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Abstract

Today, better numerical approximations are required for multi-dimensional SDEs

to improve on the poor performance of the standard Monte Carlo integration. With

this aim in mind, the material in the thesis is divided into two main categories,

stochastic calculus and mathematical finance. In the former, we introduce a new

scheme or discrete time approximation based on an idea of Paul Malliavin where,

for some conditions, a better strong convergence order is obtained than the standard

Milstein scheme without the expensive simulation of the Lévy Area. We demonstrate

when the conditions of the 2−Dimensional problem permit this and give an exact

solution for the orthogonal transformation (θ Scheme or Orthogonal Milstein Scheme).

Our applications are focused on continuous time diffusion models for the volatility and

variance with their discrete time approximations (ARV). Two theorems that measure

with confidence the order of strong and weak convergence of schemes without an exact

solution or expectation of the system are formally proved and tested with numerical

examples. In addition, some methods for simulating the double integrals or Lévy

Area in the Milstein approximation are introduced.

For mathematical finance, we review evidence of non-constant volatility and con-

sider the implications for option pricing using stochastic volatility models. A general

stochastic volatility model that represents most of the stochastic volatility models

that are outlined in the literature is proposed. This was necessary in order to both

study and understand the option price properties. The analytic closed-form solution

for a European/Digital option for both the Square Root Model and the 3/2 Model

are given. We present the Multilevel Monte Carlo path simulation method which is a

powerful tool for pricing exotic options. An improved/updated version of the ML-MC

algorithm using multi-schemes and a non-zero starting level is introduced. To link

the contents of the thesis, we present a wide variety of pricing exotic option examples

where considerable computational savings are demonstrated using the new θ Scheme

and the improved Multischeme Multilevel Monte Carlo method (MSL-MC). The com-

putational cost to achieve an accuracy of O(�) is reduced from O(�−3) to O(�−2) for

some applications.
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Chapter 1

Introduction

The Black-Scholes exponential Brownian motion model provides an approximate de-

scription of the behaviour of asset prices and a benchmark against which other models

can be compared. However, volatility does not behave in the way the Black-Scholes

equation assumes; it is not constant, it is not predictable, it is not even directly observ-

able. Plenty of evidence exists that returns on equities, currencies and commodities

are not normally distributed, they have higher peaks and fatter tails. Volatility has

a key role to play in the determination of risk and in the valuation of options and

other derivative securities.

As observed in empirical studies, stochastic volatility aims to reflect the apparent

randomness of the level of volatility. Stochastic volatility models (SVMs) change the

skewness and kurtosis of the return distribution, and option prices depend largely

on these effects. SVMs are useful because they explain in a self-consistent way, why

it is that options with different strikes and expirations have different Black-Scholes

implied volatilities (the volatility smile). More interestingly for us, the prices of exotic

options given by models based on Black-Scholes assumptions can be wildly wrong.

At the beginning of the thesis, we review evidence of non-constant volatility and

consider the implications for option pricing using stochastic volatility models. A

general stochastic volatility model that represents most of the stochastic volatility

models that are outlined in the literature is proposed. This was necessary in order

to both study and understand the option price properties. The analytic closed-form

solution for a European/Digital option for both the Square Root Model [14] and the

3/2 Model [24] are given.

Any financial instrument can be priced using the exact solution for its corre-

sponding stochastic differential equations (SDEs) and the payoff of the option. Since

a closed-form expression for the arbitrage price of a claim is not always available,

an important issue is the study of numerical methods which give approximations of

1



arbitrage prices and hedging strategies. One method uses the corresponding partial

differential equations (PDEs). This method is easy and efficient to implement when

one works in one or two dimensions. Unfortunately for higher dimensions, the im-

plementation becomes more difficult and computationally very expensive. The same

problem arises if one uses multinomial lattices (trees) to approximate continuous-

time models of security price. The most general and famous method in the literature

for pricing exotic options is the Monte Carlo method together with a discrete time

approximation of the SDE. It is easy to implement and can be applied for higher

dimensions without any problem.

In finance, the convergence properties of discretizations of stochastic differential

equations (SDEs) are very important for hedging and the valuation of exotic options.

The Milstein scheme gives first order strong convergence for all 1−dimensional sys-
tems (one Wiener process). However, for two or more Wiener processes, such as

correlated portfolios and stochastic volatility models, there is no exact solution for

the iterated integrals of second order (Lévy area) and the Milstein scheme neglecting

the Lévy area usually gives the same order of convergence as the Euler Maruyama

scheme.

In the middle of the thesis, we introduce a new scheme or discrete time approx-

imation based on an idea of Paul Malliavin where, for some conditions, a better

strong convergence order is obtained than the standard Milstein scheme without the

expensive simulation of the Lévy Area. We demonstrate when the conditions of the

2−Dimensional problem permit this and give an exact solution for the orthogonal

transformation (θ Scheme or Orthogonal Milstein Scheme). Our applications are fo-

cused on continuous time diffusion models for the volatility and variance with their

discrete time approximations (ARV). Two theorems that measure with confidence

the order of strong and weak convergence of schemes without an exact solution or

expectation of the system are formally proved and tested with numerical examples.

In addition, some methods for simulating the double integrals or Lévy Area in the

Milstein approximation are introduced.

When analyzing the option pricing problem in depth, the accuracy or error "�"

between the price option and the estimated price depends mainly on the character-

istics or importance of the problem. The stochastic volatility model (SVM) and its

parameters depend on the stock market data for the asset S. However, the scheme,

the number of time steps and how many Monte Carlo paths are used to estimate the

option price depends only on the method or algorithm applied. On the other hand,

the thesis proves (as is well known in practice) that a single optimal scheme does not

2



exist for general purposes. The selection of the scheme and the number of time steps

depends totally on both the required accuracy of the problem and the parameters of

the SVM. Therefore, the construction of an intelligent algorithm that can use different

time approximations for different inputs will be found to be helpful.

At the end of the thesis, we present the Multilevel Monte Carlo path simulation

method [10] which is a powerful tool for pricing exotic options. An improved/updated

version of the ML-MC algorithm using multi-schemes and a non-zero starting level is

introduced. To link the contents of the thesis, we present a wide variety of pricing

exotic option examples where considerable computational savings are demonstrated

using the new θ Scheme [29] and the improved Multischeme Multilevel Monte Carlo

method (MSL-MC). The computational cost to achieve an accuracy of O(�) is reduced

from O(�−3) to O(�−2) for some applications.

At the beginning of the thesis, in Chapter 2, we introduce implied, local and

stochastic volatility, to review evidence of non-constant volatility and to consider the

implications for option pricing of alternative random or stochastic volatility models.

In the middle of the chapter, the theoretical or analytic closed-form solution for a

European/Digital option for both the Heston and 3/2Models are given. This solution

has inherent advantages for pricing exotic options. At the end of the chapter we

propose a general stochastic volatility model that represents most of the stochastic

volatility models that are outlined in the literature. We focus on continuous time

diffusion models for the volatility and variance but also briefly discuss some classes

of discrete time models, such as ARV or ARCH.

Chapter 3 demonstrates how one can obtain a discrete time approximation for

a 2−Dimensional SDE using strong Taylor approximations. Later on, definitions for
both Euler and Milstein schemes for a N−Dimensional SDE are presented. In addi-
tion to the subject, some methods for simulating the double integrals or Lévy Area

in the Milstein approximation are demonstrated. The main purpose of this chapter

is to show how to measure the strong and weak order of convergence, in cases where

there may, or may not, be an exact solution or expectation of our system.

The purpose of Chapter 4 is to show that if certain conditions are satisfied, one

can avoid the calculation of the Lévy area and obtain first convergence order by

applying an orthogonal transformation. We demonstrate when the conditions of the

2−Dimensional problem permit this and give an exact solution for the orthogonal

transformation (θ Scheme or Orthogonal Milstein Scheme).

3



Chapter 5 demonstrates how the use of stochastic volatility models and the θ

scheme can improve the convergence of the multi-level Monte Carlo method (ML-MC

[10]), so that the computational cost to achieve an accuracy of O(�) is reduced from

O(�−3) to O(�−2) for a Lipschitz payoff. We present a modification to the ML-MC

algorithm that can be used to achieve better savings in some cases. To illustrate these,

various examples of pricing exotic options using a wide variety of payoffs and the new

Multischeme Multilevel Monte Carlo method (MSL-MC) are given. For standard

payoffs, both European and Digital options are presented. For complex payoffs, such

as combinations of European options, examples are also given (Butterfly Spread, Strip

and Strap options). Finally, for path dependent payoffs, both Asian and Swap options

are demonstrated.

In Chapter 6 we present conclusions and observations of the complete thesis.

In addition, recommendations and future research are indicated. The Appendix is

divided into three parts. The first section outlines the fundamental financial and

mathematical definitions required to understand the thesis. In the second section are

the theorems and mathematical operations required to understand both the Milstein

and θ schemes. At the end of the Appendix, plots and definitions required to explain

the MSL-MC are presented.
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Chapter 2

Implied, Local and Stochastic
Volatility

Volatility has a key role to play in the determination of risk and in the valuation

of options and other derivative securities. The widespread Black-Scholes model for

asset prices assumes constant volatility. The phenomenon of the implied volatility

smile shows that the Black-Scholes (1973) formulae tends to systematically misprice

out-of-the-money1 and in-the-money1 options if the volatility implied from the at-the-

money1 option is used. Stochastic volatility models are useful because they explain in

a self-consistent way, why it is that options with different strikes and expirations have

different Black-Scholes implied volatilities (the volatility smile). More interestingly for

us, the prices of exotic options given by models based on Black-Scholes assumptions

can be wildly wrong.

At the beginning of the chapter, we introduce implied, local and stochastic volatil-

ity, to review evidence of non-constant volatility and to consider the implications for

option pricing of alternative random or stochastic volatility models. In the middle of

the chapter, the theoretical or analytic closed-form solution for a European/Digital

option for both the Heston and 3/2 Models are given. This solution has inherent

advantages for pricing exotic options. At the end of the chapter we propose a general

stochastic volatility model that represents most of the stochastic volatility models

that are outlined in the literature. We focus on continuous time diffusion models

for the volatility and variance but also briefly discuss some classes of discrete time

models, such as ARV or ARCH.

1We can find a formal definition in the Appendix.
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2.1 Black-Scholes World

This section reviews the Black and Scholes arbitrage argument from option valuation

under constant volatility. This allows us to introduce some frequently used notation

and provides a basis for the generalization to stochastic volatility.

We start by assuming that the stock price S satisfies the following stochastic

differential equation (SDE):

dS = S(µ−D)dt+ SσdW (2.1)

where µ is the deterministic instantaneous drift or return of the stock price which

pays the owner a continuous dividend D, and σ is the volatility for the stock price S.

The SDE (2.1) has a solution:

ST = S0e

³
µ−D−σ2

2

´
T+σWT

Besides the stock, there are two assumptions:

• Assumption 1: There is a money market security (Banks) that pays at the
continuously compounded annual rate r.

• Assumption 2: Security markets are perfect. This means that you can trade
continuously with no transaction costs and there are no arbitrage2 opportunities.

Let us construct a portfolio Π consisting of one European option V with arbitrary

payoff V (S, T ) = Ψ(S) and a number "−φ" of an underlying asset. The value of the
portfolio at time t is:

Π = V − φS

where φ is constant and makes Π instantaneously risk-free. Let us consider that the

dividend yield is defined as the proportion of the asset price paid out per unit time,

so then, at time dt, the underlying asset pays out a dividend D ∗S ∗ dt. The jump in
the value of this portfolio in one time step is:

dΠ = dV − φdS − φDSdt

Hence by the principle of no arbitrage, Πmust instantaneously earn the risk-free bank

rate "r":

dΠ = rΠdt

2There are never any opportunities to make an instantaneous risk-free profit. “There’s no such
thing as free lunch" [36]. There is a formal definition in the Appendix.
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The central idea of the Black-Scholes argument is to eliminate the stochastic compo-

nent of risk dW by making the number of shares equal to:

φ =
∂V

∂S

Applying Itô’s lemma to V (S, t) and with some substitutions, one gets:

dV

∂t
+
1

2
S2σ2

∂2V

∂S2
+ S(r −D)

∂V

∂S
= rV (2.2)

This is the Black-Scholes equation and is a linear parabolic partial differential
equation. In fact, almost all partial differential equations in finance are of a similar

form. One of the attractions of (2.2) is that the option price function is independent

of the expected return of the stock µ (hard to estimate). The Black-Scholes equation

was first written down in 1969 but a few years passed, with Fisher Black and Myron

Scholes justifying the model, before it was published. The derivation of the equation

was finally published in 1973, although the call and put formulae had been published

a year earlier.

The boundary conditions or payoff for a European (vanilla) option is:

V (S, T ) =

½
max(S −K, 0)→ For Call options
max(K − S, 0)→ For Put options

¾
(2.3)

and they have an analytic or closed solution in the form:

Call = Se−D(T−t)N (d1)−Ke−r(T−t)N (d2)
Put = Ke−r(T−t)N (−d2)− Se−D(T−t)N (−d1) (2.4)

Where:

d1 =
log
¡
S
K

¢
+
¡
r −D + 1

2
σ2
¢
(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

and N(d) is the standard normal cumulative distribution function (cdf):

N(d) =
1√
2π

dZ
−∞

e−x
2/2dx

On the other hand, if one knows the value of the options, one can calculate the

volatility for these instruments using the last explicit solution and a numerical method

that solves (2.4) to converge to the unique implied volatility for this option price
(e.g. use the Newton-Raphson Method). If one computes the implied volatility for

7
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Figure 2.1: Implied volatility from the European call options (table 1.1).

market data using the option prices from Table 2.1, one would expect the same

volatility for all strikes and maturities for options with the same underlying price.

However, it is well known that this is not what is observed (Figure 2.1). In practice,

either the term "volatility smile" or "volatility skew" may be used to refer to the
general phenomena of volatilities varying by strike.

Strikes →
Maturity ↓ 2850 2700 2750 2800 2850 2900 2950 3000

Feb. 233 183 135 89 50 24 9 3
Mar. 243 197 153 113 79 51 31 17
Apr. 254 210 170 131 99 73 51 36
May 266 226 186 151 121 93 72 52
June − 235 − 164 − 107 − 67
Dec. − − − 235 − 187 − 130

Table 2.1.- Example of call option prices obtained from the newspaper [36]. FTSE−100
INDEX3 (*2872), February 3, 1993.

Black and Scholes in [3] give one of the most important results of hedging, the

replication argument. Using the three securities: the stock, the option and the money

market security, any two of them could be used to exactly replicate the third by

trading strategies. The replicating portfolio must be self-financing, which means you

neither consume from it or nor add money to it beyond an initial deposit. In their

original paper [3], they replicate the money market security by creating a portfolio

consisting of the stock and the financial claims. Nowadays, traders replicate the

option from the stock and money market account.

3FT-SE Index, Calls 7946, Puts 4410. Total Contracts 31, 257 (Calls 21, 861, Puts 9, 396).
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2.1.1 Local Volatility

Given the prices of call or put options across all strikes and maturities, one may

deduce the volatility which produces those prices via the full Black-Scholes equation

(Dupire, 1994 and Derman and Kani, 1994). This function has come to be known as

local volatility. Unlike the naive volatility produced by applying the Black-Scholes

formulae to market prices, the local volatility is the volatility implied by the market

prices and the one factor Black-Scholes.

In 1994, Dupire [7] showed that if the spot price follows a risk-neutral random

walk of the form:
dS

S
= (r −D)dt+ σ(S, t)dW

and if no-arbitrage market prices for European vanilla options are available for all

strikes K and expiries T , then σL(K,T ) can be extracted analytically from these

option prices. If C(S, t,K, T ) denotes the price of a European call with strike K and

expiry T , Dupire’s famous equation is obtained:

∂C

∂T
= σ2L(K,T )

K2

2

∂2C

∂K2
− (r −D)K

∂C

∂K
−DC

Rearranging this equation, the direct expression to calculate the local volatility (Dupire
formulae) is obtained:

σL(K,T ) =

s
∂C
∂T
+ (r −D)K ∂C

∂K
+DC

K2

2
∂2C
∂K2

(2.5)

One potential problem of using the Dupire formulae (2.5) is that, for some financial

instruments, the option prices of different strikes and maturities are not available or

are not enough to calculate the right local volatility. Another problem is for strikes far

in- or out-the-money, the numerator and denominator of this equation may become

very small, which could lead to numerical inaccuracies. In Figure 2.2 the Local

volatility is plotted using (2.5) and Table 2.1.

“Implied volatility is the wrong number to put into the wrong formulae to obtain

the correct price. Local volatility on the other hand has the distinct advantage of

being logically consistent. It is a volatility function which produces, via the Black-

Scholes equation, prices which agree with those of the exchange traded options".

