
A nested Multilevel Monte Carlo
framework for efficient simulations

on FPGAs

Irina-Beatrice Nimerenco
St Hugh’s College

University of Oxford

A thesis submitted for the degree of
MSc in Mathematical Modelling and Scientific Computing

Trinity 2024

2

Acknowledgements

First, I would like to thank our Course Director, Dr. Kathryn Gillow, for
her dedication, her kindness and her availability throughout the year and
for making our entire cohort feel supported at all times.

I would like to thank my master thesis supervisor, Prof. Mike Giles, for his
precious feedback and directions, for the time he allocated to answering
my questions and all the advice and insight he gave me.

I also really want to thank Prof. Yuji Nakatsukasa and Prof. Raphael
Hauser for their encouragements and their guidance this year.

I am very grateful to all academics and internship supervisors that in-
spired and motivated me during my studies.

I would like to thank many people from my cohort in Oxford for being
friendly and outgoing, and I hope that everyone will be successful and
happy in the next steps of their studies and career. In particular, I would
like to mention Gabriel, Luo, Botond, Makoto and Ben B. - thank you all
for the fun and hard time we had together.

Then of course I would like to thank my parents and my close friends
for the love and support they showed me. Finally, I would like to thank
specifically my mother for proofreading my thesis.

Abstract

Multilevel Monte Carlo (MLMC) is a widely used method allowing to
reduce the computational cost of stochastic simulations, notably for pric-
ing financial options. The main idea is to approximate the expectation
of a random variable using multiple resolutions in the numerical schemes
that solve the Stochastic Differential Equation decribing the dynamics
of the underlying asset of the option. This method is highly parallelis-
able which makes is suitable for efficient hardware implementations. An
important avenue for decreasing the power consumption and speeding
MLMC simulations further is the use of lower precision calculations which
are efficiently performed on configurable hardware devices such as Field-
Programmable Gate Arrays (FPGAs). A framework that mixed MLMC
with customizable precision was proposed in [6], however in this thesis
we propose a new framework that improves over the previous literature
using two important directions : first, using a rounding error model we
propose a procedure to adapt the precision of several variables at each
level ; second, we assume that the random numbers used in path genera-
tion on FPGAs is performed with almost negligible cost, and we provide
arguments and examples of random number generators that would al-
low this. This way, we argue that our proposed framework offers higher
computational savings.

Contents

1 Introduction 1
1.1 Background on FPGAs . 2
1.2 Fixed-point arithmetic . 4
1.3 Pricing an European vanilla option with the Euler-Maruyama scheme 6
1.4 Monte Carlo methods for SDEs applications 7

1.4.1 Accuracy achieved by Multilevel Monte Carlo 10
1.4.2 Multilevel Monte Carlo algorithm 11
1.4.3 Nested multilevel Monte Carlo 11

1.5 Literature overview . 12
1.6 Objective and summary of the contribution of this work 14

2 Rounding error model via linear approximation 15
2.1 Linearised model of the total error 15
2.2 Algorithmic differentiation for sensitivity analysis 16
2.3 Estimates of the overall variance . 17
2.4 Numerical validation of the variance model 17

3 Bit-width optimisation 19
3.1 Computational cost model and global problem formulation 19
3.2 Bit-width optimisation methods . 21

3.2.1 Analogy with the 0-1 knapsack problem and greedy algorithm 21
3.2.2 Lagrange multiplier and priority ratio 23
3.2.3 Integer quadratic programming for the cost (3.4) 24
3.2.4 Numerical comparison of the bit-width optimisation methods 25

3.3 Global optimisation for the nested Monte Carlo estimator 27

i

4 Nested Multilevel Monte Carlo and rounding error analysis 29
4.1 Mixed precision MLMC algorithm . 29
4.2 Numerical experiments : global optimisation and nested framework . 31

4.2.1 Cost savings with the nested framework 31
4.2.2 Bit-widths and variance over levels 33

4.3 A leading order model of the error 36
4.3.1 Numerical experiment . 38

4.4 Conclusion . 40

5 Gaussian random number generation on CPUs and FPGAs 41
5.1 Background on Gaussian Random Number Generators 41
5.2 Generation of gaussian variables using the inversion method 43

5.2.1 Piecewise constant approximation on uniform intervals (Method
1) . 43

5.2.2 Piecewise linear approximation on dyadic intervals
(Method 2) . 44

5.2.3 Combination of CDF inversion and Central Limit Theorem
(Method 3) . 46

5.3 Computational cost of approximate GRNG on CPUs and FPGAs . . 47
5.4 Empirical comparison of the GRNG methods 1,2 and 3 49

5.4.1 Discussion on the MSE . 50
5.4.2 Pointwise error and accuracy of the last bits 52
5.4.3 Summing more low precision Gaussian variables 53

5.5 Discussion and conclusion . 54

6 Conclusion 55

A Main components of an FPGA 56

B Multilevel Monte Carlo Algorithm pseudo-code 58

C Complements referenced in Chapter 3 59

D Uniform precision heuristic 62

Bibliography 64

ii

List of Figures

1.1 A simplified representation of an unconfigured FPGA (left) and a con-
figured FPGA (right). Reproduced from [41]. 3

1.2 Forward computation of the output P from the input θ. 5
1.3 Illustration of additions in fixed-point arithmetic. 6
1.4 Illustration of multiplication of two variables in fixed-point arithmetic. 6

2.1 Simulated variance of the error vs variance estimates that assume in-
dependence or perfect correlation of errors, for N = 4 time steps. . . 18

2.2 Simulated variance of the error vs variance estimates that assume in-
dependence or perfect correlation of errors, for N = 16 time steps. . . 18

3.1 Variance obtained with different bit width optimisation methods vs.
desired variance and variance obtaind with uniform bit-widths set us-
ing [6]. 26

3.2 Cost vs desired variance for the cost (3.4). 27
3.3 Cost vs desired variance for the cost (3.5). 27

4.1 Cost per sample Cl and C̃l for CRNG = 104. 32
4.2 Factor Cl/C̃l for CRNG = 104. 32
4.3 Level cost for CRNG = 104. Comparison with classical MLMC. 32
4.4 Total cost (

∑L
l=0

√
ṼlC̃l+

√
VlCl)

2 for CRNG = 104 (blue). Comparison
with classical MLMC. 32

4.5 Level cost for CRNG = 103. Comparison with classical MLMC. 33
4.6 Total cost (

∑L
l=0

√
ṼlC̃l+

√
VlCl)

2 for CRNG = 103 (blue). Comparison
with classical MLMC. 33

4.7 Optimal bit-widths obtained over levels 0 to 8 for CRNG = 104. 35
4.8 Optimal bit-widths at level 1 (rounded with Equation (3.16)) for CRNG =

104, represented in the order in which they are used in the path gen-
eration in each time step. 35

4.9 Sensitivities for CRNG = 104 over levels. 35

iii

4.10 Exponents for CRNG = 104 over levels. 35
4.11 Factor α for CRNG = 104 over levels. 36
4.12 E[x̄2

i,l]4
ei,l−di,l−1 for each variable i for CRNG = 104. 36

4.13 Variance Vl and Ṽl over levels 0 to 8 for CRNG = 104. 36
4.14 Variance for path generation in fixed point with optimised precision at

each level. 39
4.15 Optimal bit-widths at level 8. 39
4.16 Variance for path generation in floating point with fixed precision. . . 39

5.1 Function Φ−1 on [0, 1] and uniform intervals on [0, 1/2]. 43
5.2 Function Φ−1 on [0, 1] and dyadic intervals on [0, 1/2] as in [16]. . . . 43
5.3 Piecewise constant approximation with uniform intervals for d = 10. . 44
5.4 Error in piecewise constant approximation with uniform intervals for

d = 10. 44
5.5 Piecewise linear approximation with dyadic intervals for d = 10. . . . 45
5.6 Error in piecewise linear approximation with dyadic intervals for d = 10. 45
5.7 Two variables approach with uniform intervals for d = 10. 48
5.8 Error for the two variables approach with uniform intervals for d = 10. 48
5.9 MSE for methods 1,2 and 3 for different d. 51

C.1 E[x̄2] for all the intermediary variables (from Algorithm 1) over the
time steps, for N = 16 time steps. 60

C.2 Bit-widths obtained with different optimisation methods for a single
level and N = 16 time steps. 61

iv

Chapter 1

Introduction

Monte Carlo simulations are used in various applications to approximate the expec-
tation of random variables that can be simulated but do not have a known analytical
expression. In particular the targeted application of our work and most of the liter-
ature cited in this thesis is in financial applications where the quantity of interest is
the expected payoff of a financial option. Monte Carlo methods consist of generating
a large number of samples and using their mean to estimate the expected payoff of
an option that is based on a stochastic process. With the standard Monte Carlo es-
timator obtaining a desired variance of ϵ2 requires O(ϵ−2) samples which can be very
expensive. Therefore a number of variance reduction techniques such as multilevel
Monte Carlo, quasi Monte Carlo, control variates, antithetic variables and more have
been developed to achieve higher accuracy for the same computational cost [18].

The Multilevel Monte Carlo (MLMC) method for SDEs was first proposed in 2008
in the paper [17] and was since adapted to numerous applications with PDEs and
SPDEs and combined with other variance reduction methods (eg. with quasi-Monte
Carlo in [15]). A good review of MLMC applications and extensions is [18]. The
main idea of the method is to approximate the payoff on multiple grids of different
resolutions and use an optimal number of samples on each level. The computational
savings come from the fact that most samples are computed on the coarser levels and
hence are less expensive to calculate while only a few samples from the finest levels
are required.

Among the directions in which the computational complexity of MLMC methods
could further be reduced an important avenue is the use of lower precision in calcu-
lations. Low precision is already successfully exploited in other domains of scientific
computing : a few examples are in optimisation [9], machine learning [22], and iter-
ative refinement [26, 4] in numerical linear algebra. An overview of the research on
mixed precision for the standard Monte Carlo framework is provided in [8] but only

1

a few references study the potential of low precision computation in the multilevel
framework [39]. To the best of our knowledge,the only MLMC framework with opti-
mised precision in the literature is [6], but their framework uses a uniform precision
for each Monte Carlo level instead of allowing each intermediary operation to have
an optimised precision.

An important motivation for an MLMC framework with variable precision would
be to perform the low precision computations on reconfigurable hardware devices such
as Field Programmable Gate Arrays (FPGAs). FPGAs contain customizable logic
blocks and connectors that allow to easily adapt the digital circuit architecture for
a specific application, leading to a highly parallelised and optimised implementation.
Therefore they are successfully exploited in applications that require high speed and
have high computational workload such as signal processing and real time applications
like high frequency trading [30, 5].

The main goal of this thesis is to build a nested MLMC framework specifically to
exploit FPGAs, which would perform the low precision computations in fixed-point
arithmetic very efficiently. This would allow to accelerate tasks like pricing financial
derivatives or simulations in biochemistry [18] and reduce significantly the energy
consumption of the devices that are used.

In the following sections of this chapter, we introduce preliminaries on FPGAs,
fixed-point arithmetic and MLMC simulations to help the reader delve into our
project. We make a short literature review and summarise our contributions in the
last two sections. Then the thesis is organised as follows : In Chapters 2 to 4 we make
the necessary arguments to build the nested framework and investigate the compu-
tational savings and limitations. We also explain how the optimal precisions evolve
over levels and connect them to the evolution of the rounding errors with level (see
[39]). Finally in Chapter 5 we discuss approximate random number generation meth-
ods that would be relevant for the FPGAs (including aspects of their implementation
into the hardware) and would reduce the overall computational cost further.

Our numerical experiments were implemented in Matlab using the Fixed-Point
Arithmetic toolbox.

1.1 Background on FPGAs
In this section we quickly introduce the main characteristics of FPGAs in order to
highlight their potential for scientific computing applications. We will notably detail
the main differences between FPGAs, CPUs and GPUs, as we assume the reader is

2

more familiar with the latter two devices. We also present the main components of
FPGAs and their applications.

FPGAs are devices made of a ”fine-grain grid” ([40]) of logic blocks and intercon-
nects that can be reconfigured almost infinitely many times after manufacturing to
adapt to the desired applications and perform new functions. An FPGA is able to
reoptimise its architecture and change its configuration without requiring any change
in the actual physical circuit. This is illustrated in Figure 1.1, where two independent
functions (function A and function B) are implemented on the same FPGA. These
functions can therefore be executed in parallel and so are the blocks AF5a and AF5b
which are part of function A. Notice that in this example four blocks remain unconfig-
ured and only the connections represented by the dark arrows are activated so most
of the interconnect area is also unused. This configuration (blocks and connections)
could be changed whenever a new one is needed.

Figure 1.1: A simplified representation of an unconfigured FPGA (left) and a config-
ured FPGA (right). Reproduced from [41].

This flexibility allows to reduce the time and cost of designing application specific
platforms and makes FPGAs popular for hardware design testing and optimisation.
However its configuration requires expertise as it is performed in a Hardware Descrip-
tion Language (HDL) such as VHDL or Verilog. ”HDL code is more like a schematic
that uses text to introduce components and create interconnections” [29]. Other de-
vices (especially CPUs) are easier to set up, which may explain the limited attention
that FPGAs have received from the scientific computing community so far.

Thanks to their flexibility and efficiency, FPGAs are exploited in a number of ap-
plications namely telecommunications, automotive, aerospace, consumer electronics,
medical imaging and robotics [29, 21]. They are also used in high-frequency trading
to dramatically reduce latency [30] and some authors [5] accelerate the integration
of trading algorithms from high level languages to FPGA circuits by using high-level

3

synthesis (HLS) 1.Broadly speaking, FPGAs are a key component in a number of
embedded systems because they ease hardware design updates and accelerate the
development process (compared to developing an Application Specific Integrated Cir-
cuit (ASIC)), and they are important for streaming applications where high speed,
parallelism and reduced power consumption are sought [41].

An FPGA is mainly made of logic blocks that can be linked to Look-Up-Tables,
memory blocks or more specific units like DSPs (see Table A.1). The logic blocks on
FPGAs perform bit-wise operations on a small number of bits. On the other hand,
traditional devices like CPUs and GPUs act on larger blocks of data and although
they have their own advantages their architecture is fixed. CPUs are efficient for
implementing complex software as they can execute complicated functions but they
suffer from latencies because the result of each operation has to be put into memory
after being processed by a logic block. The data then goes back and forth between
memory blocks and logic blocks which takes time. For this reason, CPUs are not
adapted to streaming applications in which several tasks are concatenated and only a
part of the outputs need access to memory. GPUs partially solve this problem as they
are specialized for treating large amounts of data by performing vectorised operations.
They are particularly efficient for parallelisable tasks. However once configured for a
specific application FPGAs can be faster than GPUs and handle important workloads
and more diverse sizes of data [40], especially because their implementation has more
flexibility for optimisation which maximises their efficiency [41]. In early product
development stages FPGAs can also be used instead of investing time and money in
the development of ASICs and another important application of large modern FPGAs
is in hardware design testing [41].

To conclude, we believe that the success of FPGAs in other applications and their
advantages compared to other devices could incite more research on this topic from
the scientific computing community. MLMC is a suitable application for FPGAs
because it can make good use of very cheap, low-precision calculations.

1.2 Fixed-point arithmetic
FPGAs are very efficient for fixed-point calculations and in fact, although recent
models have integrated new components that implement floating-point arithmetic,
FPGAs originally could compute in floating-point only if they were configured with

1HLS : According to Wikipedia HLS is ”an automated design process” that takes high level code
and turns it into HDL code which then be ”synthesised to the gate level”.

4

f1 f2 f3
x0 = θ x1 x2 x3 = P

Figure 1.2: Forward computation of the output P from the input θ.

user-defined functions for that, as the extensive literature on floating-point implemen-
tation on FPGAs shows. In this work we exploit fixed-point arithmetic as it allows us
to formulate a mathematical problem to optimise the precision used in every opera-
tion that is performed to compute a sample of the payoff. The key difference between
fixed-point and floating-point arithmetic is that the latter allows the exponent of a
variable (which is represented by the position of a point) to adapt in order to repre-
sent the variable with as high accuracy as possible, whereas in fixed-point arithmetic
this scaling is fixed when the variable is created. We define here the notation and the
bounds on the rounding errors on the fixed-point variables.

Say a parameter or input used to compute P (in full precision) is denoted as θ and
every elementary operation performed to compute P defines an intermediary variable
denoted θ = x0, x1, ..., xm as illustrated in 1.2.

