
Defe
t and Adjoint Error Corre
tionMi
hael B. GilesOxford University Computing Laboratory, Oxford OX1 3QD, U.K.Abstra
t. Motivated by appli
ations in aero-a
ousti
s and ele
tromagneti
s, this pa-per dis
usses the 
ombined use of defe
t 
orre
tion to improve the order of a

ura
yof numeri
al solutions, and adjoint error 
orre
tion to improve the order of a

ura
yof derived output fun
tionals su
h as far-�eld boundary integrals. Numeri
al resultsfor the 1D Helmholtz equation on an irregular grid show fourth order a

ura
y for thenumeri
al solution, and sixth order a

ura
y for the boundary value.1 Introdu
tionThe primary motivation for the work in this paper is the need for high order a
-
ura
y for aeroa
ousti
 and ele
tromagneti
s 
al
ulations. In steady CFD 
al
u-lations, grid adaptation 
an be used to provide high grid resolution in the limitedareas whi
h require it. However, using standard se
ond order a

urate methods,the wave-like nature of aeroa
ousti
 and ele
tromagneti
 solutions would leadto grid re�nement throughout the 
omputational domain in order to redu
e thewave dispersion and dissipation to a

eptable levels. The preferable alternativeis to use higher order methods, allowing one to use fewer points per wavelength,whi
h 
an lead to a very substantial redu
tion in the total number of grid pointsfor 3D 
al
ulations. The diÆ
ulty with this is that one often wants to use un-stru
tured grids be
ause of their geometri
 
exibility, and the 
onstru
tion ofhigher order approximations on unstru
tured grids is 
ompli
ated and 
ompu-tationally expensive.The 
urrent resear
h also followed from previous resear
h by Pier
e and Gileson the use of adjoint error 
orre
tion to obtain improved values for output fun
-tionals [6℄. The relevan
e of this to aero-a
ousti
 and ele
tromagneti
s is that oneis often interested in the value of a far-�eld boundary integral giving the radiateda
ousti
 energy in aeroa
ousti
s, or the radar 
ross-se
tion in ele
tromagneti
s[5℄. Pier
e and Giles a
hieved super
onvergent results by using a re
onstru
tionpro
ess to formulate a smooth approximate numeri
al solution. The residual er-ror in approximating the original p.d.e. was then evaluated, and an approximateadjoint solution was used to relate this residual error to the 
onsequential errorin the output fun
tional of interest. Removing this estimate of the error gave adoubling of the order of a

ura
y of the fun
tional in a number of test 
ases, in-
luding the 2D Lapla
e and quasi-1D Euler equations [3℄. An alternative use forthe re
onstru
tion and residual error evaluation would have been to use it to im-prove the whole solution through the well-known established of defe
t 
orre
tion



2 Mi
hael B. Giles(e.g. [1,4,7,8℄). However, defe
t 
orre
tion and adjoint error 
orre
tion are notmutually ex
lusive; the best a

ura
y is to be a
hieved through the simultaneoususe of both te
hniques.A

ordingly, in this paper we examine the use of both to improve the a

u-ra
y in approximating the s
alar Helmholtz equation on an irregular 1D grid.The �rst se
tion des
ribes the model problem and the simple se
ond-order a

u-rate, pie
ewise linear, Galerkin �nite element method whi
h is used as the basi
approximation. The se
ond se
tion des
ribes the defe
t 
orre
tion in whi
h asmooth solution is re
onstru
ted by 
ubi
 spline interpolation. The residual errorthen produ
es the sour
e term in a 
al
ulation of a 
orre
tion using the Galerkinsolver; this step is repeated if ne
essary. The third se
tion very brie
y re
apsthe adjoint error 
orre
tion pro
edure. The �nal se
tion presents the numeri
alresults, showing global fourth order a

ura
y for the solution obtained with de-fe
t 
orre
tion. For the output fun
tional, whi
h in this 
ase in the solution atone end of the domain, fourth order a

ura
y is a
hieved using either defe
t oradjoint error 
orre
tion on their own, but sixth order a