Rebonato 1999
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Figure 2.2: Local volatility smile using European options (table 1.1).

2.2 Stochastic Volatility

If the Black-Scholes assumptions are correct, then the implied volatilities of options

(those backed out of the Black-Scholes pricing formulae given the other parameters)

should fall on a horizontal line when plotted against strike prices of the options used.

However, the conclusive patterns include smiles and skewed lines depending upon the

underlying asset and the time period. Fifteen years ago, smiles were typical when

you plotting the implied volatilities against strikes. Nowadays one is more likely to

get skews or smirks.

What is happening may be viewed in some different and related ways. Options

prices are determined by supply and demand, not by theoretical formulae. The traders

who are determining the option prices are implicitly modifying the Black-Scholes

assumptions to account for volatility that changes both with time and with stock

price level. This is contrary to the Black and Scholes (1973) assumptions of constant

volatility irrespective of stock price or time to maturity. That is, traders assume

σ = σ (S(t), t), whereas Black-Scholes assume σ is just a constant.

If volatility is changing with both levels of the underlying and time to maturity,

then the distribution of future stock price is no longer Lognormal. Black-Scholes op-

tion pricing takes discounted expectation payoffs relative to a Lognormal distribution.

As volatility changes through time, you are likely to get periods of little activity and

periods of intense activity. These periods produce peakedness and fat tails respec-

tively (together called "leptokurtosis"), in stock return distributions. Fat tails are

likely to lead to some sort of smile effect, because they increase the chance of payoffs

away-from-the-money. The interaction of skewness and kurtosis of returns gives to

many different possible smile effects (Hull [19]).

10



These irregularities have led to "stochastic volatility" models that account for

volatility changing as a function of both time and stock price level. The effect of

stochastic volatility on option values is similar to the effect of a jump component:

both increase the probability that out-of-the-money options will finish in-the-money

and vice versa (Wiggins [34]). Whether the smile is skewed left, skewed right, or

symmetrical in a stochastic volatility model depends upon the sign of the correlation

between changes in volatility and changes in stock price (Hull [19]).

In principle, if the continuous time model can be observed perfectly then it is

possible to read off the instantaneous value of the volatility from the asset price. In

practice however the volatility must be estimated from data. Suppose that the data

consists of a series of daily observations of the price of an asset (Sk)k<N . Our first

estimate of the volatility, bσ, is called the historic volatility. At time n, the historic
volatility based on the last J days can be calculated by the maximum likelihood

estimator obtained from (2.1) and the data, which is [17]:

bσn,J =
s

365

J − 1
J−1P
k=0

µ
ln

µ
Sn−k
Sn−k−1

¶
− 1

J

J−1P
m=0

ln

µ
Sn−m
Sn−m−1

¶¶2
The factor of 365 converts daily volatility into an annualized term. Typically J is

taken to be 90, 180 or 360 days. Figure 2.3 shows a plot of the Stock Exchange

index of the stock price of the 100 leading UK companies (FTSE−100), Germany
(Dax), Japan (Nikkei) and USA (Dow Jones) from December 1998 to November

2005. Figure 2.4 shows an estimate of the 360−day historic volatility based on the
above data. This limited evidence supports that stock volatility is not constant at all

and moreover that volatility shocks persistently through time. This conclusion was

reached by many authors in the literature. Stochastic volatility models are needed

to describe and explain volatility patterns. Note that for the historic volatility of

the Stock Exchange indices (Figure 2.4) exists a high positive correlation, one of the

indices has to be the principal or dominat market that move the other ones.

In summary, the aim with a stochastic volatility model is to incorporate the em-

pirical observation that volatility appears not to be constant and indeed varies, at

least in part, randomly. The idea is to make the volatility itself a stochastic process.

The candidate models have generally been motivated by intuition, convenience and

a desire for tractability4. In particular the following stochastic models with their

respective variance models (using ν = σ2 and Itô formulae (A.1)) have all appeared

in the literature:
4The quality or state of being tractable or docile; docility; tractableness.
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• Hull and White ([19], ρ = 0, 1987) and Wiggins ([34], ρ 6= 0, 1987):

dσ = σ
£
wdt+ ξdW2

¤
or5 dν = ν [wdt+ ξdW ] (2.6)

• Scott ([30], ρ 6= 0, 1987) using y = ln ν:

dy =
¡
w − ζy

¢
dt+ ξdW2

dσ = σ (w − ζ lnσ) dt+ ξσdW2 or6 dν = ν(w − ζ ln ν)dt+ ξνdW2 (2.7)

• Stein and Stein ([33], ρ = 0, 1991):

dσ =
¡
w − ζσ

¢
dt+ ξdW2 or7 dν = (

√
νw − ζν) dt+ ξ

√
νdW2 (2.8)

Variance models (ν = σ2) that have appeared the literature:

• The Square Root Model (Heston [14], ρ 6= 0, 1993):

dν = (w − ζν)dt+ ξ
√
νdW2 or8 dσ =

¡
w
σ
− ζσ

¢
dt+ ξdW2 (2.9)

• The GARCH Diffusion Model (ρ 6= 0):

dν = (w − ζν) dt+ ξνdW2 or9 dσ =
¡
w
σ
− ζσ

¢
dt+ ξσdW2 (2.10)

• The 3/2 Model (Heston [15], Lewis [24], 1997, ρ 6= 0):

dν = ν(w − ζν)dt+ ξν3/2dW2 or10 dσ = σ2
£¡

w
σ
− ζσ

¢
dt+ ξdW2

¤
(2.11)

The first model (2.6) was introduced by Hull and White (1987) who used (ρ = 0)

and Wiggins (1987) who considered the general case (ρ 6= 0). Here the volatility is
an exponential Brownian motion, and it can grow indefinitely (or equivalently the

logarithm of the volatility is a drifting Brownian motion). Scott (1987) considered

the case (2.7) in which the logarithm of the volatility is an Ornstein Uhlenbeck (OU)

5Using Itô formula and letting
³
w = 2w + ξ

2
; ξ = 2ξ

´
6Using Itô formula and letting

³
w = w

2 +
ξ2

8 ; ξ =
ξ
2

´
or
³
w = w + ξ2

2

´
7Using Itô formula and letting

³
w = 2w + ξ

2

√
ν
; ζ = 2ζ; ξ = 2ξ

´
8Using Itô formula and letting

³
w = 1

2

³
w − ξ2

4

´
; ζ = ζ

2 ; ξ =
ξ
2

´
9Using Itô formula and letting

³
w = w

2 ; ζ =
ζ
2 +

ξ2

8 ; ξ =
ξ
2

´
10Using Itô formula and letting

³
w = w

2 ; ζ =
ζ
2 +

ξ2

8 ; ξ =
ξ
2

´
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process or a Gauss-Markov process11. The models (2.6) and (2.7) have the advantage

that the volatility is strictly positive all the time. The third model (2.8) was proposed

by Scott (1987) and further investigated by Stein and Stein (1991). These authors

specialized in the case (ρ = 0). In this model, the volatility process itself is an OU

process with a mean reversion level "ω". However, the disadvantage of this model is

that the volatility σ could easily become negative.

The next model (2.9) was proposed by Heston in 1993. The volatility is related

to a square root process and can be interpreted as the radial distance from the origin

of a multidimensional OU process [17]. For small dt, this model keeps the volatility

positive and is the most popular among them because of its two main features: it

has a semi-analytical pricing formulae which is easy to implement and the solution is

typical (it displays the same qualitative properties that one expects in general time

homogenous cases). Furthermore, it can be used to understand how volatility models

that do not have analytical solutions behave in many respects.

(2.10) is described as the diffusion limit of a GARCH-type process12, a GARCH

Diffusion, for short. From a practical point of view, the advantage of this model is

that you can estimate its parameters using well known algorithms that are available

as computer software, although no closed-form is available for option pricing.

The 3/2 Model (2.11) is an important model in finance, not only because it has

a closed form solution for option pricing as simple as the square root model (Heston

Model), but it also displays a feature of many stochastic volatility models that you do

not see in the square root model. That is, option prices are sometimes not martingales

but merely local martingales [24]. When option prices are not martingales, this

means that they are not given by the standard expected value formulae, for example,

e−rTE [max (ST −K)] for a call option in the risk-adjusted process13. The failure of

the usual martingale pricing relation can also occur in the GARCH Diffusion model.

So the 3/2 Model, with its close solution, is one of the simplest illustrations of this

important phenomenon for financial theory. It was first used by Cox, Ingersoll, and

Ross ([4], 1985) and further investigated by Heston ([15], 1997) and Lewis ([24], 2000).

11A stochastic process {XT : t º 0} is an Ornstein-Uhlenbeck (OU) process or a Gauss-Markov
process if it is stationary, Gaussian, Markovian, and continuous in probability. There is a formal
definition in the Appendix of the thesis.
12In fact, the term GARCH is a loose term in economics that accommodates many types of

discrete-time financial models.
13To value an option, you do not use (2.18), but a closely related process which is often call

the risk-adjusted process eP (2.19). For more information see Risk-Neutral Valuation for Stochastic
volatility models in the Appendix of the thesis.
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Even though continuous time models provide the natural framework for an analysis

of option pricing, discrete time models are ideal for the statistical and descriptive

analysis of the patterns of daily price changes. There are two main classes of discrete

time models for stock prices with volatility. The first class, the autoregressive random

variance14 (ARV) or stochastic volatility models, are a discrete time approximation

of the continuous time diffusion models that are outlined in (2.6-2.11). The second

class is the autoregressive conditional heteroskedastic (ARCH) models introduced

by Engle (1982), and its descendents (GARCH, NARCH, etc.) can be defined in

a variety of contents. Generally speaking, one can say that they try to attempt to

model persistence in volatility shocks by assuming an autoregressive structure for the

conditional variances (time series). A large number of parameters are often needed to

approximate the behaviour of financial prices. Both the ARCH and ARV models give

similar option prices (when the model parameters are appropriately matched). As

shown in [1], these two models yield observational equivalents with respect to pricing

options. They also notice that numerical procedures for computing option prices are

faster for ARV, but estimation is simpler for ARCH. We concentrate our research on

continuous time diffusion models (2.6-2.11) and in the discrete time approximation

of them (ARV).

There is a simple economic argument in the literature which justifies the mean

reversion of volatility. Consider the distribution of the volatility of IBM in 100 years

time as an example. If the volatility was not mean-reverting (if the distribution of

volatility was not stable), the probability of the volatility of IBM being between 1%

and 100% would be rather low. Since we believe that this is overwhelmingly likely

and that the volatility of IBM would, in fact, lie in that range, one can deduce that

volatility must be mean-reverting.

2.2.1 Stochastic Volatility World

We begin by writing down the usual Geometric Brownian Motion SDE where the

volatility σ is written as the square root of a variance ν:

dS = S (µ−D) dt+ S
√
νdcW1 (2.12)

where µ is the deterministic instantaneous drift or return of the stock price which

pays the owner a continuous dividend D. The variance ν is constant in the original

14An autoregressive model of a random variable is one where the random variable is assumed to
exhibit a tendency to revert back to a long run mean value or distribution.
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Black-Scholes model (1973) however now it is assumed to follow its own SDE in the

form:

dν = f(ν)dt+ g(ν)dcW2 (2.13)

where ρ is the correlation between dcW1 and dcW2. We can not hold or "short" volatility

as it is, but we can hold a position in a second option to do hedging. So let us consider

the valuation of the volatility dependent instrument V , assuming that one can take

long or short positions in a second instrument U as well as in the underlying S. Now

our candidate for an instantaneously risk-neutral portfolio Π is:

Π = V − φ1S − φ2U

The jump in the value of this portfolio in one time step is:

dΠ = dV − φ1dS − φ2dU − φ1DSdt

where D is the dividend or yield on the asset S. As is by now standard, one applies

Itô’s Lemma to this portfolio to obtain:

dΠ = adS + bdν + cdt (2.14)

where:

a =
∂V

∂S
− φ1 − φ2

∂U

∂S

b =
∂V

∂ν
− φ2

∂U

∂ν

c =

µ
∂V

∂t
+
1

2
S2ν

∂2V

∂S2
+ ρS

√
νg(ν)

∂2V

∂S∂ν
+
1

2
g (ν)2

∂2V

∂ν2

¶
− φ1DS

− φ2

µ
∂U

∂t
+
1

2
S2ν

∂2U

∂S2
+ ρS

√
νg(ν)

∂2U

∂S∂ν
+
1

2
g (ν)2

∂2U

∂ν2

¶
Clearly one wish to eliminate the stochastic component of risk by setting a = b = 0,

so one can rearrange the hedge parameters in the form:

φ1 =
∂V

∂S
− φ2

∂U

∂S
; φ2 =

µ
∂V

∂ν

¶
/

µ
∂U

∂ν

¶
to eliminate the dS term and the dν term in (2.14). The avoidance of the arbitrage,

once these choices of φ1, φ2 are made, is the condition:

dΠ = rΠdt

dΠ = r (V − φ1S − φ2U) dt (2.15)
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where we have used the fact that the return on a risk-free portfolio must be equal to

the risk-free bank rate r which we will assume to be deterministic for our purposes.

Combining equations (2.14) and (2.15), collecting all V terms on the left hand side

and all U terms on the right hand side, one gets:µ
∂V
∂t
+ 1

2
S2ν ∂2V

∂S2
+ ρS

√
νg(ν) ∂

2V
∂S∂ν

+1
2
g (ν)2 ∂2V

∂ν2
+ S(r −D)∂V

∂S
− rV

¶
/
∂V

∂ν
=

µ
∂U
∂t
+ 1

2
S2ν ∂2U

∂S2
+ ρS

√
νg(ν) ∂

2U
∂S∂ν

+1
2
g (ν)2 ∂2U

∂ν2
+ S (r −D) ∂U

∂S
− rU

¶
/
∂U

∂ν

Now V , U are an arbitrary pair of derivative contracts. The only way that this can

occur is when both sides of the equation are equal to some function depending only

on S, ν, t. So, if one writes both sides as F (s, ν, t), in doing so, one arrives at the

General PDE for stochastic volatility:

∂V

∂t
+
1

2
S2ν

∂2V

∂S2
+ ρS

√
νg(ν)

∂2V

∂S∂ν
+
1

2
g (ν)2

∂2V

∂ν2
+ S(r −D)

∂V

∂S
+ F (·)∂V

∂ν
= rV

(2.16)

This allows us to consider how to solve (2.16) without reference to a particular volatil-

ity.

If F (s, ν, t) is written as:

F (s, ν, t) = (ω − ζν)− Λ

then (2.13) becomes:

dν =
¡
(ω − ζν)− Λ

¢
dt+ g(ν)dcW2

This representation models mean-reversion in the volatility "σ" or variance "ν". Con-

ventionally (ω − ζν) is called the real world drift, Λ(S, ν, t) is the market price
of volatility risk, and it tells us how much of the expected return of V is explained

by the risk (standard deviation) of ν in the Capital Asset Pricing Model framework.

Various economic arguments can be made (see reference [24],[31] for examples) that

the market price of volatility risk Λ should be proportional to the variance ν. Then

let Λ = Λν for some constant or function Λ. Furthermore, if the real world drift is

changed to:

kνλ1(' − ν)

one gets:

dν = νλ1 (κ(' − ν)− Λν) dt+ ξνλ2dcW2 (2.17)
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where κ is the mean-reverting speed, ' is the long-run mean, Λ is the market price of

risk function, ξ is the volatility of volatility, and dcW1, dcW2 are two Wiener processes

(Brownian motion) with correlation coefficient ρ. The seven parameters κ, ', Λ, ξ,

λ1, λ2, and ρ are assumed to be constant. This mean reverting variance model is a

more general case compared to the traditional models because of the use of λ2 and

it can be interpreted as the radial distance from the origin of a multidimensional

Ornstein Uhlenbeck process. For example, for (λ1 = 0; λ2 = 0) one obtains the Stein

and Stein model [33], if one uses λ2 = 1
2
, the Heston model [14] is obtained, for

λ2 = 1, the GARCH Diffusion Model, for (λ1 = 1; λ2 = 1.5) the 3/2 Model [24], and

so on. For our purpose, we will use the stochastic model (2.17) as our main model in

the rest of the thesis because it is a general representation for all stochastic models

that are outlined above (2.6-2.11).