Now each variable is represented in fixed-point arithmetic as

xi = (−1)s2ei(2−din), with n ∈ [0, 2d − 1]. (1.1)

where ei is the exponent and defines the range of the variable such that |xi| < 2ei , si
is the sign bit, n is the represented integer and di is the word length or bit-width, ie.
the number of bits assigned to represent n. Due to its finite precision the variable xi

is computed with a rounding error δxi. This error comes only from the last operation
performed to obtain xi and must not be confused with the overall error between the
accurate value of xi and the one obtained after all the fixed-point operations with
possibly propagating errors. Additionally we use the convergent round-to-nearest
rounding mode at every fixed-point operation, which is presented in [36]. Therefore
the error δxi can be bounded by :

|δxi| ≤ 2ei−di−1. (1.2)

Cost of elementary operations :
To set the precision of each variable in our MLMC framework we will minimise the
computational cost under a constraint on the variance. Therefore we use a model
introduced by [32] to approximate the cost of the elementary operations in fixed-
point arithmetic. The cost of addition and multiplication of variables xi, xj is

xi + xj → di + dj

xi × xj → di × dj
(1.3)

5

The reasoning behind these approximates is fairly natural as illustrated in Figures 1.3
and 1.4. A multiplication is performed bitwise : each bit of variable a is multiplied
by the variable b then the results are summed over the bits of a. For addition in fixed
point arithmetic the numbers are aligned so that their fixed points are superposed.
Then the fraction bits are summed and the integer bits are summed separately, and
the result of a + b is obtained. The position of the fixed point can then be adapted
if the new variable has a different specified fraction length.

Figure 1.3: Illustration of additions in
fixed-point arithmetic.

Figure 1.4: Illustration of multipli-
cation of two variables in fixed-point
arithmetic.

Matlab fi objects :
In Matlab we use the Fixed-Point Arithmetic toolbox to represent fixed point vari-
ables. The parameters are the ”signedness” (1 if the variable is signed, 0 otherwise)
the word length w (which should include an extra bit if the variable is signed) and the
fraction length f , which is f = d− e, so that x = 2−fN , where for a signed variable
N ∈ [−2w, 2w − 1] is an the integer represented on w = d + 1 bits using the two’s
complement representation, and for an unsigned variable N ∈ [0, 2w − 1] with d = w.
Note that the fraction length can be larger than the word length, which corresponds
to |x| < 1. Another important point is that Matlab offers several rounding modes. We
used the ”Convergent” mode [36] which is a round-to-nearest mode that rounds ties
to the nearest even number. This treatment of ties is the most statistically accurate
(it does not introduce any bias).

1.3 Pricing an European vanilla option with the
Euler-Maruyama scheme

In this section we introduce the work example used throughout the thesis and the
values of the parameters (as they will be the same throughout our experiments). This
also allows to introduce the notation used in error modelling and analysis sections.

6

The payoff function for the European vanilla option is

P = max(S −K, 0) (1.4)

Where K is the strike. The underlying asset follows the Geometric Brownian Motion
: dSt = rStdt+σStdWt, where r is the interest rate and σ is the volatility of the asset.
In our numerical experiments r = 0.05 and σ = 0.2. This SDE is solved numerically
using the Euler-Maruyama scheme

Si+1 = Si + rSih+ σSi

√
hdWi. (1.5)

In practice we will scale the asset price S by dividing it by K so the payoff becomes
P = max(S−1, 0). Then the forward code to compute a path where every elementary
operation is written separately to show the intermediary variables is presented in
Algorithm 1.

Algorithm 1 Geometric Brownian Motion path calculation (in fixed-point arith-
metic)

Inputs: interest rate r, volatility σ, maturity T , initial asset price S0, number of
time steps N
h← T/N
rh← r ∗ h
sh2←

√
hσ

generate random normals dWi for i = 1, . . . , N
for i = 1, . . . , N do

mult1i ← sh2 ∗ dWi

sum1i ← rh+mult1i
mult2i ← Si ∗ sum1i
Si+1 ← Si +mult2i

end for

1.4 Monte Carlo methods for SDEs applications
In financial applications, Monte Carlo approaches are used to estimate the expectation
of some payoff functional P that is computed on an underlying asset price St that
follows a stochastic differential equation (SDE). The standard Monte Carlo approach
consists of computing the asset price with a finite difference scheme to approximate
the solution of the SDE. In this thesis we use the Euler-Maruyama scheme [25]. Noting

7

P̂ (i) a sample of P and using N̂ samples the standard Monte Carlo estimate for the
expectation is

1

N̂

N̂∑
i=1

P̂ (i). (1.6)

To achieve a Mean Square Error of ε2 with the standard estimator requires a time
step h = O(ε) and a number of samples O(ε−2) leading to an overall computational
cost of O(ε−3), while the multilevel Monte Carlo allows to decrease the cost to O(ε−2)

up to a logarithmic factor [17].
The idea of the multilevel Monte Carlo is to use different levels of time discreti-

sations in order to split the computational work such that the total cost is minimised
and the desired overall accuracy is achieved. Say we use two different resolutions
where the coarser is denoted by the index 0 and the finest by the index 1. The two
level Monte Carlo estimator is

E[P1] ≈
1

N0

N0∑
i=1

P
(i)
0 +

1

N1

N1∑
i=1

(P1 − P0)
(i). (1.7)

In each sample of P1 − P0 both quantities are based on the same random normal
increments. To make this clearer, note Si,0, Si,1 the Euler-Maruyama estimates of the
asset price that are used to compute P0 and P1. Let’s suppose that the asset price
is a Geometric Brownian Motion (GBM) with drift rSt and volatility σStdWt. Note
h is the time step of the fine mesh and T the final time. To compute the finer path
Si,1, N = T/h random normal increments ∆Wi are generated and used to update the
price at each time step as

Si+1,1 = Si,1(1 + rh+ σ
√
h∆Wi) i = 0, 1, . . . , N. (1.8)

Then the price Si,0 is updated using the same increments ∆Wi as in [20] by

Si+1,0 = Si,0 + Si,0(rh+ σ
√
h∆Wi) i = 0, 1, . . . , N, (1.9)

where i = 2⌊i/2⌋. This is how the asset price at two consecutive resolutions is
computed to obtain a sample of P1 − P0.

Then noting C0 the cost of a sample of P0, C1 the cost of a sample of P1−P0 the
total computational cost of the estimation is N0C0 + N1C1, and noting V0 = V[P0]

and V1 = V[P1−P0] the total variance is N−1
0 V0+N−1

1 V1. Therefore we can minimise
the total computational cost for a fixed value of the total variance using a Lagrange
multiplier approach and considering N0, N1 as real variables in the optimisation.

8

This idea is naturally generalised to more levels. Say we use L+ 1 levels that we
denote by the index l ∈ {0, 1, . . . , L}. For each level l we define an approximate Pl

computed in full-precision with a time step of size hl = h02
−l. Then for L sufficiently

large we have E[P] ≈ E[PL]. We then decompose E[PL] as follows

E[PL] =
L∑
l=0

E[Pl − Pl−1] (1.10)

with the convention P−1 = 0. In each sample of Pl − Pl−1 both terms are computed
using the same random (normal) increments as explained previously in the two level
case. We also define the notation ∆Pl = Pl − Pl−1 for all levels l with the convention
∆P0 = P0. For each level the expectation E[∆Pl] is approximated using the stan-
dard Monte Carlo estimator (1.6) with Nl samples. Then noting by Cl the cost of
computing a sample of ∆Pl and Vl = V[∆Pl] the overall cost of the estimation is

L∑
l=0

NlCl (1.11)

and the overall variance is
L∑
l=0

N−1
l Vl. (1.12)

Using a Lagrange multiplier λ2 ∈ R and minimising the cost under the constraint
V ariance = ε2 gives that the number of optimal samples is Nl = λ

√
Vl/Cl. Then

from the variance constraint we get λ = ε−2
∑L

l=0

√
VlCl, therefore the overall cost of

the multilevel Monte Carlo estimator is

CostMLMC = ε−2

(
L∑
l=0

√
VlCl

)2

. (1.13)

For comparison, noting V = V[P̂] and C the variance and cost in the standard Monte
Carlo estimator the overall cost would be ε−2V C. As [18] shows, if the factor VlCl

decreases (resp. increases) with level then the total cost of MLMC is approximately
ε−2V0C0 (resp. ε−2VLCL) so it is smaller than the standard Monte Carlo cost by a
factor C0/CL (resp. VL/V0). The cost of a sample increases with level and for Lipschitz
payoffs for the Euler-Maruyama scheme the variance Vl decreases exponentially with
level, which leads to the MLMC estimation being cheaper than the standard Monte
Carlo estimation.

9

1.4.1 Accuracy achieved by Multilevel Monte Carlo

To measure the accuracy of Monte Carlo estimation we will use the Mean squared
error (MSE) or the Root Mean Square deviation (RMS) which are defined below :

Definition 1. The Root Mean Square deviation of an estimator P of the expected
payoff E[P] is

RMS =
√
MSE =

√
V[P] + Bias(P)2 =

√
V[P] + E[P − P]2. (1.14)

The following theorem from [17, 10] makes precise the convergence of the MLMC
algorithm.

Theorem 2. Let P denote a random variable, and let Pl denote the corresponding
level l approximation. If there exist independent estimators Yl based on Nl Monte
Carlo samples and positive constants α, β, γ, c1, c2, c3 such that α ≥ 1

2
min(β, γ) and

i) |E[Pl − P]| ≤ c12
−αl (1.15)

ii) E[Yl] =

{
E[P0] l = 0

E[Pl − Pl−1] l > 0
(1.16)

iii) V[Yl] ≤ c2N
−1
l 2−βl (1.17)

iv) E[Cl] ≤ c3Nl2
γl, where Cl is the computational complexity of Yl (1.18)

then there exists a positive constant c4 such that for any ε < e−1 there are values L

and Nl for which the multilevel estimator

Y =
L∑
l=0

Yl (1.19)

has a MSE with bound
MSE = E[(Y − E[P])2] < ε2 (1.20)

with a computational complexity C with bound

E[C] ≤


c4ε

−2, β > γ

c4ε
−2(log ε)2, β = γ

c4ε
−2−(γ−β)/α, β < γ

(1.21)

The assumptions made in the theorem are satisfied for a large class of payoff
functions, in particular for the European vanilla option that we use for most numerical
experiments the parameter values are α = 1, β = 1, γ = 1.

10

1.4.2 Multilevel Monte Carlo algorithm

We can now introduce the initial MLMC algorithm described in [18] which is presented
in Algorithm 4. The algorithm computes an initial user-specified number of paths
and uses the estimated level variances Vl and costs Cl to determine the number of
additional samples that need to be computed. If the assumptions of Theorem 2
hold the algorithm converges and achieves the desired variance ε2/2. To achieve an
MSE ≤ ε2 the algorithm ensures that Bias(PL)

2 ≤ ε2/2 and V[PL] ≤ ε2/2 2. As
mentioned in [18], to enforce the weak convergence E[P − PL] ≤ ε/

√
2 we consider

that E[∆Pl] ∝ 2−αl, which leads to

E[P − PL] =
∞∑

l=L+1

E[Pl − Pl−1] ≈ E[PL − PL−1]/(2
α − 1). (1.22)

Then we obtain the following test for the weak convergence, which is used in Algo-
rithm 4 :

E[∆PL]/(2
α − 1) > ε/

√
2. (1.23)

1.4.3 Nested multilevel Monte Carlo

In this thesis we attempt to reduce the computational work by computing some
paths in lower precision, so here we formulate the output estimator that includes low
precision computations. We decompose each level expectation E[∆Pl] into the sum
of an estimate computed in low precision and a correction term. This leads to the
identity

E[P] ≈
L∑
l=0

(
E[∆̃P l] + E[∆Pl − ∆̃P l]

)
. (1.24)

Throughout the thesis we denote by P̃l, ∆̃P l the samples that are computed in low
precision (on the FPGA). Again each expectation is obtained with a standard Monte
Carlo estimator using Ñl samples for E[∆̃P l] and Nl samples for E[∆Pl − ∆̃P l].
We note C̃l the cost of computing a sample of ∆̃P l and Cl the cost of a sample of
∆Pl − ∆̃P l (which is necessarily larger than C̃l), and similarly Ṽl = V[∆̃P l] and
Vl = V[∆Pl − ∆̃P l]. Then the total computational cost and the total variance of the

2The case of a different split of the MSE is discussed in [23, 11].

11

nested estimator of the output is

Cost =
L∑
l=0

ÑlC̃l +NlCl (1.25)

V ariance =
L∑
l=0

Ñ−1
l Ṽl +N−1

l Vl. (1.26)

Suppose we would like the overall variance to be smaller than ε2/2. Similarly to
the standard MLMC case, using a Lagrange multiplier λ2

M ∈ R gives Nl = λM

√
Vl/Cl

and Ñl = λM

√
Ṽl/C̃l for all levels l. Plugging the expressions of the number of samples

back in V ariance = ε2/2 gives

λM = 2ε−2

(
L∑
l=0

√
ṼlC̃l +

√
VlCl

)
(1.27)

and in turn the total cost is

CostnestedMLMC = 2ε−2

(
L∑
l=0

√
ṼlC̃l +

√
VlCl

)2

. (1.28)

This expression is very similar to the total cost (1.13) achieved by the classical MLMC
but due to how we defined the notation in this section the cost Cl is not the same as
in the previous sections. Similarly, here the factor 2 in the total cost only comes from
the different definition of the desired variance compared to (1.13). Then [20] shows
that if Vl/Ṽl ≪ C̃l/Cl ≪ 1 then the nested estimation leads to a computational saving
of a factor approximately maxl C̃l/Cl compared to the standard MLMC framework.

1.5 Literature overview
In this section we aim to summarise the previous research on the use of FPGAs
and low precision calculations in MLMC simulations. As mentioned above FPGAs
have been used as accelerators in various applications including financial forecast-
ing [30, 5]. It is therefore only natural that a number of previous works implemented
MLMC frameworks using FPGAs as accelerators in their hardware architecture. This
work has so far been performed mainly by the computer science community : In [13]
experiments on a Xilinx Virtex 6 FPGA show that FPGA architectures can be signif-
icantly faster and power-efficient for MLMC simulations than full CPU architectures.
In order to simplify the configuration of FPGAs and integration with other hardware
devices for MLMC applications, [34] proposed a Domain Specific Language. Both

12

[34, 13] discuss the speed and power efficiency of FPGAs but they focus on the hard-
ware design and testing aspects without optimising the precision in the computations,
keeping all variables to single precision. The first to use lower precision were [6]. The
authors introduce a heuristic to fix the precision used on each level and apply it
to price an Asian option in the Heston market model. The paper [6] also includes
a description of their hardware design and tests on real a Xilinx Virtex 6 FPGA.
Contrarily to our model, [6] do not allow the variables from the same Monte Carlo
level to have different word lengths and the random variables they use are still in
single precision. Finally, for classical Monte Carlo simulations reduced precision was
already investigated as detailed in the overview [8].

In computer science, fixing appropriate bit-widths is an important factor to reduce
latency, area and power consumption in hardware designs. Therefore procedures
to tweak the range and precision of fixed-point variables are an extensively studied
topic. According to the classification in [32] precision analysis can be divided into two
main directions : static analysis and dynamic analysis. Dynamic analysis requires a
potentially large amount of stimuli input signals to analyse the design with a sufficient
confidence, which makes it prohibitive for MLMC applications. On the other hand,
static analysis makes use of analytical error models to guarantee a desired accuracy
[32]. In this thesis we use a number of simulated signals to determine the range of the
variables and an analytic model for the precision that ensures accuracy assuming no
overflow. Our error model is based on Algorithmic Differentiation, which was used
to bridge bit-width optimisation methods for fixed-point and floating-point hardware
designs in [14]. Algorithmic differentiation is widely used in financial applications as
it allows to compute the sensitivity of the output to every input at every intermediary
step, making it a good tool for tweaking some empirical parameters in a model as
well.