ura
y is obtained whenusing both.2 Problem des
ription and Galerkin methodThe model problem to be solved is the 1D Helmholtz equationu00 + �2u = 0; 0 < x < 10;subje
t to the Diri
hlet boundary 
ondition u = 1 at x = 0 and the radiationboundary 
ondition u0�i�u=0 at x=10. The analyti
 solution is u=exp(i�x)and the domain 
ontains pre
isely �ve wavelengths. The output fun
tional ofinterest is the value u(10) at the right hand boundary. This 
an be viewed asa model of a far-�eld boundary integral giving the radiated a
ousti
 energy inaeroa
ousti
s, or the radar 
ross-se
tion in ele
tromagneti
s [5℄.Integrating by parts, the weak form of the inhomogeneous equationu00 + �2u = f; 0 < x < 10;subje
t to the same boundary 
onditions is�(w0; u0) + �2(w; u) + i�w�(10)u(10) = (w; f);for any di�erentiable w(x) with w(0)=0. Here the inner produ
t (w; u) is de�nedas (w; u) � Z 100 w�u dx;with w� denoting the 
omplex 
onjugate of w.The Galerkin solution on the irregular grid xj ; j = 0; 1; 2; : : : ; N , is de�nedas U(x) = NXj=0Uj�j(x)
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t and Adjoint Error Corre
tion 3where the �j(x) are the usual pie
ewise linear `hat' fun
tions for whi
h �j(xi)=Æij . The value U0 is given by the Diri
hlet boundary 
ondition. The values ofthe other 
oeÆ
ients Uj for j>0 are obtained from the equations�(�0i; U 0) + �2(�i; U) + i��i(10)U(10) = 0; i = 1; 2; : : : ; N:It is well established that this dis
retisation is se
ond order a

urate, produ
ingdispersion but no dissipation on a uniform grid.3 Defe
t 
orre
tionThe �rst step in the defe
t 
orre
tion is to de�ne a new approximate solutionuh(x) by 
ubi
 spline interpolation of the nodal values Uj . The 
hoi
e of end
onditions for the 
ubi
 spline is very important. A natural 
ubi
 spline wouldhave u00h=0 at both ends, but this would introdu
e small errors at ea
h end sin
eu00 6=0 for the analyti
 solution. Instead, at x=10 we require the splined solutionto satisfy the analyti
 boundary 
ondition by imposing u0h� i�uh = 0. At x=0,the analyti
 boundary 
ondition is already imposed through having the 
orre
tvalue for the end point U(0). Therefore, here we require that u00h + �2uh = 0 sothe splined solution satis�es the o.d.e. at the boundary.The solution error, e = u(x)� uh(x) satis�es the inhomogeneous Helmholtzequation e00 + �2e = �(u00h+�2uh); 0 < x < 10;the right-hand-side of whi
h is the residual error of the approximation uh(x).Given the homogeneous Diri
hlet boundary 
ondition at x = 0, and the sameradiation boundary 
ondition at x=10, the Galerkin approximation to the erroris given by the equations�(�0i; E0) + �2(�i; E) + i��i(10)E(10) = �(�i; u00h+�2uh); i = 1; 2; : : : ; N:Adding the nodal 
orre
tions Ej to the original nodal values Uj gives a 
orre
tedsolution. The whole pro
edure 
an then be repeated to improve the a

ura
y.This follows the pro
edure des
ribed by Barrett et al who also showed that it
onverges to a solution of an appropriately de�ned Petrov-Galerkin dis
retisa-tion, with the trial spa
e being the spa
e of 
ubi
 splines, while the test spa
eis the spa
e of pie
ewise linear fun
tions [1℄.4 Adjoint error 
orre
tionWe begin with a presentation of the linear theory for adjoint error 
orre
tion inappli
ations with inhomogeneous boundary 
onditions and boundary fun
tion-als; for the nonlinear theory, see [3℄.Let u be the solution of the linear di�erential equationLu = f;