2.2.2 Analytic Solution for European and Digital Options

Consider the following volatility model or probability measure P under which dWi

are Brownian motions:

P :

(
dS = S(µ−D)dt+ S

√
νdcW1

dν = νλ1 (κ(' − ν)) dt+ ξνλ2dcW2

)
(2.18)

To value an option or financial security V , do not use (2.18), but a closely related

process which is often call the risk-adjusted process bP (replace the expected return

µ by the interest rate r, and use the risk-adjusted volatility drift ϕ). This procedure

is carried out explicitly for a class of equilibrium models (see Risk-Neutral Valuation

for Stochastic volatility models in the Appendix). The risk-adjusted process bP will

be in the risk-neutral world or equivalent martingale measure and will produce the

theoretical fair price of the financial security V .

bP : ( dS = S(r −D)dt+ S
√
νdcW1

dν = νλ1 (κ(' − ν)− Λν) dt+ ξνλ2dcW2

)
(2.19)

where the parameters r, D, κ, ', Λ, ξ, λ1, λ2, and ρ are assumed to be constant. The

HestonModel
¡
λ1 = 0, λ2 = 1

2

¢
and the 3/2Model

¡
λ1 = 1, λ2 = 3

2

¢
have a theoretical

or analytic close solution for a European or Digital option in the form:

V (S, T ) =
1

2π
e−r(T−t0)

ic+∞Z
ic−∞

bU(w, ν, 0)G(w, ν, τ)e−iwxdw (2.20)
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where for each model the fundamental transform G is equal to:

G(w, ν, τ)
Heston Model eA+Bν(t0)

3/2 Model ΓC(β−α)
ΓC(β)

EαM (α, β,−E)

and bU is equal to:

Type of option Payoff bU(w, ν, 0) Conditions

European Call max(S −K, 0) K(1+iw)

iw−w2 Im(w) > 1

European Put max(K − S, 0) K(1+iw)

iw−w2 Im(w) < 0

Digital Call H(S −K, 0) −Kiw

iw
Im(w) > 0

Digital Put H(K − S, 0) Kiw

iw
Im(w) < 0

H(x) is the Heaviside function (H(x) = 1 if x > 0, else H(x) = 0), ΓC (·) is the
Gamma function for complex numbers and M(·) is a confluent hypergeometric func-
tion15. If one wants to differentiate V with respect to S to obtain the option sensi-

tivities or so-called Greeks, one merely multiplies the integral in (2.20) by:

∆S =
∂V
∂S

ΓS =
∂2V
∂S2

− iw
S

−w2

S2

For the Heston Model, the constants A,B in function of the the market price of risk

function Λ are:

τ = T − t0; x = log(S) + (r −D)(T − t0)

A =
k'

ξ2

µ
(κ+ Λ+ iwρξ + c1) τ − 2 log

µ
1− c2e

c1τ

1− c2

¶¶
B =

(κ+ Λ+ iwρξ + c1)

ξ2

µ
1− ec1τ

1− c2ec1τ

¶
c1 =

q
(w2 − iw) ξ2 + (κ+ Λ+ iwρξ)2; c2 =

κ+ Λ+ iwρξ + c1
κ+ Λ+ iwρξ − c1

Using the risk-aversion parameter γ, the market price of risk function Λ is equal to:

Λ (γ) = −κ+ (1− γ) ρξ +
q
κ2 − γ (1− γ) ξ2

with the restriction on the parameters:

γ ≤ 1 and κ2 ≤ γ (1− γ) ξ2

15It is also called Kummer function and in general cases it calculates the sum of convergent series
defining the function until the next term becomes too small (in comparison with the sum of all
previous terms).
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For the 3/2 Model, the principal functions are equal to:

τ = T − t0; α = d2 − d1; β = 1 + 2d2

E =
1

ν (t0) ξ
2

2w

(ewτ − 1); b' =
2d3

ξ2
+
2ρ (1− γ + iw)

ξ
− 1

d1 =
(1 + b')
2

; d2 =

s
d21 +

w2 − iw

ξ2
; d3 =

sµ
κ+

ξ2

2

¶2
− γ (1− γ) ξ2

Using the risk-aversion parameter γ, the market price of risk function Λ is equal to:

Λ (γ) = −
µ
κ+

ξ2

2

¶
+ (1− γ) ρξ + d3

with the restriction on the parameters:

γ ≤ 1 and γ (1− γ) ξ2 ≤
µ
κ+

ξ2

2

¶2
The Heston solution is the usual martingale-style or expected value formulae. The

solution of the 3/2 Model is more general and sometimes includes an additional term

that relates to volatility explosions. When a European option price is not a martin-

gale, the solution of the 3/2 Model yields the desired arbitrage-free fair value. Both

solutions preserve useful properties of the Black-Scholes formulae 2.4. In particular

it predicts that increasing the current level of variance is equivalent to increasing the

maturity of a European option. For further information or implementation, see [24],

[31] or [32]. The derivation of the Heston solution is explained in more detail in the

Appendix of the thesis.

2.2.3 Implementation

Mainly, the implementation of stochastic volatility models is to match the smile of the

market and use this information to price exotic options. For example, one simple way

that traders use to price their options is: using real Call and/or Put European options

prices obtained from the market (newspapers, banks or Internet), then they estimate

the parameters κ, ', Λ, ξ, λ1, λ2, ρ of (2.19) using the analytical solution (2.20)

and other tools. The selection on the non-trivial parameters can be time-consuming.

The use of an analytic expansion in terms of the volatility of volatility is discussed

by Lewis [24]. After they have estimated the parameters from (2.19) that match the

real market options prices, then they price their exotic options. If there is not just a

simple European or Digital payoff that does not have an analytic or close solution then
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the Monte Carlo simulation is called for. For example, options with path dependent

payoffs that can be found in the market do not have exact solutions, e.g. Barriers

Options, Arithmetic Asian options, Variance Swap Options, etc. Nowadays, there

exist hundreds of different financial derivatives in the US market.

Empirically, estimates for the long-run mean ' are quite variable against stock

indices and can require data over a range from a few weeks to more than a year.

In [24] it states that for the GARCH Diffusion Model and the US stock indices, the

volatility of volatility ξ is typically in the range of 1.0 to 2.5 on an annualized basis,

which represents volatility uncertainty of 100 to 250% over a year. The correlation

ρ captures the association between security price and volatility changes. Typically,

negative price shocks are associated with higher volatility. For the same indices,

ρ = −0.5 to −0.8.

2.2.4 Steady-State Probability Distribution

Having so many stochastic volatility models outlined in the literature (2.6-2.11), it is

important to make a comparison between all of them. One way to do it is to integrate

the Fokker-Planck equation and obtain the steady-state distribution. The solution to

the SDE:

dy = f(y, t)dt+ g(y, t)dWt ; f(yt0) = y0

has a probability density function p(y, t) which satisfies the Fokker-Planck equation

(A.2) also known as the Kolmogorov forward equation:

∂p

∂t
+

∂

∂y
(fp)− ∂2

∂y2

µ
1

2
g2p

¶
= 0

Under certain conditions, this evolves towards a steady-state distribution (A.3) in

which ∂p/∂t = 0 and hence:

d

dy
(fp)− d2

dy2

µ
1

2
g2p

¶
= 0

Integrating once, with the boundary condition that p, dp
dy
→ 0 at infinity, gives:

fp− d

dy

µ
1

2
g2p

¶
= 0 =⇒ 1

g2p

d

dy

¡
g2p
¢
=
2f

g2

Integrating this gives:

log
¡
g2p
¢
=

Z y 2f

g2
ds
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and hence:

p(y) ∝ 1

g2(y)
exp

µZ y 2f(s)

g2(s)
ds

¶
If f (y0) = 0, f 0(y0) < 0 and g(y0) is very small, then the asymptotic approximation:

f(y) ≈ ∂f(y0)

∂y
(y−y0), g(y) ≈ g(y0) (2.21)

leads to:

p (y) ∝ exp
µ
(y−y20)
g2(y0)

∂f(y0)

∂y

¶
(2.22)

The SVM (2.18) can be represented as:

dx

x
= µdt+ σdcW1,t (2.23)

dy = kjy
λ3
¡
'λ0

j − y
¢
dt+ βjy

λ2dcW2,t

σ = yλ1 ; j = case

Using Itô’s lemma:

dσ = fj (σ) dt+ gj (σ) dcW2,t

where:

fj (σ) = λ1kj
³
σ

λ1+λ3−1
λ1 'λ0

j − σ
λ1+λ3
λ1

´
+

λ1 (λ1 − 1)β2j
2

σ
λ1+2λ2−2

λ1

gj (σ) = λ1βjσ
λ1+λ2−1

λ1

To make a comparison between the steady-state distribution for different cases, one

can set the following equilibrium. For any choice of σ, using the asymptotic approxi-

mation (2.21) and taking the square root Model (Heston model, j = H) as the master

model, we have:

• Same reversion value:
fj
¡
σ
¢
= 0 (2.24)

• Same reversion rate:
∂fj

¡
σ
¢

∂σ
=

∂fH
¡
σ
¢

∂σ

• Same volatility:
gj
¡
σ
¢
= gH

¡
σ
¢
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Doing some operations (Appendix (A.18)), one gets:

βj =
βH
2λ1

Ã
kH

kH'2
H − 1

4
β2H

!λ1+λ2−1
2λ1

(2.25)

kj =

Ã
kH

kH'2
H − 1

4
β2H

! 2λ1+λ3
2λ1

Ã
kH'

2
H −

Cλjβ
2
H

8

!
(2.26)

'j =

Ãµ
'2

H −
β2H
4kH

¶ 1
2λ1

Ã
1− (λ1 − 1)β2H

λ21
¡
8kH'2

H − Cλjβ
2
H

¢!! 1
λ0

(2.27)

Cλj = 2 +
(λ1 − 1) (λ3 − 2λ2 + 1)

λ21

We have taken the Heston model as the master model because it is the most well

known in the literature. Setting this equilibrium allow us to introduce a mathe-

matical relation between all stochastic volatility models SVMs outlined in (2.6-2.11).

For example, in Figure 2.5 we have plotted the approximation of the steady-state

distribution (2.22) using the following initial conditions from the Heston model:

kH = 1; 'H = 0.4; βH = 0.35 (2.28)

For small vol-of-vol, βH = 0.04, all cases match (Figure 2.9). To obtain the SVMs

(2.6-2.11) one needs:

Case λ0 λ1 λ2 λ3 kj 'j βj
Hull and White, Wiggins (2.6) 1 1 1 1 2.58 0.3873 0.25
Stein and Stein (2.8) 1 1 0 0 1.00 0.3873 0.10
Heston Model (2.9) 2 0.5 1/2 0 1.00 0.4000 0.20
GARCH Diff. Model (2.10) 2 0.5 1 0 0.93 0.4009 0.51
3/2 Model (2.11) 2 1 3/2 1 6.22 0.4009 1.33

(2.29)

The constants kj,'j, βj from other cases are calculated using (2.25-2.27). On the

other hand, if one tries to match the expectation and variance for all cases using

Newton-Raphson iteration:

E [σ] ; E
£
σ2
¤
; g (E [σ]) (2.30)

you obtain Figure 2.716. The distributions become more similar between them, nev-

ertheless they are not equal. To prove that the approximation of the steady-state

distribution (2.22) is correct, we have simulated the discrete histogram in Figure 2.6.

16Matlab code from M. Giles.
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We have used the SVM (2.23) with a simple Euler scheme, Monte Carlo integration,

(2.28-2.29) and T = 10; y (0) = 0.32. As one can see, Figure 2.6 converges to its

continuous approximation (Figure 2.5).

Figures 2.5-2.6 show some important results. The equilibrium (2.24) gives as

expected, the expectations and the distributions are different for all cases. All SVMs

are important and have different properties. It is important the incorporation of

a more general SVM that include all these features (2.18). The selection of the

parameters λi will depend on the properties of the real data one wants to match or

simulate.

2.3 Conclusions

The prices of exotic options given by models based on Black-Scholes assumptions

can be wildly inaccurate, because they are frequently even more sensitive to levels

of volatility than standard European calls and puts. Therefore, currently traders or

dealers of these financial instruments are motivated to find models to price options

which take the volatility smile and skew into account. To this extent, stochastic

volatility models are partially successful because they can capture, and potentially,

explain the smiles, skews and other structures which have been observed in market

prices for options. Indeed, they are widely used in the financial community as a

refinement of the Black-Scholes model.

A strong example of the existence of random correlated volatility is when the

historic volatility of the Stock Exchange index is plotted (Figure 2.4). This evidence

shows that stock volatility is not constant at all and moreover that volatility shocks

persistently through time. This conclusion was reached by many authors in the

literature; stochastic volatility models are needed to describe and explain volatility

patterns.

When one analyses the steady-state probability distribution of the stochastic

volatility models that are outlined in the literature, you can conclude that despite

some similarities, all SVMs are important and have different properties. The defini-

tion of a more general stochastic volatility model (2.18) that represents all of them

is necessary for the study and understanding of the option price properties. The se-

lection of the parameters in (2.18) will depend on the properties of the real data one

wants to match or simulate.
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Figure 2.5: Steady-State Probability Distribution using (2.24) and βH = 0.35.

Figure 2.6: Histogram of sigma using Monte Carlo and (2.28-2.29).
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Figure 2.7: Steady-State Probability Distribution using (2.30) and βH = 0.35.
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Figure 2.8: Expectation of sigma (E[σ]) using Monte Carlo and (2.28- 2.29).
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Figure 2.9: Steady-State Probability Distribution using (2.24) and βH = 0.035.
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Chapter 3

Convergence of Time Discrete
Approximations

Any financial instrument can be priced using the exact solution for its corresponding

stochastic differential equations (SDEs) and the payoff of the option. Since a closed-

form expression for the arbitrage price of a claim is not always available, an important

issue is the study of numerical methods which give approximations of arbitrage prices

and hedging strategies. One method uses the corresponding partial differential equa-

tions (PDEs). This method is easy and efficient to implement when one works in one

or two dimensions. Unfortunately for higher dimensions, the implementation becomes

more difficult and computationally very expensive. The same problem arises if one

uses multinomial lattices (trees) to approximate continuous-time models of security

price. The most general and famous method in the literature for pricing exotic op-

tions is the Monte Carlo method together with a discrete time approximation of the

SDE. It is easy to implement and can be applied for higher dimensions without any

problem.

At the beginning of the chapter we demonstrate how one can obtain a discrete

time approximation for a 2−Dimensional SDE using strong Taylor approximations.
Later on, definitions for both Euler and Milstein schemes for a N−Dimensional SDE
are presented. In addition to the subject, some methods for simulating the double

integrals or Lévy Area in the Milstein approximation are demonstrated. The main

purpose of this chapter is to show how to measure the strong and weak order of

convergence, in cases where there may, or may not, be an exact solution or expectation

of our system.
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3.1 Introduction

Following Einstein’s explanation of physically observed Brownian motion during the

first decade of the 1900s, the physicists Langevin, Smoluchowski, and others at-

tempted to model the dynamics of such motion in terms of differential equations.

Instead of a deterministic ordinary differential equation:

dXt

dt
= a(Xt, t)

they obtained a noisy differential equation of the form:

dXt

dt
= a(Xt, t) + b(Xt, t)Zt (3.1)

with a deterministic or averaged drift term a(Xt, t) perturbed by a noise intensity

term b(Xt, t)Zt, where b(Xt, t) is the intensity factor and Zt are independent normal

distributed Gaussian random variables for each time t. The driving process Zt, which

is called Gaussian white noise, appears formally to be the path-wise derivative of

a mathematical Brownian motion or Wiener process Wt. A Gaussian process with

Wt0 = 0 and N(0, t)−distributed for each Wt, e.g.. with:

E [Wt] = 0; E
£
W 2

t

¤
= t

which has independent increments for any t1 < t2 < t3 < t4 ∈ [t0, T ]:

E [(Wt4 −Wt3) (Wt2 −Wt1)] = 0

However, the Gaussian white noise process is not a conventional process, having,

for example, covariance equal to a constant multiple of the Dirac delta function.

Moreover, it is now known that the sample paths of a Wiener processWt are nowhere

differentiable. This suggests that the stochastic differential equation (3.1), which

might be written symbolically in terms of differentials as:

dXt = a (Xt, t) dt+ b (Xt, t) dWt

should be interpreted in some sense as an integral equation:

Xt = Xt0 +

Z t

t0

a (Xs, s) ds+

Z t

t0

b (Xs, s) dWs

The first integral here is just path-wise an ordinary Riemann integral, while it might

seem that the second integral could be a Riemann-Stieltjes integral for each sample

path. This is not possible because the sample paths of a Wiener process are not
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just not differentiable, but also are not even of bounded variation on any bounded

time interval. In the 1940s, the Japanese mathematician K. Itô proposed a means

to overcome this difficulty with the definition of a new type of integral, a stochastic

integral, which is now called an Itô stochastic integral. Later, in the 1960s, the

Russian physicist R. L. Stratonovich proposed another kind of stochastic integral, now

called the Stratonovich stochastic integral, which is distinguished from the Itô integral

by a "◦" before the differential dWt, e.g. written symbolically in the differential form:

dXt = a(Xt, t)dt+ b(Xt, t) ◦ dWt

However it should be interpreted as an integral equation:

Xt = Xt0 +

Z t

t0

a (Xs, s) ds+

Z t

t0

b (Xs, s) ◦ dWs

There are thus two types of stochastic calculus, the Itô stochastic calculus and the

Stratonovich stochastic calculus, depending on the type of stochastic integral used.