Modelling rounding errors is also of interest in the scientific computing research :
rounding errors occur whenever a problem is solved numerically with finite precision
computations and sometimes limit the accuracy that can be achieved within a realistic
computational time. Therefore various methods that attempt to compensate rounding
errors or extrapolate inaccurate outputs to obtain an accurate estimate of the solution
exist, in particular for numerical solutions of differential equations. A good example
is the Kahan summation [28]. In our application we are interested in the joint effect
of time stepping and finite precision in numerical schemes for the solution of SDEs.
Theoretical analysis and results on this issue are surprisingly scarce, although instead
many recent works try to explain the efficiency of stochastic rounding [12], which is a

13

related topic and also appeals to rounding error modelling. For the Euler-Maruyama
scheme, two important contributions in the analysis of net rounding errors are [3, 39].
[3] show how the rounding errors at each step accumulate and provide an assymptotic
bound on the error that depends on the time step and the unit roundoff. Based on
this result, [39] provide further justification of the rounding error model from [3]
and generalise the framework to the case where the exact random numbers in the
Euler-Maruyama scheme are replaced by approximate random numbers.

1.6 Objective and summary of the contribution of
this work

The aim of this project is to show the advantage of using FPGAs in conjunction with
CPUs to reduce the computational cost of MLMC simulations. We suggest using
a nested MLMC framework in which the low precision computations are performed
on an FPGA and the full-precision ones are done on a CPU. The FPGA offers high
flexibility allowing us to define a separate bit-width for every variable in the FPGA
path simulation, which has not been done in the previous literature. A method to
globally optimise the bit-widths and the number of samples that need to be calculated
is introduced and tested in Matlab. This optimisation is performed before the main
path generation loop is executed and is based on a linear approximation of the error
made on the payoff when computing in low precision. We also show that starting from
a certain level it is more efficient to use only the CPU (so going back to standard
MC levels in our MLMC framework) and our global optimisation method allows to
determine the number of samples needed on both the nested and standard MC levels.

Another strength of our framework compared to [6] is that the precision of the
random variables that is used is also optimised, which allows to significantly reduce
the cost since random number generation in full precision is expensive. We suggest
to use approximate random normal variables instead to reduce the cost for the paths
generated on the FPGA. Three relevant approximate random number generators for
Gaussian variables are compared in the last chapter and the solution suggested in
the end costs only a few bitwise operations per approximate Gaussian number. Our
framework allows to use them on the FPGA without violating the assumption on
the telescoping summation (1.24), which is important to ensure that the estimated
expectation is accurate.

14

Chapter 2

Rounding error model via linear
approximation

In order to choose the right precision in the FPGA calculations we need to approxi-
mate the overall error and variance caused by the accumulation of rounding errors in
the low precision path simulation. In this chapter, focusing on the single level Monte
Carlo estimator to simplify the exposition, we model the overall rounding error P − P̃

that is committed when approximating the full precision payoff P by the fixed-point
payoff P̃ . We then derive a bound on the corresponding variance V[P − P̃], which is
a proxy for the accuracy of the estimation E[∆Pl].

2.1 Linearised model of the total error
In order to approximate the overall error we will consider that the rounding errors
are small and use a first order Taylor expansion as follows :

P − P̃ ≈ dP

dx
≈

m∑
i

∂P

∂xi

δxi (2.1)

where the variables xi are defined as the intermediary variables that are computed to
calculate a sample of the payoff P and δxi is the rounding error made on xi in the
fixed-point calculation, as in the Section 1.2 of the introduction.

The partial derivatives of the payoff represent how sensitive the output is to an
error made on the variable xi. We define the sensitivity of the payoff P to variable xi

as
x̄i =

∂P

∂xi

. (2.2)

15

This allows to express the overall error caused by rounding errors in the fixed-point
calculation as

P − P̃ =
m∑
i=1

x̄iδxi. (2.3)

and the variance of the overall error is then

V[P − P̃] =
m∑
i=1

V[x̄iδxi] + 2
∑

i ̸=j∈[1,m]

Cov (x̄iδxi, x̄jδxj) . (2.4)

For each available sample of P the sensitivities are computed by algorithmic dif-
ferentiation as detailed in the next section.

2.2 Algorithmic differentiation for sensitivity anal-
ysis

In this section we detail how we used Algorithmic Differentiation (AD) to compute the
sensitivities for the European vanilla option path calculation. We limit our example
to the first level of the Monte Carlo estimator. A similar backward algorithm is
used for higher levels with two additional sensitivities being computed at each time
step : mult2c and Sc (”c” stands for ”coarse path”). For each path computed with
the forward Algorithm 1 the corresponding backward sensitivities are computed as
detailed in Algorithm 2 below.

Algorithm 2 Geometric Brownian Motion backward sensitivities calculation
Inputs: variables rh, sh2, asset price Si and normal increments dWi (that were
used to compute S) for all time steps i = 0, . . . , N , number of time steps N
S̄N = 1(SN > 1)
initialise all the other sensitivities to zero
for i = N : −1 : 1 do

mult2i ← Si

Si−1 ← Si ∗ sum1i +mult2i (= Si ∗ (1 + rh+ sh2 ∗ dWi))
sum1i ← mult2i ∗ Si

mult1i ← sum1i
dW i ← sh2 ∗mult1i
rh← rh+ sum1i
sh2← sh2 +mult1i ∗ dWi

end for

Considering how the sensitivities are computed, they will account for the link
between the variables in the formulation of the error. It is also intuitive that the vari-
ables used early in the forward calculation usually have relatively higher sensitivities

16

than the ones used only towards the end of the sample computation, but the use of
normally distributed increments in our path calculation complicates the analysis. In
this thesis, AD only serves as a tool to compute the sensitivities numerically.

2.3 Estimates of the overall variance
In this section we carry on the analysis of the overall error in order to find an estimate
on the variance of this error that will depend explicitly on the bit-widths di of the
variables xi.

Note that in our application some inputs are random normally distributed vari-
ables, therefore the sensitivities and the rounding errors are also random. It is sensible
to assume that the sensitivities x̄i and the rounding errors δxi are independent for
all i = 1, . . . ,m, and we will make this assumption throughout the thesis. It always
holds that V[x̄iδxi] ≤ E[x̄2

i δx
2
i] so using the upper bound on δxi from Section 1.2 we

obtain that

V[x̄iδxi] ≤ E[x̄2
i]4

ei−di−1. (2.5)

This gives an upper bound on the first sum in (2.4). Then if we assume that the
individual errors x̄iδxi are independent we get an optimistic upper bound on the path
error variance (2.4) :

V[P − P̃] ≤
m∑
i=1

E[x̄2
i]4

ei−di−1 ≜ Vindep(d1, . . . , dm) (2.6)

On the other hand, if we assume perfect correlation between errors,
ie. Cov (x̄iδxi, x̄jδxj) =

√
V[x̄iδxi]V[x̄jδxj] then we obtain a pessimistic upper bound

:

V[P − P̃] ≤

(
m∑
i=1

√
E[x̄2

i] 2ei−di−1

)2

≜ Vcorr(d1, . . . , dm). (2.7)

These expressions do not contain the rounding errors and depend explicitly on the
bit-widths di of the variables xi. The exponents ei will be fixed before the bit-width
optimisation by computing 106 paths to determine the range of each variable.

2.4 Numerical validation of the variance model
In Section 2.3 we made several assumptions on the rounding errors δxi that we check
here. First of all we found numerically that the correlation matrix Corr(x̄iδxi, x̄jδxj)

17

6 8 10 12 14 16 18 20

Bit-widths of all variables

10-12

10-10

10-8

10-6

10-4

10-2

100

V
a

ri
a

n
c
e

simulated V[P-Pfi]

perfect correlation

independence

Figure 2.1: Simulated variance of the
error vs variance estimates that assume
independence or perfect correlation of
errors, for N = 4 time steps.

6 8 10 12 14 16 18 20

Bit-widths of all variables

10-12

10-10

10-8

10-6

10-4

10-2

100

102

V
a

ri
a

n
c
e

simulated V[P-Pfi]

perfect correlation

independence

Figure 2.2: Simulated variance of the
error vs variance estimates that assume
independence or perfect correlation of
errors, for N = 16 time steps.

does not have any coefficients close to 1 ; in fact most were smaller than 0.3. This
implies that the optimistic bound (2.6) is closer to the overall variance than the
pessimistic bound (2.7). To check this we also computed the variance V[P − P̃]

and compared it to the variance estimates Vindep and Vcorr from Section 2.3 where
all variables had the same bit-width. We used 105 paths of P − P̃ to compute the
variance. The results are presented in Figures 2.1 and 2.2 and confirm that Vindep is a
better approximate of V[P − P̃] than Vcorr since the blue curve is closer to the yellow
bound than to the red one.

In the experiment from Figures 2.1 and 2.2 the exponents ei were fixed by running
105 paths and looking at the maximal value attained by each variable. Note that
the range of dW we obtained was eW = 3 but more extreme values of the normal
increment would have occured if we ran more paths. Additionally, the probability of
the random normal increment being larger that 23 is approximately 1.3×10−15 so the
increment is likely to be out of the range [−2eW , 2eW] when 1015 paths are generated
on a level, which in practice rarely happens.

18

Chapter 3

Bit-width optimisation

In this chapter we begin by introducing the cost model allowing to write the sample
costs Cl, C̃l as functions of the level l and the bit-widths di. Then we focus on the single
level case and introduce several ways of optimising the bit-widths. We compare them
numerically and argue that the method based on a Lagrange multiplier is the most
general and produces results that are very close to integer programming methods,
therefore we chose this method for the rest of the thesis.

Then we treat the global optimisation problem in which the number of samples
are also determined in addition to optimising the bit-widths. We show that the levels
can be treated independently so that first the bit-widths of each level are optimised,
then the number of samples required per level are calculated analytically.

3.1 Computational cost model and global problem
formulation

We want to compute the estimated expected payoff E[PL] by splitting the compu-
tational work between low precision calculations performed entirely on the FPGA
and high precision ones which are done on the CPU. With the notation defined in
Section 1.4.3 this corresponds to optimising the total cost of the nested framework
under the constraint that the overall desired variance ε2/2 is achieved, that is to say

min
di,l,Ñl,Nl

L∑
l=0

Ñl × C̃l(d1,l, . . . , dml,l) +Nl × Cl(d1,l, . . . , dml,l)

s.t. Ñ−1
l Ṽl +N−1

l Vl(d1,l, . . . , dml,l) ≤ ε2/2.

(3.1)

The decision variables are the bit-widths di,l of the fixed-point variables and the
number of samples Ñl and Nl. We make the assumption that the variance Ṽl of the
FPGA sample is approximately equal to V[∆Pl]. Therefore it will be possible to

19

compute it on the CPU at the same stage as when the exponents ei,l are calculated,
namely before optimising the bit-widths. The variance Vl of the correction term
depends on the precision used in the FPGA calculation and, as justified in Chapter 2,
it is equal to

Vl = Vindep(d1,l, . . . , dml,l) =
∑
i

E[x̄2
i,l]4

ei,l−di,l−1. (3.2)

Now we define the sample costs Cl, C̃l along with its justification. On the CPU
most of the computational cost comes from generating a full precision random normal
increment dWi at each time step ; the other operations performed to compute ∆Pl

have a negligible cost. Then to obtain a sample of ∆Pl − ∆̃P l one generates a
full precision and a fixed-point normal increment used to compute ∆Pl and ∆̃P l

respectively. This procedure is detailed in Chapter 5 but here the key point is that
the fixed-point increment used in the correction term is computed with negligible
cost compared to the cost of random number generation (RNG) on the CPU. Hence
noting CRNG the computational cost of one full precision normal number we get
Cl ≈ 2lCRNG + C̃l.

On the other hand, when computing samples of ∆̃P l alone on the FPGA we make
the assumption that the random normals are generated with a relatively low cost and
that the cost C̃l of the sample computed only on the FPGA is mostly due to the other
operations performed to compute ∆̃P l. Combining it with the previous paragraph it
means that we assume

Cost(RNG on CPU) ≥ Cost(computing ∆̃P l on FPGA)≫ Cost(RNG on FPGA).

(3.3)
The cost comparison of RNG on the FPGA and the CPU is provided in Chapter 5
and the first inequality holds because if the nested framework is more expensive than
the standard MLMC, we switch to standard MLMC (see Chapter 4).

Neglecting the cost of RNG on the FPGA, the cost of computing ∆̃P l is equals
the sum of the cost of the elementary operations involved. In particular for a classical
European option based on a Geometric Brownian Motion there are only additions
and multiplications between two variables. Noting S the index set of all couples of
variables that are involved in an addition and M the analogue for multiplications,
then using Equation (1.3) the cost of computing a path of P̃ is

C̃l(d1, . . . , dml
) =

∑
(i,j)∈M

di,ldj,l +
∑

(i,j)∈S

(di,l + dj,l). (3.4)

20

However in practice we will instead use the cost

C̃l(d1, . . . , dml
) =

1

2

ml∑
i=1

Mi,ld
2
i,l (3.5)

where Mi,l denotes the number of elementary operations in which the variable i is
involved. This is an over-estimation since, assuming all bit-widths are larger than 2,
da + db ≤ 1

2
(d2a + d2b) and da × db ≤ 1

2
(d2a + d2b).

We have formulated the global optimisation problem (3.1) that we are looking
to solve to determine the global parameters in the MLMC algorithm. In the two
following sections we provide a method to solve this problem.

3.2 Bit-width optimisation methods
In this section we separate the bit-width optimisation problem from the global prob-
lem (3.1). We focus on a single level and note P̃ the path computed on the FPGA
and P the path computed on the CPU. The bit-widths are defined such that the cost
C̃ of computing P̃ , given by (3.4) or (3.5), is minimised and the variance (2.6) is
smaller than a tolerance ε̃2, ie. a problem of the following form is solved :

mindi,...,dm C̃(d1, . . . , dm)

s.t. Vindep(d1, . . . , dm) ≤ ε̃2.
(3.6)

In this section we present several methods for solving this problem, highlight-
ing their similarities, then we compare them numerically in Section 3.2.4. We also
compare them to the uniform bit-width heuristic proposed by [6] and summarised in
Appendix D.

3.2.1 Analogy with the 0-1 knapsack problem and greedy
algorithm

The 0-1 knapsack problem is a classical problem (see [24], Lecture 1) in integer pro-
gramming that is defined as follows : say we have n objects that we would like to
pack into a suitcase, each having a value vi and weight wi. We would like to maximise
the total value of the objects we take while keeping the total weight under a fixed
threshold. Therefore the problem consists of selecting the right objects by setting
some binary decision variables xi to 0 or 1.

This section builds the analogy between problem (3.6) and a slightly modified
version of the 0-1 knapsack problem where the total weight is minimised subject to a

21

lower bound on the total value. This allows to to solve (3.6) using a well-known greedy
algorithm that finds a near-optimal solution to the classical 0-1 knapsack problem.

The greedy algorithm applies only to the case where the cost and constraint are
decomposable, meaning that there are no mixed terms like da × db. Hence we focus
on the problem (3.6) with the expression (3.5) of the cost and the variance expression
(2.6). Considering that all variables in the FPGA implementation have at least 4 bits
we decompose the variance as

Vindep(d1, . . . , dm) =
m∑
i=1

4ei−1E[x̄2
i]

(
4−4 −

di∑
j=5

(4−j − 4−j+1)

)
(3.7)

and the cost as

C̃(d1, . . . , dm) =
m∑
i=1

1

2
Mi

(
16 +

di∑
j=5

(j2 − (j − 1)2)

)
. (3.8)

Now define

wi,j =
1

2
Mi(2j − 1), F = 8

m∑
i=1

Mi, (3.9)

vi,j = 4ei−1E[x̄2
i](4

−j − 4−j+1), G =
m∑
i=1

4ei−5E[x̄2
i]. (3.10)

Then with this notation the coefficients wi,j correspond to the increase in cost
due to adding an extra bit to a variable that already has j − 1 bits, and vi,j is the
corresponding reduction in variance. Allowing the bit-widths to go up to d∞ = 32

and defining binary decision variables xi,j ∈ {0, 1}, the problem (3.6) is reformulated
as :

minxi,j∈{0,1}

m∑
i=1

d∞∑
j=5

xi,jwi,j (3.11)

s.t.

m∑
i=1

d∞∑
j=5

xi,jvi,j ≥ G− ε̃2. (3.12)

This problem can be solved as an Integer Linear Program, for example with the
Matlab solver intlinprog. Another method is to use a greedy algorithm which gives a
near optimal solution that is close to the real solution when the number of variables
is large. In practice for a given level we have at least 7× (32− 4) = 196 variables so
we consider that the greedy algorithm gives a good solution. The idea of the greedy
algorithm is to define ratios

ri,j =
vi,j+1

wi,j+1

(3.13)

22

and sort them in decreasing order then set xi,j = 1 for the variables with highest ratio
until the variance bound is respected. The constraints that xi,j+1 ≤ xi,j (which ensure
that di = j if and only if xi,k = 1 for k ≤ j and xi,j = 0 for k > j) is automatically
satisfied since ri,j+1 < ri,j.