4 Mi
hael B. Gilesin the domain 
, subje
t to the linear boundary 
onditionsBu = e;on the boundary �
. In general, the operator B may be di�erent on di�erentparts of the boundary, and in some appli
ations (e.g. in
ow and out
ow se
tionsfor the 
onve
tion p.d.e.) even its dimension may di�er.The output fun
tional of interest is taken to beJ = (g; u) + (h;Cu)�
 ;where (:; :) represents an integral inner produ
t over the domain 
 and (:; :)�
represents an integral inner produ
t over the boundary �
. In [3℄, the theorywas presented for real variables, but here we are 
onsidering 
omplex variablesand so for the general 
ase of ve
tor variables u; v the inner produ
t (v; u) isde�ned as (v; u) � Z
 vHu dVwith vH being the Hermitian (
omplex 
onjugate transpose) of v.The boundary operator C may be algebrai
 (e.g. Cu � u) or di�erential(e.g. Cu � �u�n ), but must have the same dimension as the adjoint boundary
ondition operator B� to be de�ned shortly. Note that the 
omponents of h maybe set to zero if the fun
tional does not have a boundary integral 
ontribution.The 
orresponding linear adjoint problem isL�v = g;in 
, subje
t to the boundary 
onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the bound-ary operator C� is(L�v; u) + (B�v; Cu)�
 = (v; Lu) + (C�v;Bu)�
 ;for all u; v. This identity is obtained by integration by parts, and in a previouspaper we des
ribe the 
onstru
tion of the appropriate adjoint operators for thelinearized Euler and Navier-Stokes equations [2℄. We will follow the same pro
esslater to 
onstru
t the adjoint boundary operators for the Helmholtz equation.Given approximate solutions uh; vh we de�ne eh; fh; gh; hh byLuh = fh; L�vh = gh;Buh = eh; B�vh = hh;and hen
e obtain
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t and Adjoint Error Corre
tion 5(g; u) + (h;Cu)�
 = (g; uh) + (h;Cuh)�
� (gh; uh � u)� (hh; C(uh � u))�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
= (g; uh) + (h;Cuh)�
� (L�vh; uh � u)� (B�vh; C(uh � u))�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
= (g; uh) + (h;Cuh)�
� (vh; L(uh � u))� (C�vh; B(uh � u))�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
= (g; uh) + (h;Cuh)�
� (vh; fh � f)� (C�vh; eh � e)�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
 :In the �nal result, the �rst line is the fun
tional based on the approximatesolution uh. The se
ond line is the adjoint 
orre
tion term whi
h now in
ludes aterm related to the extent to whi
h the primal solution does not 
orre
tly satisfythe boundary 
onditions. The third line is the remaining error for whi
h an aposteriori error bound 
an be found, in prin
iple [6℄.To apply this theory to the Helmholtz problem, the �rst step is to 
onstru
tthe appropriate adjoint problem. Integration by parts reveals that the Helmholtzequation is self-adjoint, so L�v � v00 + �2v;and (v; Lu)� (L�v; u) = �vHAu�100 ;where u = � ududx � ; v = � vdvdx � ;and A = � 0 1�1 0� :At x = 10 we haveBu � u0 � i�u � Bu; B = (�i� 1) ;and Cu � u � Cu; C = (1 0) :To satisfy the adjoint identity [2℄, we require B� and C� su
h thatA = ��C�B� �H �BC � :