Both have their advantages as well as their disadvantages. Which one should be

used is more a modelling than mathematical issue, but once one has been chosen, a

corresponding equation of the other type with the same solutions can be determined.

Therefore, it is possible to switch between the two stochastic calculi.

3.2 Stochastic Taylor Series

In this section we shall use stochastic Taylor expansions to derive time discrete ap-

proximations with respect to the strong convergence criterion, which we shall call

strong Taylor approximations. These expansions are derived through an iterated ap-

plication of stochastic chain rules, known as the Itô formulae. One shall see that the

desired order of strong convergence determines the truncation to be applied. Consider

the following 2−dimensional stochastic differential equation:

dXt = A(Xt, Yt, t)dt+B(Xt, Yt, t)dcW1,t ;Xt0 = X0 (3.2)

dYt = C(Xt, Yt, t)dt+D(Xt, Yt, t)dcW2,t ;Yt0 = Y0

where dcW1,t and dcW2,t are two correlated Wiener processes. The definition of a

correlation matrix for a 2D system is:

Ω =

·
1 ρ
ρ 1

¸
(3.3)
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Using a Cholesky factorization (Ω = LLT with L lower triangular), dW can be defined

in 2 ways. The standard and most common is:"
dcW1,t

dcW2,t

#
Std

=

·
1 0
ρ bρ

¸ ·
dW1,t

dW2,t

¸
ρ̂ =

p
1− ρ2 (3.4)

Using the standard definition of correlation (3.4), (3.2) can be transformed into two

equations with independent noise sources:

dXt = A(Zt)dt+B(Zt)dW1,t

dYt = C(Zt)dt+ ρD(Zt)dW1,t + bρD(Zt)dW2,t

Zt = [Xt, Yt, t] ; hdW1,t, dW2,ti = 0

which are the short hand for the integral equations:

Xt = Xt0 +

Z t

t0

A(ZS)dS +

Z t

t0

B(ZS)dW1,S (3.5)

Yt = Yt0 +

Z t

t0

C(ZS)dS + ρ

Z t

t0

D(ZS)dW1,S + ρ̂

Z t

t0

D(ZS)dW2,S

The first integrals are deterministic Riemann integrals and the rest are Itô stochastic

integrals. More generally, if f is a differentiable function of Z, one obtains Itô’s

lemma:

df (Zt) =

µ
∂f (Zt)

∂t
+A (Zt)

∂f (Zt)

∂X
+ C (Zt)

∂f (Zt)

∂Y

¶
dt (3.6)

+

µ
B2 (Zt)

2

∂f2 (Zt)

∂X2
+ ρB (Zt)D (Zt)

∂f2 (Zt)

∂X∂Y
+

D2 (Zt)

2

∂f2 (Zt)

∂Y 2

¶
dt

+

µ
B (Zt)

∂f (Zt)

∂X
+ ρD (Zt)

∂f (Zt)

∂Y

¶
dW1,t + ρ̂D (Zt)

∂f (Zt)

∂Y
dW2,t

One can write Itô’s lemma (3.6) in its integrated form:

f(Zt) = f(Zt0) +

Z t

t0

(Ldef) (Zs) dS (3.7)

+

Z t

t0

(LW1f) (Zs) dW1,S +

Z t

t0

(LW2f) (Zs) dW2,S

where Lde, LW1, LW2 are deterministic operators. Applying the results (3.7) to f(Zt) =

A(Zt):

A(Zt) = A(Zt0) +

Z t

t0

(LdeA) (ZU) dU +
2X

i=1

µZ t

t0

(LWiA) (ZU) dWi,U

¶

30



Doing the same to f(Zt) = B(Zt) and substituting into (3.5), Xt can be represented

by:

Xt = Xt0 +A(Zt0)

Z t

t0

dS +B(Zt0)

Z t

t0

dW1,S (3.8)

+
heI(W,W ) + eI(dt,W ) + eI(W,dt) + eI(dt,dt)it

t0

where the Itô integrals are defined by:heI(W,W )

it
t0
=

Z t

t0

2X
i=1

µZ S

t0

(LWiB) (ZU) dWi,U

¶
dW1,S = O(∆t) (3.9)

heI(dt,W )

it
t0
=

Z t

t0

Z S

t0

(LdeB) (ZU) dUdW1,S = O
³
∆t

3
2

´
(3.10)

heI(W,dt)

it
t0
=

Z t

t0

2X
i=1

µZ S

t0

(LWiA) (ZU) dWi,U

¶
dS = O

³
∆t

3
2

´
(3.11)

heI(dt,dt)it
t0
=

Z t

t0

Z S

t0

(LdeA) (ZU) dUdS = O
¡
∆t2

¢
(3.12)

The traditional Euler approximation is essentially equivalent to ignoring all the last

double integrals. Using t0 = t−∆t, (3.8) leads to:

bXt+∆t = bXt +A
³bZt

´
∆t+B

³bZt

´
∆W1,t

If a better approximation is required, one needs to approximate one or more of the

double integrals (3.9,3.10,3.11 & 3.12). Because one is dealing with Brownian motion,

the next approximation can be used:

£
I(i,i)

¤t+∆t

t
=

Z t+∆t

t

Z S

t

dWi,UdWi,S =

Z t+∆t

t

Wi,SdWi,S −Wi,t

Z t+∆t

t

dWi,S

using Itô’s lemma1:

£
I(i,i)

¤t+∆t

t
=

1

2

Z t+∆t

t

¡
dW 2

i,S − dS
¢−Wi,t (Wi,t+∆t −Wi,t) (3.13)

=
1

2

¡
W 2

i,t+∆t − t−∆t
¢− 1

2

¡
W 2

i,t − t
¢−Wi,t+∆tWi,t +W 2

i,t

=
1

2

¡
(Wi,t+∆t −Wi,t)

2 −∆t
¢
=
1

2

¡
∆W 2

i,t −∆t
¢

Note that the essence of the method is to use the substitution repeatedly to obtain

constant integrands in higher order terms. For example, if one repeats this argument

1If we apply Itô’s lemma to f =W 2; we obtain d (W )2 = 2WdW+dt, thenWdW = 1
2

¡
dW 2 − dt

¢
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applying (3.7) to f(Zt) = (LW1B) (Zt) and f(Zt) = (LW2B) (Zt), and one uses (3.13),

the double Itô integrals (3.9) can be approximated by:heI(W,W )

it+∆t

t
=
1

2
(LW1B) (Zt)

¡
∆W 2

1,t −∆t
¢
+ (LW2B) (Zt)

£
I(2,1)

¤t+∆t

t
+O

³
∆t

3
2

´
(3.14)

(3.14), usually called the Milstein correction, is a stochastic effect (a results of Itô’s

lemma1 if you like). Unfortunately, there is not a solution or approximation for the

other double integral:

£
I(2,1)

¤t+∆t

t
=

Z t+∆t

t

Z S

t

dW2,UdW1,S (3.15)

By truncating Xt at O(t), the 1.0 strong order of convergence, usually called Milstein

scheme is: bXt+∆t = bXt +A
³bZt

´
∆t+B

³bZt

´
∆W1,t (3.16)

+
1

2
(LW1B) (Zt)

¡
∆W 2

1,t −∆t
¢
+ (LW2B) (Zt)

£
I(2,1)

¤t+∆t

t

where:

(LW1•) (Zt) = B
∂•
∂X

+ ρD
∂•
∂Y

(3.17)

(LW2•) (Zt) = ρ̂D
∂•
∂Y

It is well known in the literature the concept of the Lévy area which is defined by:

£
L(1,2)

¤t+∆t

t
:=

Z t+∆t

t

Z S

t

dW1,UdW2,S −
Z t+∆t

t

Z S

t

dW2,UdW1,S (3.18)

In addition, if one applies Itô’s lemma2:

£
I(1,2)

¤t+∆t

t
=

Z t+∆t

t

(W1,S −W1,t) dW2,S (3.19)

=

Z t+∆t

t

W1,SdW2,S −W1,tW2,t+∆t +W1,tW2,t

= −
Z t+∆t

t

W2,SdW1,S +W1,t+∆tW2,t+∆t −W1,tW2,t+∆t

and for the other Itô integral:

£
I(2,1)

¤t+∆t

t
=

Z t+∆t

t

W2,SdW1,S −W1,t+∆tW2,t +W1,tW2,t (3.20)

2If we apply Itô’s lemma to f =W1W2; we obtain d (W1W2) =W2dW1 +W1dW2;
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Adding both equations, (3.19) and (3.20), one obtains:£
I(1,2)

¤t+∆t

t
+
£
I(2,1)

¤t+∆t

t
= (W1,t+∆t −W1,t) (W2,t+∆t −W2,t) = ∆W1,t∆W2,t (3.21)

Using (3.18) and (3.21), (3.15) can be expressed as:£
I(2,1)

¤t+∆t

t
=

1

2

£¡£
I(1,2)

¤
+
£
I(2,1)

¤¢− ¡£I(1,2)¤− £I(2,1)¤¢¤t+∆t

t

=
1

2

³
∆W1,t∆W2,t −

£
L(1,2)

¤t+∆t

t

´
So, using the concept of Lévy Area (3.18), the Milstein scheme (3.16) leads to:

bXt+∆t = bXt +A
³bZt

´
∆t+B

³bZt

´
∆W1,t +

1

2
(LW1B)

³bZt

´ ¡
∆W 2

1,t −∆t
¢

+
1

2
(LW2B)

³bZt

´³
∆W1,t∆W2,t −

£
L(1,2)

¤t+∆t

t

´
Doing the same argument above for Y (t), the discrete time strong approximation of

order 1.0 (Milstein scheme) for Y (t) is:

bYt+∆t = bYt + C
³bZt

´
∆t+D

³bZt

´
∆cW2,t +

h
ρeIY,1 + ρ̂ eIY,2it+∆t

t

where the Itô integrals are:h eIY,1it+∆t

t
=

1

2
(LW1D)

³bZt

´ ¡
∆W 2

1,t −∆t
¢
+ (LW2D)

³bZt

´ £
I(2,1)

¤t+∆t

th eIY,2it+∆t

t
=

1

2
(LW2D)

³bZt

´ ¡
∆W 2

2,t −∆t
¢
+ (LW1D)

³bZt

´ £
I(1,2)

¤t+∆t

t

If one applies back the Itô’s operators (3.17), the 1.0 strong order scheme (Milstein

scheme) for our original system (3.2) is:

bXt+∆t = bXt +A∆t+B∆W1,t +
1

2
B
∂B

∂X

¡
∆W 2

1,t −∆t
¢
+
1

2
D
∂B

∂Y

£
∆W−

L

¤t+∆t

t

bYt+∆t = bYt + C∆t+D∆cW2,t +
1

2
D
∂D

∂Y

³
∆cW 2

2,t −∆t
´
+
1

2
B
∂D

∂X

£
∆W+

L

¤t+∆t

t

where: £
∆W±

L

¤t+∆t

t
= ρ

¡
∆W 2

1,t −∆t
¢
+ ρ̂

³
∆W1,t∆W2,t ±

£
L(1,2)

¤t+∆t

t

´
Milstein integration includes all the O(∆t) terms neglecting O

³
∆t

3
2

´
and higher

terms. As noted above, the Milstein correction is peculiar to SDEs (as opposed to

ODEs) and is a consequence of Itô’s lemma and/or the definition of an Itô integral.

It can be shown in a more rigorous proof (see Kloeden and Platen [21]) that the
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Figure 3.1: One random simulation for an Exponential Brownian Motion process
(3.41) using Euler and Milstein scheme (N4t = 50).

Milstein scheme gives 1.0 strong order convergence, and in general, is a better scheme

than Euler approximation for integrating a SDE (Figure 3.1). An integration scheme

which is more accurate that the accuracy of the Milstein scheme requires the eval-

uation of the integrals (3.10,3.11 & 3.12). Unfortunately, these integrals and (3.15)

from Milstein scheme can not be accurately expressed in terms of the underlaying

random process ∆Wt alone. Rather, accurate evaluation of these integrals requires

the generation of additional random numbers.

3.3 Strong Schemes (d−Dimensional)
Appropriate stochastic Taylor expansions can give consistent numerical schemes of

an arbitrarily desired higher order. These expansions are derived through an iterated

application of stochastic chain rules (Itô formulae). In this section we shall define

Euler and Milstein schemes for a general case: a d−Dimensional Itô stochastic differ-
ential equation with aM−Dimensional Wiener process. Both schemes can be defined
in many different ways and all of them are necessary for different applications. The

most important two representations in the literature are using "Itô operators" and the

"Vector form". Both have their advantages as well as their disadvantages depending

on the dimension and where they are used. Both representations give exactly the

same solution.
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3.3.1 Euler and Milstein Scheme (Itô Operators)

Most models can be described through the following d−Dimensional Itô stochastic
differential equation (SDE) with a M−Dimensional independent Wiener process:

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt ;Xt0 = X0 (3.22)

where:

Xt ∈ Rd; Wt ∈ RM ; t ∈ [t0, T ]
E [dWj,tdWk,t] = 0 for j 6= k

and µ, σ are sufficiently smooth functions of X and t, e.g. satisfy Lipschitz conditions

(Theorem 1, page 45).

µ (Xt, t) =
£
a1 a2 ... ad

¤T ∈ Rd

σ (Xt, t) =


b1,1 b1,2 ... b1,M
b2,1 b2,2 ... b2,M
... ... ... ...
bd,1 bd,2 ... bd,M

 ∈ Rd × M

The 0.5 strong order Euler scheme for (3.22) with time step ∆t ([21], page 340) is:

bXi,t+∆t = bXi,t + ai∆t+
MX
j=1

bi,j∆Wj,t

The 1 strong order Milstein scheme for (3.22) with time step ∆t using Itô operators

([21], page 345) is:

bXi,t+∆t = bXi,t + ai∆t+
MX
j=1

bi,j∆Wj,t +RM

where if one uses the double Itô integrals, RM is equal to:

RM =
MX

j1,j2=1

(Lj1bi,j2)
£
I(j1,j2)

¤t+∆t

t

£
I(j1,j2)

¤t+∆t

t
=

Z t+∆t

t

Z U1

t

dWj1,U2dWj2,U1

or using Lévy Areas, RM is equal to:

RM =
1

2

MX
j1,j2=1

Lj1bi,j2

³
∆Wj1,t∆Wj2,t − eδj1,j2∆t

´
+
1

2

MX
j1=1

MX
j2=j1+1

(Lj1bi,j2 − Lj2bi,j1)
£
L(j1,j2)

¤t+∆t

t
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£
L(j1,j2)

¤t+∆t

t
= − £L(j2,j1)¤t+∆t

t
=
£
I(j1,j2)

¤t+∆t

t
− £I(j2,j1)¤t+∆t

t

The Itô operators are defined by:

Lj :=
dX

k=1

bk,j
∂

∂Xk

and eδj1,j2 is the Kronecker symbol defined by eδj1,j2 = 1 if j1 = j2 and zero other-

wise. Both expressions for RM can be seen to be equivalent if one uses the following

properties: £
I(j,j)

¤t+∆t

t
=

1

2

¡
(dWj,t)

2 −∆t
¢

(3.23)£
I(j1,j2)

¤t+∆t

t
=

1

2

³
dWj1,tdWj2,t +

£
L(j1,j2)

¤t+∆t

t

´
£
I(j1,j2)

¤t+∆t

t
+
£
I(j2,j1)

¤t+∆t

t
= dWj1,tdWj2,t

3.3.2 Euler and Milstein Scheme (Vector Form)

The stochastic process (3.22) can be represented in vector form by:

dXt = A0 (Xt, t) dt+
mX
j=1

Aj (Xt, t) dWj,t ;Xt0 = X0 (3.24)

A0 (Xt, t) = µ (Xt, t) ; Aj (Xt, t) = σ:,j (Xt, t)

The 0.5 strong order Euler scheme for (3.24) with time step ∆t using Vector Form

[26] is: bXt+∆t = bXt +A0∆t+
mX
j=1

Aj∆Wj,t

The 1 strong order Milstein scheme for (3.24) with time step ∆t using Vector Form

[26] is: bXt+∆t = bXt +A0∆t+
mX
j=1

Aj∆Wj,t +RM

where if one uses the double Itô integrals, RM is equal to:

RM =
MX

j1,j2=1

¡
∂Aj2Aj1

¢ £
I(j1,j2)

¤t+∆t

t

or using Lévy Areas, RM is equal to:

RM =
1

2

MX
j1,j2=1

¡
∂Aj2

Aj1

¢ ³
∆Wj1,t∆Wj2,t − eδj1,j2∆t

´
+
1

2

MX
j1,j2=1
j1<j2

¡
∂Aj2

Aj1 − ∂Aj1
Aj2

¢ £
L(j1,j2)

¤t+∆t

t
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Figure 3.2: Simulation of the Lévy Area (3.26) and double Itô integrals (3.25).