3.2.2 Lagrange multiplier and priority ratio

An alternative method is to first consider the bit-widths as real numbers and optimise
them with a Lagrange multiplier approach. The variance constraint is fixed as the
equality Vindep = ε̃2 and introducing a Lagrange multiplier λ ∈ R the Lagrangian is
written as

L(d1, . . . , dm) = C̃(d1, . . . , dm) + λ(Vindep(d1, . . . , dm)− ε̃2). (3.14)

Then the Lagrangian is minimised by solving the (nonlinear) system ∇L = 0, which
gives the set of equations

Midi − 2λ log 2E[x̄2
i] 4

ei−di−1 = 0, for i = 1, . . . ,m. (3.15)

We solved this system in Matlab using the solver vpasolve from the Symbolic Math
Toolbox. This is a numerical solver using a combination of root-finding methods like
the Newton method, interval arithmetic and bisection, as well as symbolic manipu-
lations and simplifications.

Since the solution is a vector of real numbers it needs to be rounded to define the
bit-widths of the variables for the FPGA path simulation. A straightforward idea is
to round the solution to the nearest integer but this might not lead to the optimal
solution. A better method was suggested in a preprint by M. Giles’ collaborators.
The idea is to round down the solution (to d∗) and define for each variable i the ratio

r̄i =
|Vindep(d

∗
1, . . . , d

∗
i + 1, . . .)− Vindep(d

∗
1, . . . , d

∗
i , . . .)|

C̃(d∗1, . . . , d
∗
i + 1, . . .)− C̃(d∗1, . . . , d

∗
i , . . .)

. (3.16)

Variables with a high marginal variance over marginal cost ratio offer a good improve-
ment in the accuracy (ie. variance) for a relatively small increase of the computational
cost, so an extra bit is added to their word length in the order of priority defined by
the ratios until the desired variance is achieved.

Therefore the knapsack method and the Lagrange multiplier with the priority
criterion (3.16) approach are similar. Indeed,

vi,j+1 = Vindep(. . . , j, . . .)− Vindep(. . . , j + 1, . . .) ≈ −∂Vindep/∂di(. . . , j, . . .) (3.17)

23

and a similar relation holds for the cost vector wi,j, which means that

ri,j ≈ −

∂Vindep

∂di
∂C̃

∂di

(di = j). (3.18)

Therefore when evaluated at the optimal bit-widths the ratio used in the greedy
approach is equal to the Lagrange multiplier λ. This indicates that there is an equiv-
alence between the Lagrange multiplier approach and the greedy algorithm : in the
knapsack approach we use the ratio ri,j to add bits to variables until, in practice, this
ratio drops to a value that satisfies the variance constraint and does not depend on
the variable i. This analogy justifies the validity of using the Lagrange multiplier and
(3.16) to obtain the right bit-widths.

3.2.3 Integer quadratic programming for the cost (3.4)

If we want to use the cost expression (3.4) with an integer programming approach,
the problem formulated in Equation (3.11) must be modified because of the mixed
terms didj. To fix the notation, the decision variables are concatenated into a vector
x = (x1,1, x1,2, . . .). Since

di = 4 +
d∞∑
j=5

xi,j, for i = 1, . . . ,m (3.19)

the terms didj can be written as a quadratic term plus a linear term :

didj = 16 +
d∞∑
k=5

d∞∑
l=5

xi,kxj,l + 4

(
d∞∑
k=5

xi,k +
d∞∑
l=5

xj,l

)
. (3.20)

Therefore we define a matrix Q by blocks, where the block (i, j) is a (d∞−4)×(d∞−4)
all ones square matrix and the other blocks are set to 0. The terms di + dj are also
linear, so the overall cost is of the form 1

2
xTQx+ wTx.

Since the problem is quadratic, we cannot directly use the Matlab solver intlinprog
which can only solve mixed integer linear programs, instead we use a cutting planes
method as presented in [37]. The idea is to approximate the quadratic term xTQx by
a slack variable z such that the problem can be rewritten as

minx z + wTx

s.t. Ax ≤ b

xTQx− z ≤ 0

z ≥ 0.

(3.21)

24

Then we iteratively solve a MILP and add new linear constraints that approximate
the quadratic constraint locally : suppose at iteration k our guess of the solution is
x(k) ∈ {0, 1}m(d∞−4) then linearising the quadratic term about x(k) + δ gives

xTQx− z = x(k)TQx(k) + 2x(k)TQδ − z +O(|δ|2) (3.22)

Then replacing δ by x− x(k) gives

xTQx− z = −x(k)TQxk + 2x(k)TQx− z +O(|x− xk|2). (3.23)

Hence we update the matrix of linear constraints A and the vector b to include the
constraint 2xT

kQx− z ≤ x(k)TQxk and repeat the process. The algorithm stops when
the relative error in the approximation of the quadratic constraint is lower than a
predefined tolerance. In our numerical tests we used the value 10−8 for this tolerance.

3.2.4 Numerical comparison of the bit-width optimisation
methods

In this section we compare the different optimisation methods suggested in the pre-
vious sections.

We consider that the variables mult1i,mult2i, sum1i, Si, dWi used to compute P̃

have the same bit-width at every time step i. The benefit is that it limits significantly
the number of unknowns in the system from the Lagrange multiplier and the number
of decision variables in the integer programs presented above. The expected squared
sensitivities of each variable over time steps shown in Figure C.1 imply that this
assumption is particularly reasonable for mult1i, sum1i and dWi as there is no clear
trend but for Si and mult2 the sensitivities as we go backwards in time. Maybe
an explanation is that S and mult2 (= Si+1 − Si) have a drift term due to rh × Si

while the other variables behave like random walks (see definition in Algorithm 1). It
would be useless to adapt only the bit-widths of S and mult2 over time if the other
intermediate variables are not more accurate. Therefore to adapt more tightly to
the sensitivity of S over time, it might be relevant to adapt the word lengths of all
variables at each time step in future experiments. However it may increase the overall
cost and for robustness the sensitivities with respect to mult1i, sum1i and dWi would
need to be bounded or determined with more paths.

Then we optimised the bit-widths with the above methods and looked at the
resulting variance V[P − P̃] shown in Figure 3.1. There are no significant differences
in the variance nor the computational cost (see Figures 3.2 and 3.3) or in the bit-
widths (Figure C.2) obtained with the suggested optimisation methods. This shows

25

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Desired variance

10-7

10-6

10-5

10-4

10-3

10-2

10-1

V
(P

-P
fi
)

Lagrange multiplier + ratio

Lagrange multiplier + nearest

Integer prog. linear cost

Integer prog. quadratic cost

Greedy algorithm (knapsack)

Desired variance

Uniform bit-widths heuristic

Figure 3.1: Variance obtained with different bit width optimisation methods vs. de-
sired variance and variance obtaind with uniform bit-widths set using [6].

that the Lagrangian multiplier approach with the ratio (3.16) gives results that are
very close to the integer programming approaches. The advantage of the Lagrange
multiplier is that it is a very general technique, therefore we chose to use this method
in the next experiments.

Another argument that would lead to choosing one optimisation method over
another method would be the complexity of the optimisation method itself and its
guarantee of finding the optimum. For the greedy algorithm, there are at most 9x(32-
4)=252 binary decision variables in the integer programming formulation. This means
the greedy algorithm requires to compute the 252 vi,j, wi,j and ri,j coefficients, then
sort the ri,j and find the solution by dichotomy. The IP and MIQP implementations
are more expensive because they are usually solved with successive linear relaxations
and a branch-and-bound framework [24]. In Matlab the function intlinprog also ap-
peals to a set of heuristics and cuts when they are relevant. Although in happy cases
the solver could take only a few iterations to find the solution the overall cost is harder
to estimate than for the greedy algorithm. Furthermore in our test, the constraint
was violated at the desired variance value ε̃2 = 10−3, we believe is due to a constraint
tolerance that was too loose. Finally, the Lagrange multiplier approach boils down to
solving a non-linear system. With the assumption presented above, the system has
at most 9 unknowns (7 at level 0 and 9 at other levels) so it is easily solved in Matlab
with vpasolve. This method is also more realistic in case we would like to vary the
number of bits for variables S and mult2 in future work.

26

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Desired variance

0

100

200

300

400

500

600

700

800

900

1000

C
o

s
t

Lagrange multiplier + ratio

Lagrange multiplier + nearest

Integer prog. linear cost

Integer prog. quadratic cost

Greedy algorithm (knapsack)

Uniform bit-widths heuristic

Figure 3.2: Cost vs desired variance for
the cost (3.4).

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Desired variance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

C
o

s
t

Lagrange multiplier + ratio

Lagrange multiplier + nearest

Integer prog. linear cost

Integer prog. quadratic cost

Greedy algorithm (knapsack)

Uniform bit-widths heuristic

Figure 3.3: Cost vs desired variance for
the cost (3.5).

On Figures 3.1 to 3.3 and C.2 we also plotted the corresponding quantities ob-
tained with the uniform bit-width heuristic from [6] (blue dashed curve). This heuris-
tic method is summarised in Appendix D. Clearly the uniform bit-width heuristic is
too conservative as its cost per time step is above the cost obtained with any of the
optimisation methods. To define the bit-width, the heuristic does not take into ac-
count the desired overall variance but instead attempts to make the variance Ṽ as
small as the CPU variance V[P], which partly explains the large cost. Indeed the
uniform bit-width heuristic gives a variance of about 10−6 while in our method for
N = 16 time steps the optimal variance of P − P̃ is about 10−4.

Finally we compare the cost formulations (3.4) and (3.5) : even though the MIQP
optimisation used the more realistic cost (3.4) the cost saving is negligible compared
to the other methods based on (3.5). Also comparing Figures 3.2 and 3.3 we see that
the resulting cost is of comparable size independently of the cost expression that we
choose. This is because the multiplications, in particular Si ×mult2i, are the most
expensive operations. Therefore in the remainder of the thesis we consider that the
FPGA cost is defined as in (3.5).

3.3 Global optimisation for the nested Monte Carlo
estimator

In this section we detail how the bit-widths are optimised along with the number of
samples (denoted N, Ñ in the single level case) so that all necessary parameters for
path simulations are determined. Starting with the single level case, the total cost in

27

the nested Monte Carlo framework is

ε−2
(√

V C +
√

Ṽ C̃
)2

. (3.24)

Note that this formulation of the cost allows to avoid variables N, Ñ in the optimi-
sation problem.

One can minimise the total computational cost (3.24) as a function of the bit-
widths using the Lagrange multiplier approach from Section 3.2. To round the bit-
widths we used (3.16) with the desired variance ε̃2 equal to the variance V of the
correction that is obtained from solving grad(L) = 0. Then the number of samples
is N = 2ε−2

√
V/C

(√
V C +

√
Ṽ C̃
)

and Ñ = 2ε−2

√
Ṽ /C̃

(√
V C +

√
Ṽ C̃
)

, where
ε is the desired RMS error of the MLMC estimation.

The generalisation to the multilevel case follows naturally. The overall cost of the
nested framework is

2ε−2

(
L∑
l=0

√
ṼlC̃l +

√
VlCl

)
(3.25)

so for level l the following objective is minimised to determine the bit-widths :

objl =

√
ṼlC̃l +

√
VlCl. (3.26)

Then the number of samples Ñl, Nl are calculated analytically and rounded up.
To ensure the existence of optimal bit-widths at each level we could show that

objl is convex, at least locally. In practice we simply provided di = 4 as an initial
guess to vpasolve, and managed to find the initial solution up to level l = 15.

28

Chapter 4

Nested Multilevel Monte Carlo
and rounding error analysis

In this chapter we include the global optimisation of the bit-widths into the nested
MLMC algorithm and show the resulting computational savings. Further we discuss
the necessity of adapting the bit-widths to prevent rounding errors from accumulating
and restraining the accuracy of the nested framework as the level increases [3, 39].

4.1 Mixed precision MLMC algorithm
In this section we detail how the global optimisation is included in the MLMC frame-
work. We consider as in Algorithm 4 that the user specifies a minimal number of
levels Lmin ≥ 2. At initialisation the algorithm computes the sensitivity terms E[x̄2

i,l],
the exponents ei,l and estimates the variances Ṽl (which are approximately equal to
V[∆Pl]) using Nsens paths generated in full precision on the CPU. In our numerical
experiments we take Nsens = 103. Then the bit-widths are optimised as described
in Chapter 3 for all levels l = 0, . . . , Lmin, which allows to determine the number of
samples that are required on each level Nl, Ñl to achieve the desired variance. The
samples of ∆̃P l are computed on the FPGA while the samples of ∆Pl−∆̃P l require a
CPU and an FPGA calculation that is based on the same random normal increments.
As detailed in Chapter 5, the FPGA path generation will actually use an approximate
random normal variable, but in the experiments from this chapter the approximate
random numbers are simply obtained by rounding (to nearest) the full precision ones.
After computing paths, their mean and variance are calculated in full precision on
the CPU to avoid losing accuracy when all sample outputs are summed together.

As in the classical MLMC framework, new levels are added when a weak conver-
gence condition fails to be satisfied. Using that E[∆PL] = E[∆̃PL] +E[∆PL − ∆̃PL],

29

the same condition (1.23) as in the classical MLMC is used to determine when a new
level is needed. We also introduce a condition to decide when adding a nested level
becomes computationally more expensive than adding a standard Monte Carlo level.
With the notation from before and noting CCPU

l = 2lCRNG the cost of generating a
sample of ∆Pl on the CPU and V CPU

l = V[∆Pl], adding a nested level is preferred
unless √

VlCl +

√
ṼlC̃l >

√
CCPU

l V CPU
l . (4.1)

If this condition is satisfied for one level, we consider that we switch to standard levels
without coming back to nested ones. Then noting Ltot the total number of levels and
Lnes the number of nested levels, the overall cost and variance are

Cost =
Lnes∑
l=0

(
ÑlC̃l +NlCl

)
+

Ltot∑
l=Lnes+1

NlC
CPU
l

V ariance =
Lnes∑
l=0

(
Ñ−1

l Ṽl +N−1
l Vl

)
+

Ltot∑
l=Lnes+1

N−1
l V CPU

l .

(4.2)

Since the cost and variance parameters are all known using a Lagrange multiplier
approach to minimise the overall cost subject to V ariance = ε2/2 gives the following
value of the Lagrange multiplier :

λ =
Lnes∑
l=0

(√
ṼlC̃l

√
VlCl +

√
VlCl

)
+

Ltot∑
l=Lnes+1

√
V CPU
l CCPU

l (4.3)

and the number of samples are simply Ñl = λ
√

Ṽl/C̃l and Nl = λ
√
Vl/Cl for l ≤ Lnes,

and Nl = λ
√
V CPU
l /CCPU

l for l > Lnes.
The nested MLMC algorithm is summarised in Algorithm 3.

Algorithm 3 MLMC with optimised precision
1: Inputs: the desired RMS error, the initial number of levels (≥ 2), the number

of samples Nsens generated to initialise each level.
2: generate Nsens full precision paths and use them to determine the exponents ei,l

and variances Ṽl and initialise the path sums ;
3: optimise the bit-widths for all nested levels ;
4: determine the number of samples needed on each level ;
5: compute extra samples and update the cost, variance and path sums estimates,

and add new levels if the weak convergence condition fails, until no extra samples
are required anymore ;

6: Output: the expected payoff.

30

In practice, in financial applications the drift and volatility of the asset evolve
slowly so the bit-width optimisation stage would probably not be required every time
the algorithm is used to price an option. For example, the parameters could be
tuned and the optimal bit-widths determined to configure the FPGA(s) every month.
Therefore the bit-width optimisation is performed off-line and the its cost and time
is not included in the measure of the online performance of the algorithm.

4.2 Numerical experiments : global optimisation
and nested framework

In this section we discuss numerical results obtained with the global optimisation
method and our proposed nested MLMC framework. In the following subsections, we
will first demonstrate the cost savings achieved by the nested framework then discuss
the behaviour of the bit-widths and the variance. The latter are tightly related as the
bit-widths and the order of the operations determine the size of individual rounding
errors, which in turn influences the variance.

