have been obtained for grids with 4, 8, 16, 32, 64 and 128 points
per wavelength. To test the ability to cope with irregular grids, the coordinates
for the grid with N intervals are defined as

zo =0, xny =10, szl—]\(f)(j+0'j),0<j<N,

where ¢; is a uniformly distributed random variable in the range [-0.3,0.3].

Figure 1 shows the Ly norm of the error in the reconstructed cubic spline
solution before and after defect correction. Without defect correction, the error
is second order, while with defect correction it is fourth order. Note that a second
application of defect correction makes a significant reduction in the error even
though it remains fourth order. This is because one application of the defect
correction procedure gives a correction which is second order in magnitude, with
a corresponding error which is second order in relative magnitude and therefore
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Fig. 1. L, error in the numerical approximation to u(zx)

fourth order in absolute magnitude. It is this error which is corrected by a second
application of the defect correction procedure.

Figure 2 shows the error in the numerical value for the output functional
©(10). Without any correction, the error is second order. Using either defect
correction or adjoint error correction on their own increases the order of accuracy
to fourth order, but using them both increases the accuracy to sixth order. Note
that the calculation with 8 points per wavelength plus both defect and adjoint
error correction gives an error which is approximately 2 x 10~3. This is more
accurate than the calculation with 128 points per wavelength and no corrections,
and comparable to the results using 14 points and defect correction, or 30 points
with adjoint error correction.

In 3D, the computational cost is proportional to the cube of the number of
points per wavelength, so this indicates the potentially huge savings offered by
the combination of defect and adjoint error correction. The cost of computing the
corrections is five times the cost of the original calculation, due to the additional
two calculations for the defect correction, and the one adjoint calculation plus
its two defect corrections. In practice, the second defect correction for the primal
and adjoint calculations make negligible difference to the value obtained after
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Fig. 2. Error in the numerical approximation to u(10)

the adjoint error correction, so these can be omitted, reducing the cost of the
corrections to just three times the cost of the original calculation.

6 Concluding remarks

The numerical results which have been presented show the potential offered by
defect correction and adjoint error correction, but there is much work to be done
to achieve this potential for multi-dimensional applications. There will be some
problems in the representation and approximation of curved boundaries and
boundary integrals, but the key issue is likely to be the smooth reconstruction
of a numerical solution from nodal data. On a structured grid, cubic spline
interpolation can be used in each direction, but on an unstructured grid one
would need a suitable generalisation of cubic spline interpolation to produce a
reconstructed solution of sufficient smoothness. This will be the main challenge
in trying to reproduce similar improvements in accuracy for aeroacoustic and
electromagnetic calculations on 3D unstructured grids.
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