The Jacobian matrix ∂Aj2
is defined by:

∂Aj2
=


z1b1,j2 z2b1,j2 ... zMb1,j2
z1b2,j2 z2b2,j2 ... zMb2,j2
... ... ... ...

z1bd,j2 z2bd,j2 ... zMbd,j2


zk =

∂

∂Xk

The relation between Milstein scheme using Itô operators and Vector Form is:

Lj1bi,j2 =
¡
∂Aj2

Aj1

¢
i
=

dX
k=1

bk,j1zkbi,j2 =
dX

k=1

bk,j1
∂bi,j2
∂Xk

3.4 Approximations of the Double Integral

In this section, we present some methods for simulating the double integrals in

the Milstein approximation.

£
I(1,2)

¤t+∆t

t
=

Z t+∆t

t

Z S

t

dW1,UdW2,S (3.25)

£
I(2,1)

¤t+∆t

t
=

Z t+∆t

t

Z S

t

dW2,UdW1,S
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These double integrals, as one can see in Figure 3.2, start at zero, and then each one

follows its own random path. At the end of the time step∆t, the sum of both integrals

is ∆W1∆W2 and the difference between both is what is called the Lévy Area. As
one has already seen, this is a very important concept in stochastic calculus.£

L(1,2)
¤t+∆t

t
=
£
I(1,2) − I(2,1)

¤t+∆t

t
(3.26)

It is well known [23] that the double Itô integral has the following mean and variance:

E
£
I(1,2)

¤
= E

£
I(2,1)

¤
=

∆W1,t∆W2,t

2

V ar
£
I(1,2)

¤
= V ar

£
I(2,1)

¤
=

∆t

12

¡
∆t+R2

¢
where:

R2 = (∆W1)
2 + (∆W2)

2

and, for the Lévy Area:

E
£
L(1,2)

¤
= E

£
I(1,2) − I(2,1)

¤
= 0 (3.27)

V ar
£
L(1,2)

¤
=

∆t

3

¡
∆t+R2

¢
The numerical difficulty is how to calculate the double Itô integral I(1,2) or the Lévy

Area L(j1,j2). The technique of Gaines and Lyons [8] can be used to sample the

distribution for the Lévy Area conditional on ∆W1,t, ∆W2,t. However there is no

generalization of this to higher dimensions apart from the approximation of [35],

which has a significant computational cost.

In this section we shall present at the beginning the subdivision method proposed

by Kloeden [22] to simulate the double integral (3.25). We follow with the problems

of using this method and propose a solution. The big disadvantage with this method

is that it takes a long time (computationally expensive) if one wants to obtain a good

approximation. At the end of the section we present an explicit formulae obtained

by inverting the Fourier transformation of the cumulative distribution function of the

Lévy Area (3.26). Unfortunately, this method is only valid for small values of 4t

[28].

3.4.1 Subdivision (Kloeden)

Kloeden in [22] says that the double integral (3.25) can be approximated by applying

the Euler scheme to the following 2−Dimensional Itô SDE:

dX1,tn = X2,tndW1,t (3.28)

dX2,tn = dW2,t
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using the initial conditions:

X1,tn = 0 (3.29)

X2,tn =W2,tn

Over the discretization subinterval [t, t+∆t] with a suitable size:

δt =
∆t

NK

the stochastic Euler scheme for (3.28) is:

Y1,k+1 = Y1,k + Y2,kδW1,n,k

Y2,k+1 = Y2,k + δW2,n,k

Y1,0 = 0; Y2,0 =W2,tn

When k = NK − 1, one obtains the approximation of the double integral (3.25):

Y1,NK
≈ £I(2,1)¤tn+1tn

Y2,NK
=W2,n

The new Wiener processes δW1,n,k and δW2,n,k can be obtained using a Brownian

Bridge (B.1) and have to be equal to:

dWj,t =
PNK

k=1 δWj,n,k

Kloeden in [22] says that the strong order of convergence γ for the stochastic Euler

scheme ensures that:

E
³¯̄̄
Y1,NK

− £I(2,1)¤tn+1tn

¯̄̄´
≤ C
√
δt

Therefore,
£
I(2,1)

¤tn+1
tn

can be approximated in the Milstein scheme by Y1,NK
with

δt = (∆t)2 without affecting the overall order of convergence. Other higher order

multiple stochastic integrals can be simulated in a similar way.

3.4.2 Subdivision (IC = 0)

If one simulates the two integrals using the subdivision method from Kloeden de-

scribed above, Figure 3.3 shows that the expectation of the Lévy Area (3.27) is equal

to zero only in the first time step (n = 1) and change as n tends to infinite. However,

changing the initial conditions (3.29) to zero, the expectation of the Lévy Area for all
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Figure 3.3: Comparison between the two subdivision methods (n = 5).

n time steps are equal to zero. Furthermore, simulating both methods with different

integration steps NK, and if the error is:

error = ∆W1,n∆W2,n −
³£
I(1,2)

¤tn+1
tn

+
£
I(2,1)

¤tn+1
tn

´
(3.30)

one has to see that this error tends to zero as NK tends to infinity. This behavior is

not true when the initial conditions are not equal to zero (Figure 3.3). We conclude

that the double Itô integral (3.25) can be simulated using the subdivision method

given by Kloeden by changing the initial conditions (3.29) to zero. The accuracy

or error in the calculation of (3.28) depends directly on the value of NK . For more

information, see [28].

3.4.3 Subdivision (Lévy Area)

Another way to simulate the double integral is by using the properties (3.23) and

simulating the Lévy area:

dX1,tn = dW1,t; dX2,tn = dW2,t

dX3,tn = X2,tndW1,t −X1,tndW2,t

The stochastic Euler scheme for (3.28) is:

Y1,k+1 = Y1,k + δW1,n,k; Y2,k+1 = Y2,k + δW2,n,k

Y3,k+1 = Y3,k + (Y2,kδW2,n,k − Y1,kδW1,n,k)

40



using the initial conditions:

Yi,k = 0

When k = NK − 1, one obtains the approximation of the double integral (3.25):

Y3,NK
≈ £L(1,2)¤t+∆t

t

This is a better approximation because by definition the error (3.30) is equal to zero.

Therefore, L(1,2) can be approximated in the Milstein scheme by Y3,NK
with δt = (∆t)2

without affecting the overall order of convergence.

3.4.4 Fourier Lévy Formulae

We start with the integrated form of the Lévy Area (3.26):

L(1,2)(∆t) =

Z ∆t

0

(W1(t)dW2(t)−W2(t)dW1(t))

The Fourier transformation of the density of L(1,2)
3 conditional on ∆W1,∆W2 is given

by: bL(1,2)(w) = E
£
exp

¡
iwL(1,2)(t)

¢ |W1(t) = ∆W1,W2(t) = ∆W2

¤
and is explicitly known by [9] (it is also given in Lévy’s original paper [23]) as:

bL(1,2)(w) = fX(w)fY (w)

where, given R2 = (∆W1)
2 + (∆W2)

2:

fX(w) =
w∆t

sinh(w∆t)

fY (w) = exp

·
− R2

2∆t
(w∆t coth (w∆t)− 1)

¸
The probability density function (pdf) for X can be obtained exactly by inverting the

Fourier transform fX(w):

p(x) =
π

4∆t
sech2

³ πx

2∆t

´
3The Fourier transformation of the density of the Lévy Area L is:

bp (w) = ∞Z
−∞

eiwLp (L) dL ; p (L) =
1

2π

∞Z
−∞

e−iwLp (w) dw
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and then the cumulative distribution function (cdf) is:

P (x) =

Z x

−∞
p(x)dx = 1− 1

1 + eπx/∆t

leading, via its inverse, to the sample rule:

X =
1

P (Q)
=

∆t

π
ln

µ
Q

1−Q

¶
Q ∼ U(0, 1)

Note that the variance of X is:

V ar [X] = − lim
w→0

·
d2fX
dw2

¸
=

∆t2

3

So far as we know, the pdf for Y cannot be written down in exact form, but for small

∆t, we have:

fY (w) = exp

·
− R2

2∆t
(w∆t coth (w∆t)− 1)

¸
= exp

·
−R

2w2∆t

6
+O

¡
∆t3

¢¸
fY (w) ∼ exp

·
−R

2w2∆t

6

¸
which is the Fourier transform of another normal distribution with density:

p(y) =
1√
2πσ

exp

µ
− y2

2σ2

¶

σ2 =
R2∆t

3

Samples of Y can then be made in the usual way.

Y =

r
R2∆t

3
Z Z ∼ N(0, 1)

So the double integral (3.25) can be approximated using the formulae:£
I(2,1)

¤tn+1
tn

=
1

2
(∆W1,n∆W2,n)− 1

2
(X + Y ) (3.31)

So, although (3.31) is an approximation, one can see that we recover the exact total

variance required.

V ar
£
L(1,2)

¤
= V ar [X] + V ar [Y ] =

∆t

3

¡
∆t+R2

¢
Because the pdf for Y cannot be written down in exact this approximation is only

valid for small values of 4t. For more information, see [28].
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3.5 Convergence

Convergence for numerical schemes can be defined in various ways. It is common to

distinguish between strong and weak convergence, depending on whether the realiza-

tions or only their probability distributions are required to be close, respectively. In

this section we shall define strong and weak convergence and how to measure it, even

if you do not have an exact solution.

3.5.1 Strong Convergence

When we talk about strong convergence, we are referring to how fast our time discrete

approximation converges to the exact solution as it is refined.

Definition: We shall state that a time discrete approximation bX(T ) converges
strongly with order γ > 0 at time T as 4t ↓ 0 to the exact solution X(T ) if there

exists a positive constant C, that does not depend on γ, such that:

�Strong(4t) ≡ E
h ¯̄̄

X(T )− bX(T,4t)
¯̄̄ i
≤ C4tγ (3.32)

Refer to the theorem in ([21], page 362), which proves that if (3.32) is true, it can be

implied that the order of strong convergence is not only in the last point T , but also

uniformly over all time steps 4t within the whole time interval tn ∈ [t0, T ].

E

·
sup

t0≤tn≤T

¯̄̄
X(tn)− bX(tn,4t)

¯̄̄ ¸
≤ C14tγ

Note that using the method of least squares, one can calculate the constant C and

the order of convergence γ for (3.32).

log (�Strong(4t)) ≤ log(C) + γ log(4t)

3.5.2 Weak Convergence

When we talk about weak convergence, we want to know how fast the expectation of

our time discrete approximation converges to the exact expectation of our system.

Definition: We shall state that a time discrete approximation bX(T ) converges
weakly with order β > 0 at time T as4t ↓ 0 to the exact solution X(T ) if there exists
a positive constant K, that does not depend on β, such that:

�Weak(4t,M) ≡
¯̄̄
E [g (X(T ))]− E

h
g
³ bX(T,4t)

´i ¯̄̄
≤ K4tβ (3.33)

for any function g ∈ C
2(β+1)
p

¡
Rd,R

¢
. Even though a realization of bX(T,4t) is com-

putable using a stochastic scheme, the expectation E
h
g
³ bX(T,4t)

´i
is, in general,
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not. However, it can be approximated by a sample average of M independent real-

izations, which is the basis of Monte Carlo methods. The exact computational error,

�Weak, naturally separates into two parts:

�Weak(4t,M) ≡
¯̄̄̄
¯E [g (X(T ))]− 1

M

MX
j=1

h
g
³ bXj(T,4t)

´i¯̄̄̄¯
≤

¯̄̄
E [g (X(T ))]−E

h
g
³ bX(T,4t)

´i¯̄̄
+

¯̄̄̄
¯E hg ³ bX(T,4t)

´i
− 1

M

MX
j=1

h
g
³ bXj(T,4t)

´i¯̄̄̄¯
�Weak(4t,M) ≤ �Weak (4t) + �Stat(4t,M)

The time step 4t determines the time discretization or weak error �Weak, and the

number of paths or realizations M mainly determines the statistical error �Stat. If a

scheme is strong to a certain order, it will be weak to at least that order, and possibly

more, but not vice versa. Aspects of the use of Euler and Milstein schemes for the

weak approximation of SDE’s have been addressed before and they have shown that

both schemes are 1.0 order of weak convergence:¯̄̄
E [g (X(T ))]−E

h
g
³ bX(T,4t)

´i¯̄̄
= O (4t)

A comprehensive review of the construction and the analysis of the strong and weak

convergence order for higher order methods can be found in the inspiring book by

Kloeden and Platen [21].

3.5.3 Convergence without an Exact Solution

If one applies any discrete approximation scheme to a stochastic process (3.34) and

wants to numerically evaluate the strong or weak convergence order of our approx-

imation bX(T ), an exact solution X(T ) is normally required. However, at present,

there are no solutions available for many SDEs. Instead, the next theorems allow us

to determine the order of convergence for our discrete time approximation without

an exact solution. We have published these results in [28] and [29].

Most models can be described through a SDE of the form:

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt ;X(t0) = X0 (3.34)

where:

Xt = X(t) ∈ Rd; Wt ∈ RM ; t ∈ [t0, ....T ] ∈ R
σ (Xt, t) = σ (bi,k (Xt, t)) ∈ Rd × M ; µ (Xt, t) = µ (ai (Xt, t)) ∈ Rd
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E [dWj,tdWk,t] = 0 for j 6= k

Theorem 1: Existence and Uniqueness of Strong Solutions
Suppose E

£||X0||2
¤
is finite and that there is a constant K for which for all

t ∈ [t0, T ] and all x, y ∈ Rd the following conditions are satisfied:

kµ (x, t)− µ (y, t)k+ kσ (x, t)− σ (y, t)k ≤ K kx− yk (Lipschitz condition)

kµ (x, t)k+ kσ (x, t)k ≤ K (1 + kxk) (Linear growth condition) (3.35)

Then the SDE (3.34) admits a strong solution X and satisfies¡
E
£||Xt||2

¤
<∞¢ .

This solution is unique in the sense that if bX is also a solution, then:

P
³
Xt = bXt. ∀t ∈ [t0, T ]

´
= 1

Proofs and additional explanation can be found in [12] and [21].

¤

Theorem 2: Strong Convergence Order without an Exact Solution
A) If a discrete approximation bX of (3.34) with time step ∆t has strong conver-

gence order γ, i.e. there exist a constant C1 such that:

E
h ¯̄̄

X(T )− bX(T,4t)
¯̄̄ i
≤ C14tγ (3.36)

Then, there exists a positive constant, C2, such that:

E

·¯̄̄̄ bX(T,4t)− bX µT,4t

2

¶¯̄̄̄ ¸
≤ C24tγ (3.37)

B) Conversely, if it is known that the discretization is strongly convergent and (3.37)

holds for some positive constant C2, then the strong convergence order is γ.

Proof A):
If (3.36) is true for all ∆t, then:

E

·¯̄̄̄
X(T )− bX µT,4t

2

¶¯̄̄̄¸
≤ C1

µ4t

2

¶γ

(3.38)

Using the triangle law (|A−B| ≤ |A|+ |B|) and adding (3.36) and (3.38), one gets:

E

·¯̄̄̄ bX(T,4t)− bX µT,4t

2

¶¯̄̄̄¸
≤ C1

µ
1 +

µ
1

2

¶γ¶
4tγ = C24tγ
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Proof B):
Using the triangle law:

E
h ¯̄̄

X(T )− bX(T,4t)
¯̄̄ i

≤ E

"¯̄̄̄
¯X(T )− bX ÃT,µ1

2

¶M

4t

!¯̄̄̄
¯
#

+
M−1X
m=0

E

"¯̄̄̄
¯ bX
Ã
T,

µ
1

2

¶m+1

4t

!
− bX µT,µ1

2

¶m

4t

¶¯̄̄̄
¯
#

Due to strong convergence:

lim
M→∞

E

"¯̄̄̄
¯X(T )− bX ÃT,µ1

2

¶M

4t

!¯̄̄̄
¯
#
= 0

Hence, using (3.37):

E
h¯̄̄
X(T )− bX(T,4t)

¯̄̄i
≤

∞X
m=0

C2

µ
1

2

¶mγ

4tγ

=
C2

1− ¡1
2

¢γ4tγ = C14tγ

¤

Theorem 3: Weak Convergence Order without an Exact Solution
A) If a discrete approximation bX of (3.34) with time step∆t has weak convergence

order β for some positive constant K1, i.e.:¯̄̄
E [g (X(T ))]−E

h
g
³ bX(T,4t)

´i¯̄̄
≤ K14tβ (3.39)

Then, there exists a positive constant, K2, such that:¯̄̄̄
E
h
g
³ bX(T,4t)

´i
−E

·
g

µ bX µT,4t

2

¶¶¸ ¯̄̄̄
≤ K24tβ (3.40)

B) Conversely, if it is known that the discretization is weakly convergent and

(3.40) holds for some positive constant K2, then the weak convergence order is β.