4.2.1 Cost savings with the nested framework

To begin with, we comment on the cost per sample and the cost of the overall simu-
lation compared to the standard MLMC framework. We call level cost (or ”cost per
level”) the quantity √

ṼlC̃l +
√

VlCl, (4.4)

and the total cost of the nested framework is the square of the sum of the level
costs. We multiplied the overall cost by the overall variance so that the figure is not
dependent on the desired variance ε2/2 which does not change the interpretation of
the curves since this factor would only shift the curves upwards on the logarithmic
plots.

In most of our tests we used the value CRNG = 104. The corresponding cost
per sample (C̃l, Cl), cost per level and estimated total cost of the nested MLMC
framework are shown in Figures 4.1 to 4.4 respectively. For this value, in the nested
framework the sample cost is considerably reduced on the first levels which leads to
the corresponding cost per level being smaller than that of the standard MLMC (see
Figures 4.1 and 4.2). At level 0, the sample computed on the FPGA is 28 times
cheaper than the one computed on a CPU and the FPGA 4.1. Then the level cost for

31

the nested framework slowly gets closer to the cost per level of the standard MLMC,
but for CRNG = 104 the two costs still did not intersect at level L = 15.

This result is very different when we take a smaller value of CRNG, for example
in Figure 4.5 we took CRNG = 103 and obtained that the level costs intersect at
level l = 4 (see Figure 4.5). Therefore the next levels should be standard MC levels.
Despite this, on the Figure 4.6 we see that the nested framework is more expensive
overall than standard MLMC only starting from Ltot = 14. This implies that for
Ltot = 5, . . . , 14 only a few paths are computed on levels l > 4 so most of the cost is
still on the first levels where the nested calculations are considerably cheaper.

0 5 10 15

Level

102

103

104

105

106

107

108

109

S
a
m

p
le

 c
o
s
t

Cl (correction term)

Cl
fi
 (FPGA estimate)

cost of CPU only

Figure 4.1: Cost per sample Cl and C̃l

for CRNG = 104.

0 5 10 15

Level

10

15

20

25

F
a
c
to

r
C

l/
C

l fi

Figure 4.2: Factor Cl/C̃l for CRNG =
104.

0 5 10 15

Level

100

101

L
e
v
e
l
c
o
s
t

FPGA+CPU

CPU only

Figure 4.3: Level cost for CRNG = 104.
Comparison with classical MLMC.

0 5 10 15

Level

101

102

103

104

T
o
ta

l
c
o
s
t
o
v
e
r

le
v
e
ls

 0
 t
o
 L

FPGA+CPU

CPU only

Figure 4.4: Total cost (
∑L

l=0

√
ṼlC̃l +√

VlCl)
2 for CRNG = 104 (blue). Com-

parison with classical MLMC.

Another key observation from Figure 4.3 is that after the very few first levels, the
level cost in the standard MLMC method does not vary significantly with level. This

32

0 5 10 15

Level

1

1.5

2

2.5

3

3.5

4

L
e
v
e
l
c
o
s
t

FPGA+CPU

CPU only

Figure 4.5: Level cost for CRNG = 103.
Comparison with classical MLMC.

0 5 10 15

Level

101

102

T
o
ta

l
c
o
s
t
o
v
e
r

le
v
e
ls

 0
 t
o
 L

FPGA+CPU

CPU only

Figure 4.6: Total cost (
∑L

l=0

√
ṼlC̃l +√

VlCl)
2 for CRNG = 103 (blue). Com-

parison with classical MLMC.

is not surprising as in the Euler-Maruyama scheme, for the European vanilla option,
the sample cost is CCPU

l ≈ O(2l) and the variance is V CPU
l ≈ O(2−l), which leads to

V CPU
l CCPU

l = O(1)).
For the same option but using the Milstein scheme we would have V CPU

l ≈ O(2−2l)

instead, so the squared level cost V CPU
l CCPU

l would decrease exponentially with level.
In that case using a nested framework would be even more efficient as it would tackle
an even greater proportion of the total computational cost.

4.2.2 Bit-widths and variance over levels

Next we look at the optimal bit-widths obtained for different levels 4.7. We observe
that the bit-widths of variables S, Sc,mult2,mult2c increase monotonically over lev-
els, with S and Sc having one additional bit per level and mult2 and mult2c having
one additional bit every two levels, while the over bit-widths also increase globally
but have a less well defined trend. We believe this is because the other variables are
influenced by the sample normal random variables that were used to compute the
sensitivities, similarly to the remark on Figure C.1 made in Chapter 3. Using the
definition of the variables in Algorithm 1 as well as the assumption h ≪

√
h, σ and

r, S0, dWi = O(1), we obtain the scale of the variables :

sh2, mult1, sum1, mult2, mult2c ∼
√
h (4.5)

rh ∼ h (4.6)
S, Sc ∼ 1. (4.7)

33

This explains perfectly the evolution of the exponents from Figure 4.10 : the expo-
nents of variables sh2, mult1, sum1, mult2, mult2c decrease by one every two levels,
the exponent of rh decreases by one every level and the exponents of S and Sc re-
main constant. The same scaling argument does not help determine the trends of the
sensitivities, which are presented in Figure 4.10 though. Therefore we defined and
plotted the factor

αi,l = 4ei,lE[x̄2
i,l] (4.8)

in Figure 4.11, which shows that the trend of the exponent and the sensitivity partly
compensate each other, in particular for variable rh for example. This particular case
is sensible since rh is involved in an addition with mult1 which has a larger scale
than rh, so to increase the precision of the result sum1 = rh + mult1, we usually
need to increase the precision of mult1 as illustrated by the difference in the fraction
lengths of rh and mult1 in Figure 4.8. For variables S, Sc,mult2 and mult2c we
notice that the factor α is approximately multiplied by 2 at every level. Therefore,
using dS,l+1 = dS,l + 1, the error coming from these variables, which is α × 4−dS,l−1,
is divided by 2 at every level. In fact a similar argument can be used for the error
coming from mult2,mult2c and numerically we see in Figure 4.12 that the same is
(almost) true for all variables. This is a very important observation because it shows
that the portion of the overall error attributed to a certain variable is constant over
levels. In other words, to leading order, all errors are roughly of the same size. This is
intuitive because if an error was ”disproportionately” small, there would be potential
for cost savings with a small increase in the error.

Note that the order of the curves from down to up in Figure 4.7 is consistent with
the order of the operations in the path calculation. Indeed for the variables of scale√
h, the last variables need more precision to limit the rounding errors that could

then propagate. The large difference between the bit-widths of variables S, Sc and
the other variables might come from the difference in scale : since the other variables
are decreasing in scale (unlike S and Sc), the fraction length of S, Sc needs to increase
fast to capture the results from the previous operations with enough accuracy.

We have shown and explained the consistency and meaning of the numerical results
on the evolution of the bit-widths and the differences between variables.

Finally, Figure 4.13 shows the variance Vl and the variance Ṽl = V[∆̃Pl] obtained
for CRNG = 104. They have the same slope as the larger one is assumed approximately
equal to its full precision analogue V[∆Pl] which is = O(2−l), and the slope of the
latter was exhibited above. However this is not as natural as it seems : [3, 39] show
that, if the bit-widths were the same for every level, starting a certain level Ṽl would

34

0 5 10 15

Level

0

5

10

15

20

25

30

B
it
-w

id
th

m1

m2

s1

dW

S

rh

sh2

m2c

Sc

Figure 4.7: Optimal bit-widths ob-
tained over levels 0 to 8 for CRNG =
104.

-5 0 5 10

mult2c

Sc

mult2

S

sum1

rh

mult1

dW

sh2

Variable
Optimal bit-widths at level 1

F
ix

e
d

 p
o

in
t

Figure 4.8: Optimal bit-widths at level
1 (rounded with Equation (3.16)) for
CRNG = 104, represented in the order
in which they are used in the path gen-
eration in each time step.

0 5 10 15

Level

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

S
e

n
s
it
iv

it
ie

s

m1

m2

s1

dW

S

rh

sh2

m2c

Sc

Figure 4.9: Sensitivities for CRNG =
104 over levels.

0 5 10 15

Level

-20

-15

-10

-5

0

5

E
x
p

o
n

e
n

ts

m1

m2

s1

dW

S

rh

sh2

m2c

Sc

Figure 4.10: Exponents for CRNG =
104 over levels.

not decrease with level anymore because the rounding errors would be too large and
accumulate. In fact we think that the error caused by each variable would then have
the same trend as its factor α (see Figure 4.11), so the error caused by S, Sc as
well as (with a smaller magnitude) the error from mult2,mult2c would increase with
level, making the variance increasingly large. That is why increasing the bit-widths
is necessary to keep decreasing Ṽl.

In the next section we discuss in more detail the results from [3, 39].

35

0 5 10 15

Level

10-10

10-5

100

105

F
a

c
to

r
 =

 s
e

n
s
it
iv

it
y
 x

 4
e

m1

m2

s1

dW

S

rh

sh2

m2c

Sc

Figure 4.11: Factor α for CRNG = 104

over levels.

0 5 10 15

Level

10-14

10-12

10-10

10-8

10-6

10-4

E
rr

o
r

(=
s
e

n
s
it
iv

it
y
*4

e
-d

-1
)

m1

m2

s1

dW

S

rh

sh2

m2c

Sc

Figure 4.12: E[x̄2
i,l]4

ei,l−di,l−1 for each
variable i for CRNG = 104.

0 5 10 15

Level

10-12

10-10

10-8

10-6

10-4

10-2

100

V
a

ri
a

n
c
e

Vl (correction term)

Vl
fi
 (low precision estimate)

V
l

CPU

Figure 4.13: Variance Vl and Ṽl over levels 0 to 8 for CRNG = 104.

4.3 A leading order model of the error
As mentioned in the literature review (Section 1.5), a leading order model of the net
error due to finite precision computations was previously proposed in [3] and further
developed in [39]. This model allowed to show that the error E[|∆Sl−∆̃Sl|2] behaved
like O(h−1ρ2) as h tends to 0, where ρ is the unit round off. In other words and as
the figure 4 from [39] shows, when computing in finite precision there are two phases
as we decrease the time step h : first the variance Vl decreases as we go to higher
levels, but starting a certain level the calculations become contaminated by rounding
errors leading variance Vl to increase as O(h−1). In [39] it was shown that increasing
the precision or using Kahan compensated summation [28] to compensate for errors
delays this increase in error but no discussion on the effect of gradually changing the
precision as l increases was proposed.

In this section we show that the gradual increase of the bit-widths obtained with

36

our optimisation method is consistent with the analysis from [3, 39] and allows to
avoid the asymptotic increase in error that was observed when the precision is fixed
[39].

In [39] the Euler-Maruyama scheme is written in a more general form than the
specific example we used in this thesis. The asset price St satisfies the SDE dSt =

a(t, St)dt + b(t, St)dWt, where the drift function a and the volatility function b are
assumed to be Lipschitz continuous.

The error model formulated in [39] is :

Model 3. In the Euler-Maruyama scheme the composite effects of rounding error
introduce two dominant sources of error, η and η′, where at each step we have

S̃i+1 = S̃i + a(ti, S̃i)h+ b(ti, S̃i)
√
hZ̃i + ηi + η′i. (4.9)

Noting ρ the unit roundoff, the larger of these is ηi = O(ρ(1 + |S̃i|)) which is a
martingale increment and the smaller of these is η′i = O(ρ

√
h(1 + |S̃i|)) which is a

possibly martingale increment.

To fix the notation in this section we use a tilde to note the low precision (fixed-
point) variables. We kept the approximate random variables Z̃i as in the original
paper to be consistent with the fact that in our numerical tests we limited the precision
of the random normal increments too. In the original paper [39] the normal increment
Z̃i refers to approximate random variables obtained using an inversion method as
detailed in Chapter 5.

Using this model [39] then prove the following lemma, which states a leading order
model of the error committed on the asset prices at level l :

Lemma 4. For fine and coarse path simulations constructed using approximate ran-
dom variables as described by [20] [and in Chapter 5], then with rounding errors
described by model 3 we have

E[|∆Sl − ∆̃Sl|2] ≈ O(hE[|Z − Z̃|]2+ϵ) +O(h−1ρ2) (4.10)

as the discretisation h decreases for some ϵ ∈ (0,∞).

In [3, 39], all variables were in floating point and had the same precision and
roundoff ρ. In our project the roundoff in the operation that results in variable x

is ρx = 2−fx−1, where fx is the fraction length of variable x. In practice the models
Theorems 3 and 4 still apply, with the roundoff ρ being replaced by ρS. To justify this

37

we will go through the derivation of the model 3, changing the notation and making
a few remarks.

Noting ⊕,⊗ the addition and multiplication operations performed in finite preci-
sion, we will write the Euler-Maruyama scheme :

S̃i+1 = S̃i ⊕ (Ai ⊕ Bi), (4.11)

as in [39]. Since we used the Geometric Brownian Motion, in our case Ai = a(S̃i, ti) =

rS̃ih and Bi = b(S̃i, ti) = σS̃i

√
hZ̃i, although as long as a(·), b(·) are Lipschitz contin-

uous it does not affect the results. Note that to make our experiments consistent with
this order of the operations we would need to slightly change our forward algorithm
1, but it is easy to show that variable Bi and mult2 have the same size (so the same
exponents) and the same sensitivity therefore they also have the same precision. In
addition, this does not affect our final point.

Then considering a(·), b(·), S̃0 = O(1) [39] argue that S̃i, Z̃i, Ai, Bi = O(1). There-
fore assuming h≪

√
h≪ 1 gives the size ordering

E(|Ai|)≪ E(|Bi|)≪ E(|S̃i|). (4.12)

Then note η′i the error in the first addition, ie. Ai⊕Bi = Ai+Bi+η′i. Since the error
η′i is of the size of the roundoff of the larger of Ai and Bi, we have η′i = O(ρB

√
h).

Similarly defining the error ηi in the second addition by S̃i+1 = S̃i +Bi +Ai + ηi + η′i

gives η′i = O(ρS). Since ρB = ρmult2, we obtained the model

S̃i+1 = S̃i + ηi + η′i (4.13)
with ηi = O(2eS−dS−1) (4.14)
and η′i = O(

√
h2emult2−dmult2−1) = O(2emult2−dmult2−1−l/2) (4.15)

Now the dominant error is ηi so we argue that Vl ≈ E[|∆Sl−∆̃Sl|2] = O(h−1ρ2S) =

O(2l4eS−dS−1). Also note that in our experiments the size of variables S, Sc,mul2 and
mult2c do not vary with level (see exponents on Figure 4.10). Furthermore in practice
we see that Vl is divided by 2 at each level therefore we conclude that dS must increase
by 1 bit at every level. This way, we have shown a link between the observed evolution
of the bit-width of variables S, Sc and the leading order error model from [39].

4.3.1 Numerical experiment

In Figures 4.14 and 4.16 we illustrate numerically that adapting the bit-widths allows
to decrease the variance while if the bit-widths in the low precision calculation were
maintained fixed the variance would increase with l.

38

0 1 2 3 4 5 6 7 8 9 10

Level

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

V
a

ri
a

n
c
e

Figure 4.14: Variance for path genera-
tion in fixed point with optimised pre-
cision at each level.

-5 0 5 10 15 20

mult2c

Sc

mult2

S

sum1

rh

mult1

dW

sh2

Variable
Optimal bit-widths at level 8

F
ix

e
d
 p

o
in

t

Figure 4.15: Optimal bit-widths at
level 8.

0 2 4 6 8 10

Level

10
-15

10
-10

10
-5

10
0

V
a
ri
a
n
c
e

Figure 4.16: Variance for path generation in floating point with fixed precision.

This experiment is similar to the figure 4 from [39] : the continuous curves from
Figure 4.16 are analogues of the curves with the downward triangles and squares
markers from [39] respectively. The difference in our experiment is that to produce
the figure we rounded the random numbers instead of taking approximate random
numbers, therefore we preferred to do the test again to consistently compare them
with the variance we obtained with optimised bit-widths 4.14. In Figure 4.16 the
estimate ∆̃Pl and error ∆Pl − ∆̃Pl samples were computed entirely in floating point
arithmetic, were the low precision path was computed in single precision for the blue
curves and in half precision for the red ones. In Figure 4.16 we used our proposed
framework, namely we computed in fixed-point arithmetic with optimised bit-widths
for the low precision paths and in double precision floating point for the accurate
path.