6 Mi
hael B. GilesSolving this gives ��C�B� � = �BC ��HAH = � 1 0�i� �1�and hen
e B�v � �v0�i�v and C�v � �v. Similarly, at x=0, we obtain B�v = vand C�v = v0.Now, noting that in our appli
ation f=g=0, and h has value 0 at x=0 and1 at x=10, then the full spe
i�
ation of the adjoint problem isv00 + �2v = 0; 0 < x < 10;with v=0 at x=0 and �v0 � i�v = 1 at x=10.Let vh be an approximate solution of this problem, obtained by the sameGalerkin and 
ubi
 spline re
onstru
tion approa
h as uh, with or without defe
t
orre
tion. Noting that the 
ubi
 spline re
onstru
tion ensures that the boundary
onditions are satis�ed exa
tly, the 
orre
ted approximation to the value u(10)is uh(10)� (vh; u00h+�2uh):The theory gives the error in this 
orre
ted fun
tional as being(vh � v; u00h+�2uh):In the absen
e of defe
t 
orre
tion, both terms in this inner produ
t are se
ondorder in the average grid spa
ing and so the error is fourth order. With defe
t
orre
tion, the �rst term is fourth order while the se
ond term remains se
ondorder. Therefore, the error remaining after the adjoint error 
orre
tion is sixthorder.5 Numeri
al resultsNumeri
al results have been obtained for grids with 4, 8, 16, 32, 64 and 128 pointsper wavelength. To test the ability to 
ope with irregular grids, the 
oordinatesfor the grid with N intervals are de�ned asx0 = 0; xN = 10; xj = 10N (j + �j) ; 0<j<N;where �j is a uniformly distributed random variable in the range [�0:3; 0:3℄.Figure 1 shows the L2 norm of the error in the re
onstru
ted 
ubi
 splinesolution before and after defe
t 
orre
tion. Without defe
t 
orre
tion, the erroris se
ond order, while with defe
t 
orre
tion it is fourth order. Note that a se
ondappli
ation of defe
t 
orre
tion makes a signi�
ant redu
tion in the error eventhough it remains fourth order. This is be
ause one appli
ation of the defe
t
orre
tion pro
edure gives a 
orre
tion whi
h is se
ond order in magnitude, witha 
orresponding error whi
h is se
ond order in relative magnitude and therefore
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Fig. 1. L2 error in the numeri
al approximation to u(x)fourth order in absolute magnitude. It is this error whi
h is 
orre
ted by a se
ondappli
ation of the defe
t 
orre
tion pro
edure.Figure 2 shows the error in the numeri
al value for the output fun
tionalu(10). Without any 
orre
tion, the error is se
ond order. Using either defe
t
orre
tion or adjoint error 
orre
tion on their own in
reases the order of a

ura
yto fourth order, but using them both in
reases the a

ura
y to sixth order. Notethat the 
al
ulation with 8 points per wavelength plus both defe
t and adjointerror 
orre
tion gives an error whi
h is approximately 2 � 10�3. This is morea

urate than the 
al
ulation with 128 points per wavelength and no 
orre
tions,and 
omparable to the results using 14 points and defe
t 
orre
tion, or 30 pointswith adjoint error 
orre
tion.In 3D, the 
omputational 
ost is proportional to the 
ube of the number ofpoints per wavelength, so this indi
ates the potentially huge savings o�ered bythe 
ombination of defe
t and adjoint error 
orre
tion. The 
ost of 
omputing the
orre
tions is �ve times the 
ost of the original 
al
ulation, due to the additionaltwo 
al
ulations for the defe
t 
orre
tion, and the one adjoint 
al
ulation plusits two defe
t 
orre
tions. In pra
ti
e, the se
ond defe
t 
orre
tion for the primaland adjoint 
al
ulations make negligible di�eren
e to the value obtained after
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Fig. 2. Error in the numeri
al approximation to u(10)the adjoint error 
orre
tion, so these 
an be omitted, redu
ing the 
ost of the
orre
tions to just three times the 
ost of the original 
al
ulation.6 Con
luding remarksThe numeri
al results whi
h have been presented show the potential o�ered bydefe
t 
orre
tion and adjoint error 
orre
tion, but there is mu
h work to be doneto a
hieve this potential for multi-dimensional appli
ations. There will be someproblems in the representation and approximation of 
urved boundaries andboundary integrals, but the key issue is likely to be the smooth re
onstru
tionof a numeri
al solution from nodal data. On a stru
tured grid, 
ubi
 splineinterpolation 
an be used in ea
h dire
tion, but on an unstru
tured grid onewould need a suitable generalisation of 
ubi
 spline interpolation to produ
e are
onstru
ted solution of suÆ
ient smoothness. This will be the main 
hallengein trying to reprodu
e similar improvements in a

ura
y for aeroa
ousti
 andele
tromagneti
 
al
ulations on 3D unstru
tured grids.
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