Proof: The proof is very similar to Theorem 2. Additional explanation can be

found in [28].

¤
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3.6 Examples and Simulations.

In this section, we present two financial examples where we measure the strong and

weak convergence for Euler and Milstein schemes. The first example is a Portfolio

with N assets that follows an exponential Brownian motion. To measure the order of

convergence we use both Theorems 2 and 3 (3.36,3.39) presented in the last section

and the exact solutions of our system. We prove numerically that both theorems

convergence to the right solution (order of convergence). The second example is a

European Option assuming that the asset price follows a mean reverting stochastic

volatility model (SVM). Because there is not an exact solution for this SVM, Theo-

rems 2 and 3 are used to obtain the order of convergence.

3.6.1 Example 1 (Portfolio with N assets)

If Π(t) is the total value of a portfolio at time t that contains NP assets Si(t) and

they follow an Exponential Brownian Motion process (EBM), then the portfolio Π is

described by:

dSi(t) = Si(t)
³
(r(t)−Di(t)) dt+ σi(t)dcWi(t)

´
(3.41)

Π(t) =

NPX
i=1

Si(t) Si(t0) ≺ ∞

Where r(t) and Di(t) are the interest rate and continuous dividend at time t for the

asset Si respectively, and cWi(t) and cWj(t) are NP Wiener processes with correlation

coefficient ρi,j. The exact expectation for our portfolio at time t is:

E [ Π(t) ] =

NPX
i=1

Si(t0) exp

µ Z t

t0

(r(s)−Di(s)) ds

¶
(3.42)

and for every realization or simulation, the exact solution is:

Π(j)(t) =

NPX
i=1

Si(t0) exp

µZ t

t0

µ
r(s)−Di(s)− 1

2
σ2i (s)

¶
ds+

Z t

t0

σi(s)dcWi(s)

¶
(3.43)

If the time t ∈ [t0, T ] is subdivided into equal time steps Nsteps:

∆t =
(T − t0)

Nsteps

the first strong Taylor approximation of order 0.5 (Euler scheme) is:

bSi(tn +∆t) = bSi(tn)³1 + (r(tn)−Di(tn))∆t+ σi(tn)∆cWi(tn)
´

(3.44)
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The second strong Taylor approximation of order 1.0 is usually called the Milstein

scheme. The same results are obtained if the definition of the Milstein scheme is

applied directly to each equation or if the scheme using the vector form of (3.41) is

applied with independent noise.

bSi(tn +∆t) = bSi(tn)³1 + (r(tn)−Di(tn))∆t+ σi(tn)∆cWi(tn)
´

(3.45)

+
1

2
bSi(tn)σ2i (tn)µ³∆cWi(tn)

´2
−∆t

¶
Consider the following parameters and initial conditions for our portfolio Π (t0):

N = 4; Si(t0) = 1; t0 = 0.1; T = .9 (3.46)

r (t)−D (t) =
£
0.02 0.04 0.06 0.08

¤T
σ (t) =

£
0.1 0.2 0.3 0.4

¤T
and the correlation matrix for our Wiener process:

ρ =


1 ρ1 0 0
ρ1 1 ρ2 0
0 ρ2 1 ρ3
0 0 ρ3 1


ρ1 = 0.25 ; ρ2 = −0.5 ; ρ3 = 0.75

Using (3.46), the exact solution (3.43) of (3.41) and running enough simulations

(M = 104 paths) to calculate the order of the strong convergence (3.32), we obtain

as expected in Table 3.1 and Figure 3.4, magnitude 0.5 and 1.0 strong orders of

convergence with respect to 4t for Euler and Milstein schemes respectively. On the

other hand, if we use Theorem 2 (3.36), ignoring the existence of the exact solution

(3.43) for our system (3.41) and compute the same simulations (M = 104), we obtain

as expected in Table 3.1 and Figure 3.5, the same strong order of convergence γ as if

one uses the exact solution.

As one can see, the use of Theorem 2 gives a good estimate of the strong order

of convergence γi for our system (3.47). The only difference between the results, the

exact solution (Figure 3.4) and Theorem 3 (Figure 3.5), are the value of the constants

C1 and C2. Nevertheless they are related as:

C1 ≈ 2 ∗ C2
1 +

¡
1
2

¢γ
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Scheme C1 C2 γ1 γ2
Euler — S1 0.004 0.003 0.49 0.48
Euler — S2 0.019 0.015 0.48 0.48
Euler — S3 0.044 0.034 0.48 0.48
Euler — S4 0.080 0.063 0.48 0.48
Euler — Π 0.116 0.092 0.48 0.48

Milstein — S1 0.001 0.000 0.99 0.98
Milstein — S2 0.005 0.003 0.97 0.95
Milstein — S3 0.012 0.009 0.95 0.93
Milstein — S4 0.022 0.018 0.93 0.92
Milstein — Π 0.032 0.025 0.95 0.93

Table 3.1: Order of strong convergence test of (3.41) using the exact solution (C1,γ1)

and Theorem 2 (C2,γ2).

Using (3.46), the exact expectation (3.42) of (3.41) and running M = 109 Monte

Carlo paths to calculate the order of the weak convergence (3.33), we obtain as

expected in Table 3.2 and Figure 3.6, a 1.0 weak order of convergence for both the

Euler and Milstein schemes with respect to4t. On the other hand, if we use Theorem

3, ignoring the existence of the exact expectation (3.42) for our system (3.41) and

compute enough simulations (M = 108), we obtain as expected in Table 3.2 and

Figure 3.7, the same weak order of convergence β as if one uses the exact expectation.

Even though we have used 10 times more Monte Carlo paths to calculate the weak

convergence order without using Theorem 3, one can see in the results (Table 3.1 and

Figure 3.6) that there were not enough simulations.

Scheme K1 K2 β1 β2
Euler — S1 X4 .0001 X 0.99
Euler — S2 X .0004 X 0.99
Euler — S3 .0013 .0010 0.93 0.98
Euler — S4 .0030 .0017 1.06 0.98
Euler — Π .0049 .0033 0.98 0.98

Milstein — S1 X .0001 X 0.99
Milstein — S2 X .0004 X 0.99
Milstein — S3 .0013 .0010 0.93 0.99
Milstein — S4 .0030 .0018 1.06 0.99
Milstein — Π .0049 .0033 0.98 0.99

Table 3.2: Order of weak convergence test for (3.41) using the exact solution (K1,β1)

and Theorem 3 (K2,β2).

4The simulation requires more Monte Carlo paths to correctly calculate the constant.
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Figure 3.4: Strong convergence test of (3.41) using the exact solution (3.43).
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Figure 3.5: Strong convergence test of (3.41) using Theorem 2 (3.36).
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Figure 3.6: Weak convergence test of ( 3.41) using the exact expectation (3.42).
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Figure 3.7: Weak convergence test of ( 3.41) using Theorem 3 (3.39).
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As one can see, the use of the Euler and Milstein schemes give almost the same

weak order of convergence β. The reason for this is that one is calculating the ex-

pectation instead the corresponding path or realization. When calculating the ex-

pectation, the use of either the Euler or Milstein schemes has negligible difference on

the outcome. The only difference is, when one uses Theorem 3 (Figure 3.7), Milstein

scheme requires less paths in the Monte Carlo integration (M = 105 paths) than

Euler scheme (M = 108 paths) to calculate the expectation (3.40). This is because

of its lower variance (see Figure 3.13).

The use of Theorem 3 gives a good estimate of the weak order of convergence β

for our system (3.41). The only difference between the results, the exact expectation

(Figure 3.6) and Theorem 3 (Figure 3.7), are the value of the constants K1 and K2.

However they are related as:

K1 ≈ K2

1− ¡1
2

¢β
It should be noted that if one uses Theorem 3 to calculate the weak order of conver-

gence, then the subroutine takes much less time. This is because instead of calculating

the expectation of the solution of our system (3.42), one is computing the expecta-

tion of the difference between two solutions with different time steps. In consequence,

one needs less paths in the Monte Carlo integration. Also it should be noted that

the standard Monte Carlo method used to calculate the expectations is very slow

(computationally expensive). For this example alone, it took 495 hours for Figure

3.6 comparing with 49.5 hours for Figure 3.7 and 0.11 hours for Figure 3.13 (approx-

imately, 48% for Euler and 52% for Milstein scheme).

3.6.2 Example 2 (European Options using Stochastic Volatil-
ity Models)

We begin with the usual Exponential Brownian Motion where the volatility σ is

written as the square root of a variance ν and is assumed to follow a mean reverting

SDE:

dSt = St
³
µtdt+

√
νtdcW1,t

´
; E

h
dcW1,t, dcW2,t

i
= ρdt (3.47)

dνt = νλ1t (k(' − νt)− Λνt) dt+ ξνλ2t dcW2,t

where µ is the instantaneous drift or return of the stock price at time t and the seven

parameters, κ, ', Λ, ξ, λ1, λ2, ρ are constants and determine the evolution of the
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asset price S and variance ν. They are defined as:

St0 = initial price νt0 = initial volatility
t0 = initial time T = maturity
µ = drift ' = long-run mean
κ = mean-reverting speed ξ = volatility of volatility
Λ = market price of risk function ρ = correlation coefficient
λ1 = random mean parameter λ2 = radial distance from OU

The value of a European Option at time T with strike K is equal to:

V (T ) =

½
max(ST −K, 0) for call options
max(K − ST , 0) for put options

¾
(3.48)

Unfortunately, there is no exact solution and expectation in the literature for the

option value (3.48) using the SVM (3.47). However the expectation of S is:

E [ ST ] = St0 exp

µ Z T

t0

µ(s)ds

¶
(3.49)

The first strong Taylor approximation of order 0.5, Euler scheme, is:

bSt+∆t = bSt ³1 + µt∆t+
pbνt∆cW1,t

´
(3.50)

bνt+∆t = bνt + bνλ1t (k(' − bνt)− Λbνt)∆t+ ξbνλ2t ∆cW2,t

If one applies Milstein scheme to each equation of (3.47), ignoring stochastic variation

νt in St equation, one obtains (Milstein 1D):

bSt+∆t = bStµ1 + µt∆t+
pbνt∆cW1,t +

1

2
bνt ³∆cW 2

1,t −∆t
´¶

(3.51)

bνt+∆t = bνt + bνλ1t (k(' − bνt)− Λbνt)∆t+ ξbνλ2t ∆cW2,t +
1

2
λ2ξ

2bν2λ2−1t

³
∆cW 2

2,t −∆t
´

If one applies Milstein scheme using both the vector form of (3.47) with independent

noise and the double Itô integrals (Milstein 2D − I):

bSt+∆t = bStµ1 + µt∆t+
pbνt∆cW1,t +

1

2
ρ̂ξbνλ2−1

2
t

£
I(2,1)

¤t+∆t

t

¶
(3.52)

+bStµ1
2
bνt + 1

4
ρξbνλ2− 1

2
t

¶³
∆cW 2

1,t −∆t
´

bνt+∆t = bνt + bνλ1t (k(' − bνt)− Λbνt)∆t+ ξbνλ2t ∆cW2,t +
1

2
λ2ξ

2bν2λ2−1t

³
∆cW 2

2,t −∆t
´

£
I(2,1)

¤t+∆t

t
=

Z tn+1

tn

Z s1

tn

dW2,s2dW1,s1 (3.53)
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If one applies the concept of the Lévy Area (Milstein 2D − L), one only needs to

substitute (3.54) in (3.52) by:£
I(2,1)

¤t+∆t

t
=
1

2

³
dW1,tdW2,t −

£
L(1,2)

¤t+∆t

t

´
(3.54)

One can note that when one applies the Milstein scheme to each equation or apply the

scheme with independent noise and the vector form of (3.47), one obtains different

equations. The double integral (3.53) and the Lévy Area (3.54) can be calculated

using the methods proposed in the section below (page 37). They are the key in

solving the Milstein scheme for the stochastic volatility model (3.47).

Consider the following parameters and initial conditions for our portfolio Π (t0):

S0 = 100; ν0 = 0.2
2; t0 = 0.1; T = 0.6; µ = 0.05; ρ = −0.5 (3.55)

κ = 1.5; ' = 0.152; Λ = 0; ξ = 0.2; λ1 = 0; λ2 = 0.7

KCall = KPut = 105

Using Theorem 2 from page 45 (because it does not exits an exact solution for the

system (3.47)), the parameters and initial conditions (3.55) and running enough sim-

ulations (M = 5000 paths) to calculate the order of strong convergence (3.32), we

obtain as expected in Table 3.3 and Figures 3.8 and 3.9, magnitude 0.5 and 1.0 strong

orders of convergence with respect to 4t for Euler and Milstein schemes. As one can

see, the Milstein 1D scheme (3.51) has the same order of convergence 0.5 as the Euler

scheme (3.50) without having to calculate the double integral (3.53). The reason

for this is that the scheme was applied without taking into account the correlation

between the two systems. To obtain a 1.0 order of convergence with the Milstein

scheme (3.52 or 3.54), one needs to apply the scheme to the vector form of (3.47),

use independent Wiener processes and compute correctly the double integral or Lévy

Area.

Scheme C3 C4 C5 C6 γ3 γ4 γ5 γ6
Euler 3.46 .006 1.85 2.05 0.51 0.58 0.51 0.51
Milstein 1D 3.44 .011 2.08 1.84 0.50 1.07 0.50 0.49
Milstein 2D (I=0) 3.10 .011 1.77 1.73 0.50 1.07 0.50 0.50
Milstein 2D (L=0) 2.52 .011 1.43 1.40 0.53 1.07 0.52 0.52
Milstein 2D 5.16 .011 3.00 2.87 0.99 1.07 0.99 0.98

Table 3.3: Order of strong convergence test for S (C3,γ3), for ν (C4,γ4), for Call

option (C5,γ5) and for Put option (C6,γ6) using Theorem 2 (3.36) and (3.47).
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Figure 3.8: Strong convergence test for the SVM (3.47) using Theorem 2 (3.36).
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Figure 3.9: Strong convergence test for the option value (3.48) using Theorem 2.
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To measure the weak convergence for the stochastic volatility model (3.47), one

only needs the expectation of S(t) in order to compare it with the expectation of

our approximation bS(t). Running simulations using a sufficient number of paths

(M = 7 × 108) to approximate the expectation (3.49), we obtain as expected in
Figure 3.10, a 1.0 weak order of convergence for all schemes with respect to 4t.

Doing the same but now using Theorem 3, we obtain as expected in Figure 3.11,

the same order of weak convergence as if one uses the exact expectation. We have

excluded in the simulation the scheme that include the calculation of the Lévy Area

(3.54) because of the high computational cost required to approximate correct the

expectation of S. Because we do not have an exact expectation of the option price

(3.48), we have used Theorem 3 to calculate the weak order of convergence (Figure

(3.12) and Table 3.4).

Scheme K3 K4 K5 K6 β3 β4 β5 β6
Euler .07 .042 .006 .72 1.15(5) 0.99 1.08 1.08
Milstein 1D .07 .042 .006 .70 X5 0.99 1.08 1.08
Milstein 2D (I = 0) .07 .042 .006 .69 1.15(5) 0.99 1.08 1.08
Milstein 2D (L = 0) .07 .041 .006 .69 1.14(5) 0.99 1.08 1.08

Table 3.4: Weak convergence test of S (K3,β3, exact solution), for S (K4,β4, Theorem

3). for v (K5,β5), for the Call option (K6,β6).

Again, when the expectation is calculated using the Euler or Milstein schemes

there is negligible difference in the outcomes. The Monte Carlo method used to

calculate the expectation was, again, very slow. For this example alone, it took 510

hours for Figures 3.10 and 3.11 ( 24% for Euler, 25% for Milstein 1D, 25% for Milstein

2D− I and 26% Milstein 2D−L). Even though we have used the same Monte Carlo

paths to calculate the weak convergence, one can see in the results (Table 3.4 and

Figure 3.10) that there were not enough simulations to calculated the convergence

order correctly when one does not use Theorem 3. Comparing with Example 1 (Figure

3.13), the Euler or Milstein schemes does not have any difference in the number of

paths required for Monte Carlo integration to calculate the expectation (3.49). This

is because of its stochastic variance (Figure 3.14).