Regarding Figure 4.16, the first term from the leading order model 4 is appar-

39

ently negligible and we see that even on the first levels the variance Vl (see continuous
curves) already increases. Continuous curves have slope h−1 as predicted by the lead-
ing order model 4. We also observe a similar behaviour for the variance of the estimate
∆̃Pl when half precision is used (dashed blue curve), showing that the precision needs
to increase for the accuracy of the low precision simulations to increase after level
l = 4.

In contrast, when using optimised precision (Figure 4.14) the theoretical Vl (con-
tinuous red curve), the corresponding simulated variance (dashed red curve) and
the variance Ṽl of the low precision estimate continue to decrease with level with a
constant slope, which proves the efficiency of our optimisation procedure.

Note however that for the simulated Vl we observe that the optimistic theoretical
bound on Vl is violated starting from level 8 (Figure 4.14). We believe that this is
because either the linear model ceases to be valid at this level of accuracy, meaning
we should include higher order errors in the model, or the correlation between the
errors is higher so we should switch to using the pessimistic estimate of the variance
Vl.

Hence, the key takeaway from this experiment is that up to level 8 our proposed
optimised precisions improve the accuracy of the correction term (comparing red lines
from both Figures 4.14 and 4.16), although the performance of our model encounters
a limitation after level 8.

4.4 Conclusion
In conclusion, the leading order error model provides another motivation for using
optimised precisions instead of taking a fixed low precision to decrease the cost and
relying on the fine levels to increase the accuracy in the MLMC simulation.

In cases where the drift and volatility terms describing the asset dynamics are
more complex to evaluate or the numerical scheme that is employed makes path
simulations more complicated, the FPGA path calculation could be more expensive
relative to CRNG so switching to standard Monte Carlo levels could happen ”early”
due to level cost considerations, as illustrated in Section 4.2.1 by simply varying the
value of CRNG. Despite this, using optimised bit-widths allows to exploit cheap lower
precision calculations on more levels than a fixed precision approach as the variance
of the correction term keeps decreasing with level.

Moreover the optimisation stage could be moved online to avoid extra cost and
latency.

40

Chapter 5

Gaussian random number
generation on CPUs and FPGAs

An important assumption in our nested framework is that the samples generated on
the FPGA use low precision random variables that are very cheap to compute. In
this chapter we discuss several possible methods to generate approximate Gaussian
Random Numbers (GRNs) on the FPGA very efficiently. In MLMC applications,
to generate samples of the correction terms we require that ∆Pl and ∆̃Pl use the
same random normal increments. Therefore among the wide range of existing GRN
generators (GRNG) we chose to focus on inversion methods because they allow to
compute very cheaply a couple of GRNs (Z, Z̃) used on the CPU and the FPGA
respectively that are approximately equal.

Using low precision approximate GRNs on the FPGA is the second key improve-
ment over [6], where the low precision paths used single precision normally distributed
increments.

5.1 Background on Gaussian Random Number Gen-
erators

Due to their importance in a large number of applications, a number of GRNG al-
gorithms that are suitable for hardware implementation have been developed, and
a good survey of the literature on efficient hardware architectures implementing the
main algorithms is available in [35]. In essence, nearly all GRNGs produce their out-
put by taking as input one or several uniformly distributed numbers and converting
them to Gaussian random numbers. The uniform random numbers (URNs) are seen
as a chain of random bits that are usually generated by applying bit-wise operations
on an initial seed number [40]. Fast methods for generating URNs are available in

41

the literature [38] and a comparison of the generation speed for different hardware
devices, including CPUs and FPGAs, is provided in [40]. A key takeaway from [40]
(2009) is that FPGAs are much faster and power efficient for URN generation than
CPUs and even GPUs, giving a number of generated samples per second that is 15
(resp. 50) times higher than on GPUs (resp. on CPUs). The power efficiency also
improves by a factor 60 compared to GPUs. We believe that this factor is still relevant
on modern devices, which motivates again the use of FPGAs in MLMC.

For conversion to Gaussian (or more specifically to normal) random numbers, an
important class of methods relies on the CDF inversion. According to [40], inversion
methods are cheap and produce approximate GRNs with arbitrary precision which
makes them very competitive. These methods are suitable and efficient for both CPU
and FPGA implementations, as shown in [35] and references therein and in the Intel
description of RNGs available at [27].

The idea of inversion methods is to apply an approximation of the inverse CDF
Φ−1 of the Gaussian distribution to an input URN to obtain a GRN. The inverse
CDF is approximated on the interval [0, 1] by a piecewise polynomial function whose
coefficients are stored in a LUT and the hardware design includes a process to identify
the segment of [0, 1] that contains the input uniform variable U . In practice, since
the Gaussian CDF is symmetric around the point (1/2, 0) the function is usually
approximated only on [0, 1/2] and a random bit is used to invert the sign of the
GRN. Several possibilities for the segmentation of the interval [0, 1/2] have been
studied in the literature. The simplest way is to split [0, 1/2] uniformly as illustrated
in Figure 5.1, but since the function Φ−1 has a singularity near 0 defining a partition
that is fine enough to obtain a desired approximation accuracy can lead to very large
LUTs. To avoid this, [7, 31] proposed a hierarchical partitioning of the input interval
and an efficient address finding hardware architecture that is adapted to the shape of
the inverse CDF. For their baseline segmentation they used what we will call dyadic
intervals, which are split by two as we get closer to the singularity, as illustrated in
Figure 5.2. Similarly, in [16] a piecewise linear approximation on geometric intervals
is presented and the corresponding RMS error is analysed in the Lp norm.

In the next sections we focus on three approximations of Φ−1 : a piecewise con-
stant approximation on uniform intervals, a piecewise linear approximation on dyadic
intervals, and a variant of the first method that takes advantage of the Central Limit
Theorem to produce more accurate GRNs by summing several low accuracy GRNs.
These three methods were suggested in the notes that summarised the ideas for this
project provided by Prof. Mike Giles.

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

-4

-3

-2

-1

0

1

2

3

4

-1
(u

)

Figure 5.1: Function Φ−1 on [0, 1] and
uniform intervals on [0, 1/2].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

-4

-3

-2

-1

0

1

2

3

4

-1
(u

)

Figure 5.2: Function Φ−1 on [0, 1] and
dyadic intervals on [0, 1/2] as in [16].

5.2 Generation of gaussian variables using the in-
version method

In this section we detail three CDF inversion methods for the generation of an ap-
proximate GRN Z̃ on the FPGA that comes from the same uniform variable as the
full precision GRN Z computed on the CPU.

In all three approaches below, the coupled GRN computed on the CPU is obtained
with a piecewise approximation of Φ−1 with polynomials of degree 5 on the hierarchical
interval segmentation described in [7]. Therefore for each of the following methods to
obtain Z̃, we mention how to obtain the corresponding full precision uniform variable,
then the full precision GRN Z follows.

To fix the notation, we consider that the double precision uniform variable U

corresponds to a D-bit integer that we denote by J and the associated low precision
uniform variable corresponds to a d-bit integer denoted by j. The leading bit of j
gives the sign of the RNG and the next d − 1 are used to generate an approximate
GRN with one of the following methods.

5.2.1 Piecewise constant approximation on uniform intervals
(Method 1)

In the first approach for the low precision GRNG we simply construct a LUT contain-
ing the constant values Zj that the approximate GRN takes when the input uniform
variable is inside the interval Ij = [uj, uj+1] ⊂ [0, 1/2]. The intervals are uniform
with uj = 2−dj, j < 2d−1. Locating the interval corresponding to the input uniform
variable is trivial since the integer j is the index of the interval.

43

To determine the optimal constants Zj the MSE∫ uj+1

uj

(Zj − Φ−1(u))2du (5.1)

is minimised with respect to Zj, which leads to Zj being the mean of Φ−1 over the
interval Ij :

Zj = 2d
∫ uj+1

uj

Φ−1(u)du. (5.2)

Then the corresponding full precision uniform variable is defined as U = 2−D
(
J + 1

2

)
and the full precision GRN follows.

The issue with this approach is that the LUT is of size 2d−1, which may not fit on
the FPGA or may take up too many hardware resources, for example for d = 10 the
LUT stores 29 = 512 values.

The resulting approximation of Φ−1 and the approximation error are shown in
Figures 5.3 and 5.4 for d = 10. Since the strongest variations of Φ−1 are near U = 0

the error is increasingly large as we get close to that point. The piecewise constant
approximation on uniform segments is good enough on parts of the function were the
slope is mild (near U = 0.5).

Figure 5.3: Piecewise constant approx-
imation with uniform intervals for d =
10.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

U

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Z
 e

rr
o

r

Figure 5.4: Error in piecewise constant
approximation with uniform intervals
for d = 10.

5.2.2 Piecewise linear approximation on dyadic intervals
(Method 2)

In order to reduce the size of the LUT, we now use dyadic intervals as mentioned in
Section 5.1 and illustrated in Figure 5.2. The interval containing the point indexed by
j is identified by the leading bit i of j and contains the points indexed by the integers

44

[[2i−1, 2i − 1]]. In each of these intervals the GRN is approximated by Z̄j = a + bj,
with a separate pair (a, b) for each interval. The coefficients are stored in a LUT of
size d− 1 and the values (a, b) are again obtained by minimising the MSE. A simple
calculation shows that∫ uj+1

uj

(Z̄j − Φ−1(u))2du = 2d(Z̄j − Zj)
2 +

∫ uj+1

uj

(Zj − Φ−1(u))2du (5.3)

where Zj is defined as in the previous section. Therefore to calculate the pairs (a, b)

we only need to minimise
2d−1∑
j=1

(Z̄j − Zj)
2. (5.4)

Equation (5.3) also shows that for the same value of d this approximation cannot
be as good as the Zj approximation, but it is important to keep in mind that here
the LUT is much smaller and the resulting MSE will be shown in Table 5.2. The
uniform CPU variable U is defined in the same way as in method 1 so the coupling
(Z̃, Z) follows naturally.

For d = 10, the resulting piecewise linear function and approximation error are
shown in Figures 5.5 and 5.6 respectively. The error plot shows that this structure
of the segments allows to have an error of the same magnitude across most of the
intervals.

Figure 5.5: Piecewise linear approxima-
tion with dyadic intervals for d = 10.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

U

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Z
 e

rr
o

r

Figure 5.6: Error in piecewise linear ap-
proximation with dyadic intervals for
d = 10.

45

5.2.3 Combination of CDF inversion and Central Limit The-
orem (Method 3)

The idea of the last approach is to reduce further the precision of the approximate
normal random variables generated with the LUT and use the Central Limit Theorem
(CLT) to improve the statistical quality of the final approximate Gaussian variables.
For example take an integer n that divides d and produce one GRN X(1) from the
first d/n bits of j, then X(2) from the next d/n bits and so on using the CDF inversion
method from one of the previous subsections. Then by the Central Limit Theorem
the variable

1√
n

n∑
i=1

X(i) (5.5)

also follows an approximate Gaussian distribution. According to [35] (section 2.11),
”when n uncorrelated random numbers are added, the resulting [probability distri-
bution function] (PDF) can be computed by convolving the individual PDFs”. In the
same paper they show experimentally that the PDF of the GRNs resulting from 5.5
is more accurate than the PDF of the initial X(i) variables (see figures 20 and 22 from
[35]). Hence this method allows to reduce significantly the size of the required LUT
without sacrificing accuracy.

The idea of combining an approximate GRNG method with the CLT was already
used in [40, 35, 33] with n = 8, n = 4 and n = 2 respectively. In particular, [40] used
the piecewise linear approximation on dyadic intervals to generate the X(i)s.

In this section we introduce a similar method where several GRNs obtained using
the piecewise constant approximation (method 1) are summed. The difference com-
pared to the previous implementations is an optimisation stage where the coefficients
stored in the LUT are adapted iteratively, which improves the quality of the esti-
mation compared to simply taking the mean of Φ−1 over the intervals. The second
difference compared to previous work is the coupling between the low precision and
full precision uniform variables that is required in our application.

We explain the method for two variables, as it is then easy to generalise it. Take
the integer j and split it into two integers with bit-widths d/2. Both streams of lower
precision variables X(1), X(2) are computed with the same LUT of size 2d/2−1. This
LUT is initialised using the method 1 and dividing the LUT values by

√
2. Therefore

let’s note X j the values in the small LUT. Using this initial LUT we form a larger
LUT of size 2d by computing all possible sums j ±Xl and order the resulting outputs
Z̃k in ascending order. This ordering defines a permutation π such that π(j) gives

46

the position of the normal computed from the integer j in the ordered list. Then we
perform a least-squared minimisation of

2d∑
k=1

(Zπ(k) − Z̃k)
2 (5.6)

where the Zπ(k) are obtained with method 1. In this minimisation problem, the
variables Z̃k are considered as linear variables of the decision variables, which are the
values Xj from the small LUT that we want to optimise.

After this step update the permutation π by ordering the resulting Z̃k and repeat
the least-squares optimisation. The algorithm stops when the permutation has con-
verged. In practice we observed that for d = 10 and d = 12 this process takes about 20
and 100 iterations respectively, and that the optimisation stage considerably reduces
the MSE (see Table 5.2).

Finally, generating the coupled full precision variable requires to take the permu-
tation π into account. When the optimised LUT is used and the input integer is j,
the output is the value Z̃j, which is an approximate of Φ−1(2−dπ(j)). Therefore the
corresponding uniform variable used on the CPU is

U = 2−dπ(j) + 2−D

(
(J − 2D−dj) +

1

2

)
= 2−d(π(j)− j) + 2−D

(
J +

1

2

)
. (5.7)

The permutation π only needs to be stored (in a permutation table of size 2d) and used
on the CPU while the GRNG on the FPGA is simply done using only the optimised
LUT of size 2d/2−1.

Generalising the method to n > 2 variables is straightforward. The the only
change is that the values of the small LUT are divided by

√
n and n low precision

variables are summed to obtain the Z̃k. The coupled uniform variable used on the
CPU is defined with exactly the same formula as in the two variables case.

5.3 Computational cost of approximate GRNG on
CPUs and FPGAs

Before diving into numerical tests to compare thoroughly the approximation methods
introduced above, we add a few words on the computational cost of the random
number generation specific to our application. We first estimate the cost of a single
random normal variable generated on the CPU, that is to say we find the order of
magnitude of the parameter CRNG used in the previous chapters.

47

Figure 5.7: Two variables approach
with uniform intervals for d = 10.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

U

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Z
 e

rr
o

r

Figure 5.8: Error for the two variables
approach with uniform intervals for d =
10.

Based on references of available RNGs for Intel CPUs [27] we will assume that
normal random numbers are generated on the CPU using a polynomial approximation
of Φ−1 with polynomials of degree five on dydic intervals. We consider that the cost
of locating the interval that contains the input uniform variable x is negligible. Once
the segment is identified, the output GRN is computed by interpolation as follows

((((a5 × x+ a4)× x+ a3)× x+ a2)× x+ a1)× x+ a0 (5.8)

where ai are the coefficients stored in the LUT. Assuming all coefficient and the uni-
form variable x are double precision floating-point numbers, their bit-width is D = 53,
and we neglect the cost of the operations on the exponents. Then using Equation (1.3)
leads to a total cost of the interpolation of approximately 13000. Finally, to approx-
imate the cost of the uniform number generation, based on performance data on the
available URNGs from Intel [27], we consider that a variant of the Mersenne Twister
generator was used to generate x, which adds to the cost a term proportional to 64
that we neglect because it is small relative to the cost of estimating Φ−1(x). In addi-
tion, if we use the multiple variable approach on the FPGA, the CPU needs to apply
the permutation π to the leading d bits of x, which is either considered as a linear
operation or a look-up. This stage could be quite demanding in terms of memory as
it requires storing a permutation table of size 2d but also has negligible cost.

Next we discuss the cost of the GRNG on the FPGA. We first summarised the size
of the LUTs and the resulting conversion cost from uniform to gaussian variables for
methods 1, 2 and 3 in Table 5.1. The piecewise constant approximation is cheap to
use once the construction of the LUT is complete as the address finding (for uniform
segmentation of [0, 1/2]) is trivial and no interpolation is required. For piecewise

48

linear approximation we considered the same cost per operation as in the previous
chapters 1.3 and that the input uniform variable, the coefficients (a, b) and the output
normal variables all have the same bit-width, leading to the cost d2 + 2d. Then, as
we have seen in Figure 4.7 (at least) up to level 15, the optimal bit-widths used for
the normal increments dW is no larger than 16, leading to a cost of the conversion
to normal variables of at most 300.