5The simulation requires more Monte Carlo paths to correctly calculate the constant.

56



10-2 10-1 100

10-3

10-2

E
[ |

E
rro

r| 
]

∆ t

Weak convergence test for S (Exact solution); M= 7x10 8

Euler
M-1D
M-2D (I=0)
M-2D (L=0)

Figure 3.10: Weak convergence test of ( 3.47) using the exact expectation (3.49).
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Figure 3.11: Weak convergence test of ( 3.47) using Theorem 3 (3.39).
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Figure 3.12: Weak convergence test for European options using Theorem 3 (3.39).
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3.7 Conclusions

For the N−Dimensional Exponential Brownian Motion process (Portfolio with N

assets (3.41)) we obtain, as expected, a 0.5 and 1.0 strong order of convergence for

Euler (3.44) and Milstein (3.45) schemes respectively. However, for the stochastic

volatility model (3.47), we obtain a 0.5 strong order of convergence for both Euler

(3.50) and Milstein 1D (3.51) schemes. The reason for this is that the Milstein 1D

scheme was applied without taking into account the correlation between the two

systems. To obtain a 1.0 strong order of convergence with the Milstein scheme (3.52)

or (3.54), one has to apply the scheme to the vector form of (3.47), use independent

Wiener processes and compute correctly the double integral (3.53) or Lévy Area

(3.54).

Both the Exponential Brownian Motion (3.41) and the stochastic volatility model

(3.47), give a 1.0 weak order of convergence and almost the same constant C for all

schemes with respect to 4t (the same expectation error). The application of either

the Euler or Milstein schemes to calculate an expectation in the standard way has

negligible difference at all in the outcome.

The use of Theorems 2 and 3 successfully determines the strong and weak orders of

convergence. Each theorem was tested using exact solutions or expectations to verify

the results. Examples in the chapter demonstrate that the use of both theorems

require at least 100 times fewer Monte Carlo paths than the standard method to

correctly calculate the order of convergence. Because there are no exact solutions for

the stochastic volatility model (3.47), the use of the theorems was fundamental to

establish its convergence order.
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Chapter 4

θ Scheme (Orthogonal Milstein
Scheme)

Strong convergence properties of discretizations of stochastic differential equations

(SDEs) are very important in stochastic calculus. The Milstein scheme gives first

order strong convergence for all 1−dimensional systems (one Wiener process). How-
ever, for two or more Wiener processes, such as correlated portfolios and stochastic

volatility models, there is no exact solution for the iterated integrals of second order

(Lévy area) and the Milstein scheme neglecting the Lévy area usually gives the same

order of convergence as the Euler Maruyama scheme.

The purpose of the chapter is to show that if certain conditions are satisfied,

one can avoid the calculation of the Lévy area and obtain first convergence order by

applying an orthogonal transformation. We demonstrate when the conditions of the

2−Dimensional problem permit this and give an exact solution for the orthogonal

transformation (θ Scheme or Orthogonal Milstein Scheme).

4.1 Orthogonal Transformation 2D

We begin with a 2−Dimensional Itô stochastic differential equation (SDE) with a
2−Dimensional Wiener process:

dx = µ(x)(x, y, t) dt+ σ(x, y, t) dcW1,t (4.1)

dy = µ(y)(x, y, t) dt+ ξ(x, y, t) dcW2,t ; E
h
dcW1,t, dcW2,t

i
= ρ dt

Alternatively, in vector form:

dZ(t) = A0 (t, Z) dt+
2X

k=1

Ak (t, Z) dcWk,t Z ∈ R2
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This is in fact, only a symbolic representation for the stochastic integral equation:

Z(t) = Z(t0) +

Z t

t0

A0(s, Z) ds+
2X

k=1

Z t

t0

Ak(s, Z) dcWk,s

The first integral is a deterministic Riemann integral and the second is a stochastic

integral. Using the standard definition of correlation:"
dcW1,t

dcW2,t

#
Std

=

·
1 0
ρ bρ

¸ ·
dW1,t

dW2,t

¸ bρ =p1− ρ2 (4.2)

one can represent the system (4.1) in vector form with independent noise as:

d

·
x
y

¸
=

·
µ(x)

µ(y)

¸
dt+

·
σ
ρ ξ

¸
dW1,t +

·
0bρ ξ

¸
dW2,t (4.3)

hdW1,t, dW2,ti = 0
The 1 strong order Milstein scheme for (4.3) with time step ∆t is (Appendix (B.7)):·

xt+∆t

yt+∆t

¸
=

·
xt
yt

¸
+

·
µ(xt)

µ(yt)

¸
∆t+

·
σ
ρξ

¸
∆W1,t +

·
0bρξ
¸
∆W2,t (4.4)

+
1

2

·
σσx + ρξσy
ρσξx + ρ2ξξy

¸ ¡
∆W 2

1,t −∆t
¢
+
1

2

·
0bρ2ξξy

¸ ¡
∆W 2

2,t −∆t
¢

+
1

2

· bρξσybρσξx + 2ρbρξξy
¸
(∆W1,t∆W2,t) +

1

2
[A1, A2]

£
L(1,2)

¤t+∆t

t

where subscript x and y denote partial derivatives, L(1,2) is the Lévy area defined by:

£
L(1,2)

¤t+∆t

t
=

Z t+∆t

t

Z S

t

dW1,UdW2,S −
Z t+∆t

t

Z S

t

dW2,UdW1,S

and [A1, A2] is the Lie bracket defined by (∂Ai
is the Jacobian matrix of Ai):

[A1, A2] = (∂A2A1 − ∂A1A2) =

· −bρξσybρσξx
¸

(4.5)

The numerical difficulty with Milstein scheme is how to simulate efficiently the Lévy

area L(1,2) (computationally very expensive). On the other hand, if one makes an

orthogonal transformation of the uncorrelated process (4.3), one does not change the

distribution (see Theorem 6 (B.23)) and gets:

dex = µ(ex)(ex, ey, t) dt+ σ(ex, ey, t) dfcW 1,t (4.6)

dey = µ(ey)(ex, ey, t) dt+ ξ(ex, ey, t) dfcW 2,t
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where:  d
fcW 1,t

d
fcW 2,t

 = · 1 0
ρ bρ

¸ ·
cos θ − sin θ
sin θ cos θ

¸ ·
dW1,t

dW2,t

¸
(4.7)

If one computes the coefficients of the Lévy area (Lie bracket) for the new orthogonal

process using independent Brownian paths W1,t,W2,t:

[A1, A2] =

· −bρξσey − σ2θex − ρσξθeybρσξex − ρσξθex − ξ2θey
¸

To avoid having to simulate the Lévy area L(1,2), one needs the Lie brackets to be

identically zero, i.e., you need to impose the following conditions:

−bρξσey − σ2θex − ρσξθey = 0

+bρσξex − ρσξθex − ξ2θey = 0

Simplifying one gets:

Φ
.
=

∂θ

∂ex = −1bρ
µ
ξσey
σ2

+
ρξex
ξ

¶
(4.8)

Ψ
.
=

∂θ

∂ey = 1bρ
µ
σξex
ξ2

+
ρσey
σ

¶
If one wants to find a solution for θ, one must first determine when the system is

consistent, or integrable. This requires that:

∂Φ

∂ey = ∂2θ

∂ex∂ey = ∂Ψ

∂ex (4.9)

and the solution for θ is:

θ(ex, ey) = Z (ex,ey)
(Φ dex+Ψ dey ) (4.10)

However, if one applies Itô’s lemma (Appendix (B.6)), one also obtains the following

SDE for θ:

dθ = µ(θ)dt+ σΦd
fcW 1,t + ξΨd

fcW 2,t

µ(θ) = µ(ex)Φ+ µ(ey)Ψ+ 1
2
σ2

∂Φ

∂ex + ρσξ
∂2θ

∂ex∂ey + 12ξ2∂Ψ∂ey (4.11)

If one chooses to define θ in this way our system becomes a 3−Dimensional Itô process
with two Wiener process inputs (θ−scheme): dex

dey
dθ

 =
 µ(ex)

µ(ey)
µ(θ)

 dt+
 σ
0
σΦ

 dfcW 1,t +

 0
ξ
ξΨ

 dfcW 2,t (4.12)
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If one computes again the Lie brackets with independent noise, one obtains (see

Appendix (B.22)):

[A1, A2] =


0

0

bρσξµ∂ Ψ

∂ex − ∂Φ

∂ey
¶
 (4.13)

Note that when condition (4.9) is satisfied this Lie bracket (4.13) is identically zero.

However, because not all SDEs satisfy condition (4.9) and the value of Lie brackets

(4.13) does not depend on the drift for θ, one can change it as:

µ(θ) = 0

In the remainder of the chapter we shall explain why using the drift for θ equal to zero

is the best approach. We also shall investigate when particular applications satisfy

condition (4.9), in which case one can discretise either (4.6) or (4.12) and when they

do not, in which case one can only discretise (4.12) or the original untransformed SDE

(4.1). Our objective is to try to achieve higher order strong convergence without the

simulation of the Lévy areas.

When the Lie bracket is not equal to zero, the important question to be considered

is how precisely does θ need to be calculated to obtain first strong order convergence

in ex and ey? For example, does neglecting the Lie bracket affect the accuracy of θ but
not in ex and ey?
One approach of θ−scheme results is given by Ana-Bela Cruzeiro and Paul Malli-

avin in [6]. Because dW and dfW have the same distribution (see Theorem 6 (B.23)),

they ignore the calculation of θ. For example, the 1 strong order Milstein scheme for

(4.6) with time step ∆t using (4.8) is (see Appendix (B.17)):· ext+∆teyt+∆t

¸
=

· exteyt
¸
+

·
µ(ex)
µ(ey)

¸
∆t+

·
σ 0
ρ ξ bρ ξ

¸"
∆fW1,t

∆fW2,t

#
+
1

2
RM (4.14)

where RM is equal to:

RM =

·
σσx + ρξσy

ρσξx + ρ2ξξy − bρ 2ξ2σy
σ

¸³
∆fW 2

1,t −∆t
´

+

"
−ρξσy − σ2ξx

ξbρ2ξξy − ρσξx − ρ2ξ2σy
σ

#³
∆fW 2

2,t −∆t
´

+

"
2bρ ξσy
2bρσξx + 2ρbρ³ξξy + ξ2σy

σ

´ #
∆fW1,t∆fW2,t
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and "
∆fW1,t

∆fW2,t

#
=

·
cos θ − sin θ
sin θ cos θ

¸ ·
∆W1,t

∆W2,t

¸
Replacing ∆fW by ∆W one obtains the Malliavin scheme published in [6] and in book

[25]. Note that the advantage of this scheme is that one does not need to simulate

the Lévy Area or worry about the value of θ every time step. For weak solutions the

Malliavin scheme is a good approach. However for strong solutions, it has the same or

worse strong convergence constant than both the scheme that includes the simulation

of θ and the Milstein scheme that does not include the orthogonal transformation

(4.4). For illustration, see the example in the next section with simulation plots

(figures (4.1) to (4.4)).

4.2 Orthogonal Stochastic Volatility Models

In this section we consider four mean reverting stochastic volatility models. All four

have the following generic form:

dx = µ(x)dt+ αxγ1yλ1dcW1,t (4.15)

dy = µ(ey)dt+ β xγ2yλ2dcW2,t ; E
h
dcW1,t, dcW2,t

i
= ρ dt

If one applies an orthogonal transformation, (4.15) changes to:

dx = µ(x)dt+ αxγ1yλ1d
fcW 1,t (4.16)

dy = µ(ey)dt+ β xγ2yλ2d
fcW 2,t

where dfcW i,t are the orthogonal correlated Wiener processes defined in (4.7). If one

would like to obtain an exact solution of θ (4.10), the integrability condition (4.9)

becomes (see Appendix (B.18)):

∂Φ

∂ey = λC λ1 β y
λC−1

−bραxγC+1 =
γCγ2α xγC−1bρβ yλC+1 =

∂Ψ

∂ex (4.17)

γC = γ1 − γ2 − 1; λC = λ2 − λ1 − 1;
so then, for α, β, λ1, γ2 6= 0, one can conclude that θ is integrable if, and only if,

λC = γC = 0, in which case the solution is:

θ =

µ
ρλ1β + γ2αbρβ

¶
log y −

µ
ργ2α+ λ1βbρα

¶
log x (4.18)
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Using θ scheme (4.12), the 3−Dimensional Itô process for (4.16) is: dex
dey
dθ

 =
 µ(ex)

µ(ey)
µ(θ)

 dt+
 αxγ1yλ1

0
αxγ1yλ1Φ

 dfcW 1,t +

 0
β xγ2yλ2

β xγ2yλ2Ψ

 dfcW 2,t (4.19)

where:

µ(θ) = 0 (4.20)

Φ =
λ1β yλC + ργ2 αx

γC

−bρα xγC+1 ; Ψ =
ρλ1 β y

λC + γ2α xγCbρβ yλC+1
If one computes the Lie brackets:

[A1, A2] =

 0

0

x2γ2y2λ1
¡
γCγ2α

2x2γC + λCλ1β
2y2λC

¢
 (4.21)

Even without the condition (4.17) being satisfied one can perhaps improve the con-

vergence using the θ−scheme without the simulation of the Lévy areas. However this
depends on the parameters of our system. In other words, the accuracy is dependent

on the value of the Lie bracket of the scheme (4.21). It will give us the bias in the

calculation of the value of θ and hence in x and y. Note that when condition (4.17)

is satisfied this Lie bracket (4.21) is identically zero.

4.2.1 The Quadratic Volatility Model (Case 1)

The first case we consider is the Quadratic Volatility Model:

dx = xµ dt+ x y dcW1,t (4.22)

dy = k ('2 −y) dt+ β2 y
2dcW2,t

Because λC = 0, one can use either equation (4.16) together with (4.18), or the

3−Dimensional θ scheme (4.19). Because of the orthogonal transformation, neither
requires the calculation of the Lévy area. Figure 4.1 and Table 4.1 show that, as

expected, the Euler scheme and the Milstein scheme with zero Lévy areas (setting

L(1,2) = 0 in (4.4)) give strong convergence order 0.5. On the other hand, the Mil-

stein scheme (4.4) with a proper value for the distribution of the Lévy area (through

simulating the Lévy area using N subintervals within each time step) gives 1.0 order

strong convergence, as do the three orthogonal θ−schemes. We have used the follow-
ing parameters: to = 0; T = 1; ρ= −0.50; µ= 0.1; k = 1.4; '2 = 0.32; β = 1.22 and
initial conditions x(to)=1; y(to)='2.
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4.2.2 The 3/2 Model (Case 2)

The second case we consider is the following stochastic variance model, usually call

the 3/2 Model [24]:

dx = xµ dt+ x
√
ydcW1,t (4.23)

dy = k y('3/2−y) dt+ β3/2 y
3/2dcW2,t

Because λC = 0, we obtain almost the same results as Case 1 (Figure 4.2 and Table

4.1). The parameters and initial conditions are the same as in Case 1 except for'3/2 =

'22; β = 2.44; y(to) ='22; which are chosen so that x and y will have approximately

the same relative volatility.

4.2.3 The GARCH Diffusion Model (Case 3)

The third case we consider is the following stochastic variance model, usually call

GARCH Diffusion Model:

dx = xµ dt+ x
√
ydcW1,t (4.24)

dy = k ('1−y) dt+ β1 ydcW2,t

In this case λC=0.5, and since the integrability condition is not satisfied it is not pos-

sible to use the 2D− θ scheme. Figure 4.3 and Table 4.1 show that the only schemes

that achieved first order convergence are the Milstein and θ schemes which simulate

the Lévy area. However, the simulation results also show there is a remarkable dif-

ference between the original and the orthogonal scheme without the simulation of

the Lévy area, not the improved order of convergence achieved in the first case but

a much improved constant of proportionality. The parameters and initial conditions

are the same as in Case 2 except for '1 = '22; β=0.78; this is again chosen so ensure

that x and y will have approximately the same relative volatility as in the first two

cases.

4.2.4 The Square Root Model (Case 4)

The worst case for this example using the orthogonal transformation is Heston’s

Square Root Model [14]:

dx = xµdt+ x
√
ydcW1,t (4.25)

dy = k ('1/2 − y) dt+ β1/2
√
ydcW2,t
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Figure 4.1: Strong convergence test for x (Case 1).

In this case, λc = 1. Figure 4.4 and Table 4.1 show that neither of the Milstein

schemes in which the Lévy areas are set to zero performs very well. Both have order

0.5 strong convergence, and the constant of proportionality is not much better than

for the Euler scheme. When the Lévy areas are simulated correctly, the Milstein and

θ schemes do exhibit the expected first order strong convergence. This demonstrates

the importance of the Lévy areas in this case. The parameters and initial conditions

are the same as in Case 2 except for '1/2 = '22; β=0.25.