Approximation method LUT size Evaluation cost
Piecewise constant 2d−1 Look-up

Piecewise linear (PWL) + dyadic intervals 2× (d− 1) d× (d− 1) + 2d
Two variables | n variables 2d/2−1 | 2d/n−1 Look-up

Table 5.1: Storage and evaluation cost on the FPGA for the approximate GRNG
methods 1,2 and 3.

It remains to estimate the cost of the URNG on the FPGA as well as its coupling
with the CPU calculation. The uniform variables on the FPGAs are computed in two
different manners, depending on the sample path where they are used : In samples
of ∆Pl − ∆̃P l that are computed on both CPUs and FPGAs, for each time step the
uniform variable used on the FPGA is simply a truncated version of a uniform variable
generated in full precision on the CPU. On the other hand, for samples of ∆̃P l that are
only computed on the FPGA the uniform variables can be generated with negligible
cost using Bakhvalov’s trick ([19], Appendix A), which uses two independent streams
of URNs generated by the CPU to generate new independent uniform variables very
cheaply. Therefore in both cases the URNG on the FPGA only takes a few bit-
wise operations, and we can conclude that the GRNG cost on the FPGA is well
approximated by the cost of converting the uniform random numbers into normal
random numbers alone.

5.4 Empirical comparison of the GRNG methods
1,2 and 3

In this section we compare empirically the quality of the estimated GRNs from each
approximation method. First, we compare the MSE obtained for each method for
several values of the bit-width d. We chose d = 10 and d = 12 as the optimal bit-
width of dW obtained in Section 4.2 was close to these values (at least for levels 0 to
15, with the value of CRNG = 104). In addition to the MSE comparison, we looked

49

Method d MSE Maximal value
Piecewise constant 9 3.32× 10−4 3.18
Piecewise constant 10 1.50× 10−4 3.37
Piecewise constant 12 3.13× 10−5 3.74

PWL + dyadic 10 1.91× 10−4 3.37
PWL + dyadic 12 7.26× 10−5 3.74

Two variables (init.) 10 4.26× 10−4 3.19
Two variables (init.) 12 1.10× 10−4 3.55

Two variables (optimal) 10 2.80× 10−4 3.29
Two variables (optimal) 12 6.00× 10−5 3.67

Table 5.2: Approximation error for different approximate GRNG methods.

at the maximal size of the GRNs generated by each method. For all methods above,
the determination of the range is trivial : for the piecewise constant approximation
it is sufficient to take |Z1| and for piecewise linear approximation taking the absolute
value of the degree 0 coefficient |b| from the leftmost interval gives the desired range.
The results are summarised in Table 5.2 (see columns 3 and 4).

We used the code provided by Prof. Giles in our numerical tests.

5.4.1 Discussion on the MSE

We first compare roughly the three approximations methods by looking at the result-
ing MSE.

First note that the MSE in method 2 is necessarily larger than in method 1 (see
(5.3)). Despite this, for d = 10 the dyadic approximation is only slightly worse, which
is probably because for the first two dyadic intervals there are only two points in each
so Z̄j will exactly match Zj. However for d = 12 there is nearly a factor 2, which
illustrates that the MSE does not evolve in the same way depending on the type of
intervals that is used, as will be discussed below.

Next, as suggested in Mike Giles’ notes, it is also interesting to compare methods
3 with d bits against the method 1 with d−1 bits, since most of the values in method
3 occur in pairs (Xi+Xj and Xj +Xi). The values for d = 10 are shown in Table 5.2.
We see that the double variable approach gives a smaller MSE than the simple LUT
approach, which confirms the accuracy of method 3. This difference is due to the
extra values of the form Xi+Xi that the method 3 can produce. Also it is important
to note that without the optimisation the method 3 does not perform well.

Finally, comparing methods 2 and 3 is less straightforward. In Table 5.2 we
see that, for d = 10, the dyadic approach is more accurate, while for d = 12 the

50

optimised two variables approach is preferred. Therefore we made a plot of the MSE
(Figure 5.9) for different values of d to visualise better the trends of the MSE with
increasing bit-width.

8 10 12 14 16

d

10-6

10-5

10-4

M
S

E

PW const + uniform intervals

Two variables (initial LUT)

Two variables (optimal LUT)

PW linear + dyadic intervals

Tolerance

Figure 5.9: MSE for methods 1,2 and 3 for different d.

As illustrated by Figure 5.9 and the convergence analysis from [16], as d tends
to infinity, the uniform intervals give MSE −→ 0 and the dyadic intervals give
MSE −→ C, for some positive constant C. The latter is because with our simple
dyadic segmentation, when d increases by 1 the MSE is reduced only in the interval
closest to 0, so the error due to the other intervals remains the same. This is the reason
why the dyadic intervals were split further into smaller uniform intervals in [31] as
it allows to improve the approximation of the inverse CDF. However their address
location process is too complex for our needs, so we do not consider improving the
segmentation of the dyadic method further.

In addition, the Figure 5.9 illustrates that both method 1 and 3 have their MSE
divided by 2 each time d increases by 1. This was theorically expected for method
1 (see [16]) and is intuitively true for method 3 after the optimisation stage as the
MSE is minimised such that the Z̃j approximate the Zk corresponding to a larger
LUT, so the slope of the MSE in method 3 should be similar to that of method
1. Without optimisation, the MSE of the double variable approach has a different
slope on Figure 5.9, probably because the initial Z̃j values are ”irregular”. Despite
the factor 2 between the method 1 and method 3, the double variable approach
shows good accuracy for significantly reduced LUT size. This might be because the
optimisation allows some values of the table to take more ”extreme” values to better

51

Method d P[|error| > tol] Card(|errorj| > tol)/size(LUT)
Piecewise constant 9 5.79% 0.39%
Piecewise constant 10 5.80% 0.39%
Piecewise constant 12 5.79% 0.15%

PWL + dyadic 10 66% 33%
PWL + dyadic 12 92% 91%

Two variables (optimal) 8 34% 31%
Two variables (optimal) 10 50% 49%
Two variables (optimal) 12 66% 66%
Two variables (optimal) 16 86% 87%

Table 5.3: Pointwise error for different approximate GRNG methods.

approximate the tail of the distribution. This is consistent with the increase in the
maximal value after optimisation (see Table 5.2).

5.4.2 Pointwise error and accuracy of the last bits

For all methods above, even if we look at the error in Z only in the range of values
defined by the GRNG, this error can go as far as 0.2 (see Figures 5.4, 5.6 and 5.8),
which is worse than our desired tolerance. Indeed we would like the approximate
normal variables to have d bits of accuracy. In fixed-point arithmetic the exponent
of the GRNs is e, so we want the error on Z to be smaller than tol = 2e−d−1.

Therefore we first looked at the error at the points uj = j2−d that are used to
construct the LUT in all three approximation methods. Then we also compared the
probability of the absolute error being larger than the tolerance 2e−d−1 when the input
uniform random variable can take any value in [0, 1]. To compute this probability
we split every segment [uj, uj+1] into 100 intervals and counted the number of points
that violate the tolerance. Then summing these across the segments and scaling by
2 × 2−d/100 gives the desired probability. The results from these calculations are
given in the two last columns of Table 5.3.

For the PWL approximation on dyadic intervals the distance between the approxi-
mate inverse CDF and the real one is very large notably in the intervals in the middle
of [0, 1], which obviously cannot be improved by increasing d. This explains why
this method performs badly with respect to P[|error| > tol]. Therefore it would be
pointless, for instance, to take finer input uniform variables in an attempt to decrease
the MSE by evaluating the approximate inverse CDF at more points, because the
additional uniform points would yield a high error.

52

Nb. of variables × d/n MSE (optimised) P[|error| > tol] Card(|errorj| > tol)
2× 6 bits 6.00× 10−5 33% 67%
3× 4 bits 2.80× 10−4 4.6% 93%
2× 8 bits 2.96× 10−6 43% 87%
4× 4 bits 1.12× 10−4 99% 99%

Table 5.4: Tests method 3 5.2.3 for different LUT sizes and number of combined
variables (corresponding to d = 12 and d = 16).

The method 1 gives very good values of P[|error| > tol] and the tolerance is
violated only at very few points of the mesh. Therefore for these values of d we
conclude that all bits of the produced variable are accurate with probability ≈ 0.94.
It is therefore surprising that the two variables approach has considerably poorer
performance for d = 10. For method 2, we have also made tests where the tolerance
was larger to see how many bits are accurate. It seems that as d increases the number
of inaccurate bits increases too. This suggests we might need to sum more variables
to improve the quality of the approximate random normal increments, which we did
in the next subsection.

5.4.3 Summing more low precision Gaussian variables

As mentioned in Section 5.2.3, previous works [40, 33, 35] motivate summing more
lower precision variables in method 3 in order to reduce even further the size of the
LUT or improve the accuracy of the produced GRNs. Therefore we chose several
values of d and n such that the results are comparable and summarised the results in
Table 5.4. Note that we don’t need more than 16 bits of accuracy since in Chapter 4
we saw that the bit-width of the random increment was usually between 8 and 15.

Contrarily to the our expectations, here we do not obtain a good accuracy in terms
of tolerance on the pointwise errors, in most of the cases above. Despite this, with the
3×4 bits approximation we obtained a small P[|error| > tol], but the accuracy at the
mesh points was not good. It is unclear whether the bit-widths of the low precision
variables are too small or we don’t take enough variables to obtain an improvement
in the distribution, since the case with d = 12 and d = 16 show different evolutions
of the accuracy as we increase n.

But we could take even more variables and use a larger bit-width for the uniform
input that is split into n random integers. To mention the limitations linked to our
application, for the full FPGA samples we use a stream of URNs provided by the
CPU, which have 64 bits, so dividing that in two in order to use Bakhanov’s trick

53

we get D = 32 bits. This can be split in different ways. For example we could use
d = 24 and n = 4. Then if the accuracy is not good enough we could use the sample
from the second stream too, in order to add 8 low precision approximate GRNs.

5.5 Discussion and conclusion
All three methods have their strengths and weaknesses that can be summarised as
follows. In the experiments, for methods 2 and 3 it appears that taking a LUT of size
equal to the number of desired bits of accuracy is not sufficient to ensure that the
output random normal variables have enough accuracy. Method 1 requires a lot of
storage on the FPGA but is the most accurate. Method 2 is less storage demanding
but the MSE is bounded so seeking higher approximation accuracy requires defining
more complex segmentation. On top of this the method requires an interpolation
instead of a simple look-up. The method 3 is cheap on the FPGA but it is not trivial
to define the right parameters to achieve a desired accuracy on the pointwise error
and the method requires storing a permutation on the CPU which can be large (2d−1

as for method 1, but stored on the CPU instead of the FPGA).
In our application we want to reduce as much as possible the number of opera-

tions required by the RNG on the FPGA, both for the uniform input variable and
the resulting normal variable. Therefore the hybrid method which exploits the PWC
evaluation and improves the accuracy using the CLT is the most efficient choice to
make the RNG cost negligible. This would allow to respect the assumption Equa-
tion (3.3), which was admitted in our thesis and used in the numerical experiments.
More precisely, with carefully chosen parameters d and n, the method 3 would reduce
the operations on the FPGA performed for the RNG to a few bitwise operations :
using the stream of URNs from the CPU and Bakhvalov’s trick, the FPGA gener-
ates random integers with only d bitwise operations, then looks up for the Gaussian
variables X(i) (i = 1, . . . , n) in a LUT and sums them with n×d/n bit-wise operations.

The counterpart of the method is that we need to store and use the permutation π

to generate the URNs used for path generation on the CPU, which slightly increases
the cost of CPU samples. We believe that this increase in CRNG is acceptable as most
samples are computed on the FPGA. Indeed for the first levels of the nested MLMC
we do not need much accuracy in the normal increments therefore d would be small,
which would give a permutation table of size 2d−1 that fits well in the CPU’s L2 cache.
Then as more accuracy is required d and the permutation table would grow. However
we think that this is not problematic on at least the 3 first levels.

54

Chapter 6

Conclusion

To summarise this thesis, using a model of the error based on algorithmic differenti-
ation we formulated a problem that allows to customise the bit-widths in the MLMC
framework. We have shown that optimising the bit-widths allows to compensate for
the rounding errors that would otherwise accumulate and decrease the accuracy of
the correction term as the time step decreases. We then compared several possible
methods for generating the low precision normal random variables that could be used
in our framework to reduce considerably the cost of generating paths on the FPGA.

The optimisation of the bit-widths could easily be implemented in the industry
and could be performed once per week or per month, allowing to reduce considerably
the daily computational workload for pricing financial options and save energy and
time.

The following steps of the project would be to implement this framework on real
hardware to produce data and confirm its improved speed and power efficiency over
existing methods. Hardware implementation and testing would also be important to
confirm the value of the parameters and the GRNG method that should be used. For
example, one could seek the most relevant values of d, n or the cost of the GRNG on
the CPU (CRNG) which are important factors to set the number of levels that should
be nested and configure the hardware devices.

Note however that real hardware tests are required to rigorously conclude on the
hardware efficiency comparison, which will be the scope of a future project between
Mike Giles and his collaborators (from the computer science community).

55

Appendix A

Main components of an FPGA

56

Component Description Example : AMD Versal
Premium VP1902

Look-Up-Tables
(LUTs)

Serve as basic logic elements
where truth tables can be mapped
onto them. They are notably
used for storing values that allow
to evaluate precomputed func-
tions.

8.46M

Configurable Logic
Blocs

CLBs consist of LUTs, flip-flops,
and interconnectivity resources
combined together.

18.5M

Input/Output
Blocks (IOBs)

IOBs facilitate communication
between the external world and
internal modules of FPGAs.

2,328 SelectIO resources
capable of operation up
to 3.2 Gbps

Routing Resources The routing matrix allows signal
propagation throughout the chip.

Clock Networks
Dedicated resources ensure effi-
cient distribution of clock signals
across the chip.

Memory blocks
(RAMs or ROMs) (Optional)

block RAM of 238Mbit
and UltraRAM of
619Mbit

Digital Signal Pro-
cessors (DSP)

(Optional) Dedicated twos com-
plement multipliers and a accu-
mulators to accelerate multiplica-
tions and other functions.

6,864 blocks

Table A.1: Main components of an FPGA, their functions and corresponding char-
acteristics for the largest existing FPGA : the AMD Versal Premium VP1902 [2].
Reproduced from [21] and complemented with [40, 1, 2].

57

Appendix B

Multilevel Monte Carlo Algorithm
pseudo-code

Algorithm 4 Multilevel Monte Carlo Algorithm
Input: the desired RMS ε, an initial number of levels Lmin ≥ 2 and an initial
number of samples N0 for levels l = 0, 1, . . . , Lmin + arguments for the subroutine
used to compute the samples
Output: expected payoff, number of samples Nl generated and cost of the path
generation Cl at each level l
sums← 0 ▷ initialise a matrix that contains the sample sums of ∆Pl and ∆P 2

l

L← Lmin ▷ initialise the number of levels
Cl ← 0
Nl ← 0
dNl ← N0 ▷ initialise the number of additional samples that need to be generated
while dNl > 0 for at least one l do

for l = 0, 1, . . . , L do
if dNl(l) > 0 then

sums(l)← sums(l)+ [result of subroutine]
Cl(l)← [result of subroutine]
Nl(l)← Nl(l) + dNl(l)

end if
end for
compute Vl from sums

Ns = ⌈2ε−2
√

(Vl/Cl)
(∑L

l=0

√
(VlCl)

)
⌉

dNl ← max(Ns −Nl, 0)
if E[∆PL]/(2

α − 1) > ε/
√
2 then ▷ test weak convergence

L← L+ 1 ▷ add a level (and an extra column to Nl, dNl, Vl, Cl, sums)
end if

end while

58

Appendix C

Complements referenced in
Chapter 3

This appendix presents the plots that justify using only 7 or 9 different bit-widths
per level and shows the bit-widths obtained with the various optimisation methods
in Chapter 3. We notice a slight difference in the bit-widths Figure C.2 of variables
mult2, S that are obtained with the quadratic programming approach compared to
the other optimisation methods (Figure C.2).

59

0 5 10 15

Time steps

0.798

0.7985

0.799
E(m1bar2)=E(s1bar2)

5 10 15

Time steps

0.6

0.7

0.8

E(m2bar2)

0 5 10 15

Time steps

1.994

1.995

1.996

1.997

1.998
10

-3 E(dWbar2)

0 5 10 15

Time steps

0.6

0.7

0.8

E(Sbar2)

Figure C.1: E[x̄2] for all the intermediary variables (from Algorithm 1) over the time
steps, for N = 16 time steps.

60

10-5 100
5

10

15

variable S

10-5 100

5

10

15
variable rh

10-5 100
5

10

15

variable sh2

10-5 100

5

10

15
variable m1

10-5 100

5

10

15
variable m2

10-5 100

5

10

15
variable s1

10-5 100

5

10

15
variable dW

Lagrange multiplier + ratio

Lagrange multiplier + nearest

Integer prog. linear cost

Integer prog. quadratic cost

Greedy algorithm (knapsack)

Figure C.2: Bit-widths obtained with different optimisation methods for a single level
and N = 16 time steps.

61

Appendix D

Uniform precision heuristic

The most relevant existing mixed-precision MLMC framework in the literature is
probably [6]. The authors chose to fix a uniform precision pl at each level and write
the telescoping sum on the expectations as

E[P (S
(pL)
L)] = E[P (S

(p0)
0)] +

L∑
l=1

E[P (S
(pl)
l)− P (S

(pl−1)
l−1)]. (D.1)

Note V ′
l = V[∆Pl] the variance obtained at level l in the standard MLMC algorithm

(double precision), and V p
l = V[P (S

(pl)
l)−P (S

(pl−1)
l−1)] the level variance corresponding

to D.1. The authors want to take pl such that V p
l is close to V ′

l , which is achieved by
choosing pl such that ξ(pl) < 1.1, where the fraction ξ is defined as

ξl(p) =
V
[
P (Sfloat

l+1)− P (Sp
l)
]

V
[
P (Sfloat

l+1)− P (Sfloat
l)

] . (D.2)

To determine pl, for each level l the precision pl is initialised at pl−1, then the
variances in D.2 are estimated with only 100 paths and pl is incremented by one until
the condition ξl(pl) < 1.1 is met. We chose a different initialisation value for p0 since
our test example is different from what was done in [6].

Then the multilevel framework suggested in [6] proceeds as follows :

1. set the precisions p0, . . . , pL as described previously

2. compute 104 paths on each level to determine the variances V p
l

3. determine the number of paths Nl that need to be computed on each level

4. evaluate the required extra samples

5. when the algorithm has converged compute the output E[P (S
(pL)
L)].

62

To compare the bit-width optimisation methods introduced in Chapter 3 with
this uniform bit-width heuristic we made a numerical experiment. For N = 14 time
steps and a single level, we used the heuristic with the ratio ξ1 to determine the
uniform bit-width that all variables should have and obtained d = 13. Note that we
considered that the normal random variables are in full precision. With this precision
the variance of the error P−P̃ is equal to 7.9e−07 but the FPGA cost per time step is
C̃/N = 4022 (using the cost model that sums the squares of the bit-widths), meaning
that there is a factor 2 between the cost obtained with uniform bit-widths and the
optimised bit-widths (see Figure 3.3). However this is only the cost of the FPGA
calculations but taking into account the fact that this heuristic uses full precision
random normals, its cost per sample is actually NCRNG + C̃. Therefore the samples
computed with this framework are more expensive than the correction term samples
P − P̃ from our framework (since in our framework C̃ is smaller). This remark is also
valid for higher levels l.

In our framework the terms ∆̃P l also have variance approximately V ′
l but since

the variance of the correction terms is very small, the FPGA cost is smaller and the
random variables used on the FPGA are generated in low precision, we believe that
the total computational cost is reduced compared to the framework from [6].

63

Bibliography

[1] AMD. Radiation tolerant Versal AI core series data sheet (ds946), digi-
tal signal processing (dsp). Available at : https://docs.amd.com/r/en-US/
ds946-xqr-versal-ai-core/Digital-Signal-Processing-DSP. (Accessed:
21 August 2024).

[2] AMD. Versal premium vp1902 adaptive SoC product
brief. Available at : https://www.amd.com/content/dam/
amd/en/documents/products/adaptive-socs-and-fpgas/versal/
2118851-versal-premium-vp1902-product-brief.pdf. (Accessed: 4
August 2024).

[3] Armando Arciniega and Edward Allen. Rounding error in numerical solution of
stochastic differential equations. Stochastic Analysis and Applications, 21(2):281–
300, 2003.

[4] Haidar Azzam, Bayraktar Harun, Tomov Stanimire, Dongarra Jack, and Higham
Nicholas J. Mixed-precision iterative refinement using tensor cores on gpus
to accelerate solution of linear systems. Proceedings of the Royal Society A,
476(2243):20200110, 2020.

[5] Andrew Boutros, Brett Grady, Mustafa Abbas, and Paul Chow. Build fast, trade
fast: FPGA-based high-frequency trading using high-level synthesis. In 2017 In-
ternational Conference on ReConFigurable Computing and FPGAs (ReConFig),
pages 1–6, 2017.

[6] C. Brugger, C. de Schryver, N. Wehn, S. Omland, M. Hefter, K. Ritter,
A. Kostiuk, and R. Korn. Mixed precision Multilevel Monte Carlo on hybrid
computing systems. In Proceedings of the IEEE Conference on Computational
Intelligence for Financial Engineering & Economics (CIFEr), pages 215–222.
IEEE, 2014.

64

https://docs.amd.com/r/en-US/ds946-xqr-versal-ai-core/Digital-Signal-Processing-DSP
https://docs.amd.com/r/en-US/ds946-xqr-versal-ai-core/Digital-Signal-Processing-DSP
https://www.amd.com/content/dam/amd/en/documents/products/adaptive-socs-and-fpgas/versal/2118851-versal-premium-vp1902-product-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/products/adaptive-socs-and-fpgas/versal/2118851-versal-premium-vp1902-product-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/products/adaptive-socs-and-fpgas/versal/2118851-versal-premium-vp1902-product-brief.pdf

[7] Ray C. C. Cheung, Dong-U Lee, Wayne Luk, and John D. Villasenor. Hardware
generation of arbitrary random number distributions from uniform distributions
via the inversion method. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 15(8):952–962, 2007.

[8] Gary Chun Tak Chow, Anson Hong Tak Tse, Qiwei Jin, Wayne Luk, Philip H.W.
Leong, and David B. Thomas. A mixed precision Monte Carlo methodology for
reconfigurable accelerator systems. In Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA ’12, page 57–66,
New York, NY, USA, 2012. Association for Computing Machinery.

[9] Richard J. Clancy, Matt Menickelly, Jan Hückelheim, Paul Hovland, Prani Nal-
luri, and Rebecca Gjini. Trophy: Trust region optimization using a precision
hierarchy. In Derek Groen, Clélia de Mulatier, Maciej Paszynski, Valeria V.
Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot, editors, Computa-
tional Science – ICCS 2022, pages 445–459, Cham, 2022. Springer International
Publishing.

[10] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte
Carlo methods and applications to elliptic PDEs with random coefficients. Com-
puting and Visualization in Science, 14(1):3–15, Aug 2011.

[11] Nathan O. Collier, Abdul-Lateef Haji-Ali, Fabio Nobile, Erik von Schwerin, and
Raúl Tempone. A continuation multilevel Monte Carlo algorithm. BIT Numerical
Mathematics, 55:399 – 432, 2014.

[12] Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Theo Mary, and Mantas
Mikaitis. Stochastic rounding: implementation, error analysis and applications.
Royal Society Open Science, 9(3):211631, 2022.

[13] Christian de Schryver, Pedro Torruella, and Norbert Wehn. A multi-level Monte
Carlo FPGA accelerator for option pricing in the Heston model. 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 248–253,
2013.

[14] A.A. Gaffar, O. Mencer, and W. Luk. Unifying bit-width optimisation for fixed-
point and floating-point designs. In 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 79–88, 2004.

65

[15] M. B. Giles and B. J. Waterhouse. Multilevel quasi-Monte Carlo path simulation,
pages 165–182. De Gruyter, Berlin, New York, 2009.

[16] Michael Giles and Oliver Sheridan-Methven. Approximating inverse cumulative
distribution functions to produce approximate random variables. ACM Trans.
Math. Softw., 49(3), sep 2023.

[17] Michael B. Giles. Multilevel Monte Carlo path simulation. Operations Research,
56(3):607–617, 2008.

[18] Michael B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328,
2015.

[19] Michael B. Giles, Mario Hefter, Lukas Mayer, and Klaus Ritter. Random bit
multilevel algorithms for stochastic differential equations. Journal of Complexity,
54:101395, 2019.

[20] Michael B. Giles and Oliver Sheridan-Methven. Analysis of nested multilevel
Monte Carlo using approximate normal random variables. SIAM/ASA J. Un-
certain. Quantification, 10:200–226, 2021.

[21] Piyush Gupta. Introduction to FPGA basics [2023]. Available at : https:
//fpgainsights.com/fpga/fpga-basics/. (Accessed: 4 August 2024).

[22] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In Proceedings of the 32nd Inter-
national Conference on International Conference on Machine Learning - Volume
37, ICML’15, page 1737–1746. JMLR.org, 2015.

[23] Abdul-Lateef Haji-Ali, Fabio Nobile, Erik von Schwerin, and Raúl Tempone.
Optimization of mesh hierarchies in multilevel Monte Carlo samplers. Stochastics
and Partial Differential Equations Analysis and Computations, 4(1):76–112, Mar
2016.

[24] R. Hauser. Lecture notes for the course B6.3 Integer programming. Mathematical
Institute, University of Oxford, October 2023.

[25] Desmond John Higham, Xuerong Mao, and Andrew M. Stuart. Strong con-
vergence of Euler-type methods for Nonlinear Stochastic Differential Equations.
SIAM J. Numer. Anal., 40:1041–1063, 2002.

66

https://fpgainsights.com/fpga/fpga-basics/
https://fpgainsights.com/fpga/fpga-basics/

[26] Nicholas J. Higham and Theo Mary. Mixed precision algorithms in numerical
linear algebra. Acta Numerica, 31:347–414, 2022.

[27] Intel. Developer reference for intel® oneapi math kernel library for c. distribu-
tion generators. Available at : https://www.intel.com/content/www/us/en/
docs/onemkl/developer-reference-c/2024-1/distribution-generators.
html#GUID-38330C50-A45E-403A-9ADB-7BA5D102C3E9. (Accessed: 16 August
2024).

[28] William Morton Kahan. Further remarks on reducing truncation errors. Com-
munications of the Association for Computing Machinery (ACM), 8:40, 1965.

[29] Robert Keim. What is an FPGA? An introduction to programmable logic.
Available at : https://www.allaboutcircuits.com/technical-articles/
what-is-an-fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/.
(Accessed: 4 August 2024).

[30] Christian Leber, Benjamin Geib, and Heiner Litz. High frequency trading ac-
celeration using fpgas. In 2011 21st International Conference on Field Pro-
grammable Logic and Applications, pages 317–322, 2011.

[31] Dong-U Lee, Ray C. C. Cheung, Wayne Luk, and John D. Villasenor. Hierarchi-
cal segmentation for hardware function evaluation. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 17(1):103–116, 2009.

[32] Dong-U. Lee, Altaf Abdul Gaffar, Ray C. C. Cheung, Oskar Mencer, Wayne
Luk, and George A. Constantinides. Accuracy-guaranteed bit-width optimiza-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(10):1990–2000, October 2006.

[33] Dong-U Lee, Wayne Luk, John D. Villasenor, and Peter Y. K. Cheung. A
Gaussian noise generator for hardware-based simulations. IEEE Trans. Comput.,
53(12):1523–1534, dec 2004.

[34] B. Lindsey, M. Leslie, and W. Luk. A Domain Specific Language for accelerated
Multilevel Monte Carlo simulations. In Proceedings of the IEEE 27th Interna-
tional Conference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 2016.

67

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-1/distribution-generators.html#GUID-38330C50-A45E-403A-9ADB-7BA5D102C3E9
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-1/distribution-generators.html#GUID-38330C50-A45E-403A-9ADB-7BA5D102C3E9
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-1/distribution-generators.html#GUID-38330C50-A45E-403A-9ADB-7BA5D102C3E9
https://www.allaboutcircuits.com/technical-articles/what-is-an-fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/
https://www.allaboutcircuits.com/technical-articles/what-is-an-fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/

[35] Jamshaid Sarwar Malik and Ahmed Hemani. Gaussian random number genera-
tion. ACM Computing Surveys (CSUR), 49:1 – 37, 2016.

[36] MathWorks. Rounding mode : Convergent. Available at : https://de.
mathworks.com/help/fixedpoint/ug/rounding-mode-convergent.html.
(Accessed: June 2024).

[37] Optimisation Toolbox example MathWorks. Mixed-integer quadratic
programming portfolio optimization: Problem-based. Available at
: https://de.mathworks.com/help/releases/R2020b/optim/ug/
miqp-portfolio-problem-based.html. (Accessed: May 2024).

[38] Mutsuo Saito and Makoto Matsumoto. Simd-oriented fast mersenne twister: a
128-bit pseudorandom number generator. In Alexander Keller, Stefan Heinrich,
and Harald Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods
2006, pages 607–622, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[39] Oliver Sheridan-Methven and Michael Giles. Rounding error using low precision
approximate random variables. SIAM Journal on Scientific Computing, 2024.

[40] David B. Thomas, Lee W. Howes, and Wayne W. C. Luk. A comparison of
CPUs, GPUs, FPGAs, and massively parallel processor arrays for random num-
ber generation. In Symposium on Field Programmable Gate Arrays, 2009.

[41] AMD Xilinx. Adaptive computing technology overview. Available
at : https://www.xilinx.com/content/dam/xilinx/publications/
technology-briefs/adaptive-computing-technology-overview.pdf.
(Accessed: 4 August 2024).

68

https://de.mathworks.com/help/fixedpoint/ug/rounding-mode-convergent.html
https://de.mathworks.com/help/fixedpoint/ug/rounding-mode-convergent.html
https://de.mathworks.com/help/releases/R2020b/optim/ug/miqp-portfolio-problem-based.html
https://de.mathworks.com/help/releases/R2020b/optim/ug/miqp-portfolio-problem-based.html
https://www.xilinx.com/content/dam/xilinx/publications/technology-briefs/adaptive-computing-technology-overview.pdf
https://www.xilinx.com/content/dam/xilinx/publications/technology-briefs/adaptive-computing-technology-overview.pdf

	Introduction
	Background on FPGAs
	Fixed-point arithmetic
	Pricing an European vanilla option with the Euler-Maruyama scheme
	Monte Carlo methods for SDEs applications
	Accuracy achieved by Multilevel Monte Carlo
	Multilevel Monte Carlo algorithm
	Nested multilevel Monte Carlo

	Literature overview
	Objective and summary of the contribution of this work

	Rounding error model via linear approximation
	Linearised model of the total error
	Algorithmic differentiation for sensitivity analysis
	Estimates of the overall variance
	Numerical validation of the variance model

	Bit-width optimisation
	Computational cost model and global problem formulation
	Bit-width optimisation methods
	Analogy with the 0-1 knapsack problem and greedy algorithm
	Lagrange multiplier and priority ratio
	Integer quadratic programming for the cost (3.4)
	Numerical comparison of the bit-width optimisation methods

	Global optimisation for the nested Monte Carlo estimator

	Nested Multilevel Monte Carlo and rounding error analysis
	Mixed precision MLMC algorithm
	Numerical experiments : global optimisation and nested framework
	Cost savings with the nested framework
	Bit-widths and variance over levels

	A leading order model of the error
	Numerical experiment

	Conclusion

	Gaussian random number generation on CPUs and FPGAs
	Background on Gaussian Random Number Generators
	Generation of gaussian variables using the inversion method
	Piecewise constant approximation on uniform intervals (Method 1)
	Piecewise linear approximation on dyadic intervals (Method 2)
	Combination of CDF inversion and Central Limit Theorem (Method 3)

	Computational cost of approximate GRNG on CPUs and FPGAs
	Empirical comparison of the GRNG methods 1,2 and 3
	Discussion on the MSE
	Pointwise error and accuracy of the last bits
	Summing more low precision Gaussian variables

	Discussion and conclusion

	Conclusion
	Main components of an FPGA
	Multilevel Monte Carlo Algorithm pseudo-code
	Complements referenced in Chapter 3
	Uniform precision heuristic
	Bibliography