Scheme Description C-1 C-2 C-3 C-4
Euler scheme set 4t=dt,∆Wi=dWi in (4.3) 0.49 0.50 0.51 0.50

Milstein (L=0) Milstein (4.4), set L(1,2)=0 0.52 0.54 0.53 0.53

Milstein sch. Milstein (4.4), simulate L(1,2) 0.94 0.95 0.96 0.96

Malliavin sch. Milstein (4.16), set ∆fWi=dWi 0.50 0.52 0.50 0.49
2D-θ scheme Milstein (4.16) with (4.18) 0.96 0.95 n/a1 n/a
3D-θ sch. (L=0) Milstein (4.19), set L(1,2)=0 0.96 0.95 0.78 0.63

3D-θ scheme Milstein (4.19), simulate L(1,2) 0.96 0.95 0.95 0.94

Table 4.1: Convergence orders γ for SVMs (all cases (4.22-4.25)).

4.2.5 Drift for θ Scheme

This section explains how the strong convergence order for x and y can change when

applying a different drift in the θ equation in the 3D − θ scheme (4.19). Lets start

by assuming that θ is a function of x and y, two stochastic processes. Applying Itô’s

lemma, one obtains the following SDE (Appendix (B.6)):

dθ = µ(θ)dt+ xyλ1Φd
fcW 1,t + β yλ2Ψd

fcW 2,t

1n/a = not applicable
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Figure 4.2: Strong convergence test for x (Case 2).
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Figure 4.3: Strong convergence test for x (Case 3).
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Figure 4.4: Strong convergence test for x (Case 4).
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µ(θ) = µ(ex)Φ+ µ(ey)Ψ+ 1
2

¡
xyλ1

¢2 ∂Φ
∂ex + ρβ xyλ1+λ2

∂2θ

∂ex∂ey + 12 ¡β yλ2¢2 ∂Ψ∂ey (4.26)

where:
∂θ
∂ex = Φ = −λ1β yλCbρx ∂θ

∂ey = Ψ = ρλ1bρ y
∂2θ
∂ex2 = ∂Φ

∂ex = λ1β yλCbρx2 ∂2θ
∂ey2 = ∂Ψ

∂ey = −ρλ1bρ y2
The problem comes when calculating the cross derivatives:

∂2θ
∂ex∂ey = ∂Φ

∂ey = −λCλ1β yλC−1bρx ∂2θ
∂ey∂ex = ∂Ψ

∂ex = 0
Only when condition (4.17) is satisfy (λC = 0 ), the cross derivatives are equal and

the correct drift (4.26) can be applied in the 3D − θ scheme (4.19). To understand

how the drift of θ changes the convergence in x and y, three examples are presented

using Case 2 and the same initials conditions:

Case 2 µ(θ) = 0

Case 2a µ(θ) =Itô (4.26)
Case 2b µ(θ) = π/2

In the first plot (Figure (4.5)) we show the expectation of the absolute error of θ

at time T between the formulae (4.18) and 3−Dimensional θ scheme (4.19) using
different time steps dt:

E [ |θ3D (T )− θ2D (T )| ] = Cµ∆tγµ

In Figure (4.5) we obtain as predicted, one strong order convergence when using the

correct drift for θ (4.26), and a constant error when using the other drifts. However,

when applying a strong convergence test to θ and x, Figures 4.6 and 4.7 display some

differences. This is because the value θ changes every time step depending on its

drift. The greater the value of θ, the poorer the strong convergence constant for θ

and therefore with x and y. In addition, because not all SDEs satisfy the conditions

(4.17) and the only goal when using θ scheme is to obtain zero in the coefficients of

the Lie Brackets (4.21) for x and y, we conclude that the best approach for θ scheme

is when using:

µ(θ) = 0

4.3 2D Orthogonal Milstein Scheme (θ Scheme)

This section presents the definition of θ scheme that generalizes the application of an

orthogonal transformation to a 2−Dimensional SDE [29].
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Figure 4.5: Expectation of the absolute error of θ at time T .
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Figure 4.6: Strong convergence test for θ (Case 2).
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4.3.1 2D − θ Scheme

Theorem 4: 2D − θ scheme (Exact solution)
If one has a 2−Dimensional Itô stochastic differential equation with two indepen-

dent Wiener process:

d

·
X1,t

X2,t

¸
=

·
a1
a2

¸
dt+

·
b1,1 b1,2
b2,1 b2,2

¸ ·
dW1,t

dW2,t

¸
(4.27)

where ai,bi,k are smooth functions of t, Xt and Yt, satisfying the following condition:

∂Ψ

∂X1
=

∂Φ

∂X2
(4.28)

where:

Φ
.
=

H−
1

¡
b22,1 + b22,2

¢−H−
2 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

Ψ
.
=

H−
2

¡
b21,1 + b21,2

¢−H−
1 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

and H−
i are the coefficients of the Lévy area (Lie bracket) of (4.27) and are defined

by:

H−
j = L1bj,2 − L2bj,1

Lj :=
dX

k=1

bk,j
∂

∂Xk

And if one applies an orthogonal transformation to (4.27) described by:"
dfW1,t

dfW2,t

#
=

·
cos θ − sin θ
sin θ cos θ

¸ ·
dW1,t

dW2,t

¸
(4.29)

where:

θt (X1,X2) =

Z X1

ΦdX1 +

Z X2

ΨdX2 (4.30)

then the new orthogonal process has 1 strong order convergence using the Milstein

scheme neglecting the simulation of the Lévy Area. Conversely, for H−
i 6= 0, the

Milstein scheme of (4.27) with zero Lévy Area has 0.5 strong order convergence.

Proof:
The 1 strong order Milstein scheme for (4.27) with time step ∆t is (Appendix

B.7): " bX1,t+∆tbX2,t+∆t

#
=

" bX1,tbX2,t

#
+

·
a1
a2

¸
∆t+

·
b1,1 b1,2
b2,1 b2,2

¸ ·
∆W1,t

∆W2,t

¸
+
1

2
RM
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RM =
2X

j=1

·
Ljb1,j
Ljb2,j

¸ ¡
∆W 2

j,t −∆t
¢
+

·
H+
1

H+
1

¸
∆W1,t∆W2,t

+

·
H−
1

H−
2

¸ £
L(1,2)

¤t+∆t

t

where:

H±
j = L1bj,2 ± L2bj,1

For H±
j 6= 0, Milstein scheme is 1 strong order convergent when one includes all terms

in the equation (see Theorem 10.3.5, page 350 from [21]), otherwise it becomes 0.5

strong order convergence. In general, if XT is the solution of the SDE (4.27) and bXT

is the numerical approximation using Milstein scheme, for H−
j 6= 0 and neglecting the

simulation of the Lévy Area, one can say:

E
h
XT − bXT

i
≤ bC1 (∆t)0.5

On the other hand, if one makes an orthogonal transformation (4.29) to (4.27), one

obtains:

d

" eX1,teX2,t

#
=

·
a1
a2

¸
dt+

·
b1,1 b1,2
b2,1 b2,2

¸"
dfW1,t

dfW2,t

#
(4.31)

The system (4.31) with independent noise can be represented as:

d

" eX1,teX2,t

#
=

·
a1
a2

¸
dt+

" eb1,1 eb1,2eb2,1 eb2,2
#·

dW1,t

dW2,t

¸
(4.32)

where: " eb1,1 eb1,2eb2,1 eb2,2
#
=

·
b1,1 b1,2
b2,1 b2,2

¸ ·
cos θ − sin θ
sin θ cos θ

¸
The 1 strong order Milstein scheme for (4.32) with time step∆t is (Appendix (B.12)):" beX1,t+∆tbeX2,t+∆t

#
=

" beX1,tbeX2,t

#
+

·
a1
a2

¸
∆t+

" eb1,1 eb1,2eb2,1 eb2,2
#·

∆W1,t

∆W2,t

¸
+
1

2
RM

RM =
2X

j=1

" eLj
eb1,jeLj
eb2,j

# ¡
∆W 2

j,t −∆t
¢
+

" eH+
1eH+
2

#
∆W1,t∆W2,t

+

" eH−
1eH−
2

# £
L(1,2)

¤t+∆t

t

where: eH±
j =

eL1ebj,2 ± eL2ebj,1
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eLj :=
dX

k=1

ebk,j ∂

∂ eXk

If one computes the coefficients of the Lévy Area using independent Wiener processes

(Appendix (B.16)), one gets:" eH−
1eH−
2

#
=

·
H−
1 − ∂θ

∂X1

¡
b21,1 + b21,2

¢− ∂θ
∂X2

(b1,1b2,1 + b1,2b2,2)

H−
2 − ∂θ

∂X2

¡
b22,1 + b22,2

¢− ∂θ
∂X1

(b1,1b2,1 + b1,2b2,2)

¸
(4.33)

To avoid having to simulate the Lévy Area, one needs (4.33) to be identically zero,

i.e., you need to impose the following conditions:h eH−
1

eH−
2

i
= 0

Simplifying one gets:

Φ
.
=

∂θ

∂X1
=

H−
1

¡
b22,1 + b22,2

¢−H−
2 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

Ψ
.
=

∂θ

∂X2
=

H−
2

¡
b21,1 + b21,2

¢−H−
1 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

To find a solution for θ, one must first determine when the system is consistent, or

integrable; this requires condition (4.28) and the solution for θ is (4.30).

¤

4.3.2 3D − θ Scheme

If one has a 2−Dimensional Itô process (4.27) and applies an orthogonal transforma-
tion (4.29) to it, where the rotation angle θt is described using a third SDE:

d

 eX1,teX2,t

θt

 =
 a1

a2
0

 dt+
 b1,1 b1,2

b2,1 b2,2
(Φb1,1 +Ψb2,1) (Φb1,2 +Ψ b2,2)

" dfW1,t

dfW2,t

#
(4.34)

then, for sufficiently smooth functions bi,k, the Milstein scheme for the 3−Dimensional
SDE (4.34) can have better strong convergence than (4.27) using Milstein scheme

neglecting the simulation of the Lévy Area. The accuracy of θt and hence in eXi,t

depends on the value of the Lie bracket (4.35) of the process (4.34).

RL =

 0
0

(b1,1b2,2 − b1,2b2,1)
³

∂Ψ
∂X1
− ∂Φ

∂X2

´
 (4.35)
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The 1 strong order Milstein scheme for (4.34) with time step ∆t is (Appendix

(B.19)):
beX1,t+∆tbeX2,t+∆tbθt+∆t

 =

beX1,tbeX2,tbθt

+
 a1

a2
0

∆t+

 eb1,1 eb1,2eb2,1 eb2,2
bθ,1 bθ,2

 · ∆W1,t

∆W2,t

¸
+
1

2
RM

RM =
2X

j=1

 eLj
eb1,jeLj
eb2,jeLj
eb3,j

 ¡∆W 2
j,t −∆t

¢
+

 eH+
1eH+
2eH+
3

∆W1,t∆W2,t

+

 eH−
1eH−
2eH−
3

 £L(1,2)¤t+∆t

t

where: eH±
j =

eL1ebj,2 ± eL2ebj,1
If one computes the coefficients of the Lévy Area of the last equation (Appendix

(B.22)), one obtains:

RL =
h
0 0 eH−

3

iT
If the value of eH−

3 in the Lie bracket RL is small enough, the accuracy of θt is not

affected by neglecting this term in the equation and hence, the 3D Itô process (4.34)

will have better strong convergence than (4.27) using Milstein scheme neglecting the

simulation of the Lévy Area. Note that when condition (4.28) is satisfied the Lie

bracket (4.35) is identically zero ( eH−
3 = 0).

4.3.3 Example of θ Scheme

Consider the following 2D SDEs:

dx = xµx dt+ 0.5x
γ√ydcW1,t (4.36)

dy = xµy dt+ 0.5
√
xyλdcW2,t ; E

h
dcW1,t, dcW2,t

i
= ρ dt

where:

µx = µy = 0.05; ρ = −0.2; x (to) = 1; y (to) = 0.32

If γ = λ = 1.5, then one have the integrability condition (4.28) or (4.17) and either

Theorem 4 (2D−θ scheme) or 3D−θ scheme can be applied. Figures 4.8 and 4.9 show
that the new orthogonal process of (4.36) has 1 strong order convergence in x and
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y using the Milstein scheme neglecting the simulation of the Lévy Area. Conversely,

Euler, Malliavin and the Milstein schemes with zero Lévy Area have 0.5 strong order

convergence in x and y.

If γ = λ = 1, then the integrability condition is not (4.28) or (4.17) and only the

3D−θ scheme can be applied. Figure 4.10 shows that the only schemes that achieved
first order convergence are the Milstein and θ schemes which simulate the Lévy area.

However, Figure 4.10 shows there is a remarkable difference between the original and

the orthogonal scheme without the simulation of the Lévy area, not the improved

order of convergence achieved in the first case (γ = λ = 1.5) but a much improved

constant of proportionality.

4.4 θ Scheme (N-Dimension)

In this section we shall present a summary when one deals with an N−Dimensional
SDE and would like to apply an orthogonal transformation to avoid the calculation

of the Lévy Area. Most models can be described through a SDE of the form:

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt ;X(t0) = X0 (4.37)

where:

Xt = X(t) ∈ Rd; Wt ∈ RM ; t ∈ [t0, ....T ] ∈ R
σ (Xt, t) = σ (bi,k (Xt, t)) ∈ Rd × M ; µ (Xt, t) = µ (ai (Xt, t)) ∈ Rd

E [dWj,tdWk,t] = 0 for i 6= k

or in matrix form by:

d


X1,t

X2,t

...
Xd,t

 =


a1 (Xt, t)
a2 (Xt, t)

.....
ad (Xt, t)

 dt+


b1,1 b1,2 ... b1,M
b2,1 b2,2 ... b2,M
... ... ... ...
bd,1 bd,2 ... bd,M




dW1,t

dW2,t

...
dWM,t


If one replaces the Wiener processWt by an orthogonal transformfWt, the probability

distribution does not change and you obtain the set of all orthogonal transform from

our system (4.37):

d eXt = µ
³ eXt, t

´
dt+ σ

³ eXt, t
´
dfWt (4.38)

where:

dfWt = Γ (θt) dWt and Γ (θt) = Γ
³
Θi,k

³ eXt, t
´´
∈ RM × M
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Figure 4.8: Strong convergence test for x (2D & 3D − θ scheme).
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Figure 4.9: Strong convergence test for y (2D & 3D − θ scheme).
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Figure 4.10: Strong convergence test for x (3D − θ scheme).
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Using independent Wiener process, (4.38) can be represented by:

d eXt = µ
³ eXt, t

´
dt+ σ

³ eXt, t
´
Γ (θt) dWt

or

d eXt = µ
³ eXt, t

´
dt+ eσ ³ eXt, t : θt

´
dWt (4.39)

where:

eσ ³ eXt, t : θt
´
=


b1,1 b1,2 ... b1,M
b2,1 b2,2 ... b2,M
... ... ... ...
bd,1 bd,2 ... bd,M




Θ1,1 Θ1,2 ... Θ1,M

Θ2,1 Θ2,2 ... Θ2,M

... ... ... ...
ΘM,1 ΘM,2 ... ΘM,M


Note that, if one replaces again the Wiener process dW in (4.39) by:

dfW 0
t = ΓTdWt

then, one recovers the original process (4.37):

eX 0
t = Xt

This is easy to see if one knows the main property of an orthogonal transformation:

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt

= µ (Xt, t) dt+ σ (Xt, t)Γ (θt)Γ (θt)
−1 dWt

= µ (Xt, t) dt+ eσ (Xt, t : θt)Γ (θt)
T dWt

= µ (Xt, t) dt+ eσ (Xt, t : θt) dfW 0
t

= d eX 0
t

The 1 strong order Milstein scheme for (4.39) with time step ∆t using Itô operators

is:

Zi,t+∆t = Zi,t + µi∆t+
MX
j=1

ebi,j∆Wj,t +
1

2
RM

where ebi,j ³ eXt, t : θt
´
=

MX
s

bi,sΘs,j

If one uses the Lévy Areas, RM is equal to:

RM =
MX

j1,j2=1

eLj1
ebi,j2 ³∆Wj1,t∆Wj2,t − eδj1,j2∆t

´
+

MX
j1<j2=1

³
RL
(j1,j2)

´
i

£
L(j1,j2)

¤t+∆t

t
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³
RL
(j1,j2)

´
i
=
³eLj1

ebi,j2 − eLj2
ebi,j1´ (4.40)

eδj1,j2 is the Kronecker symbol (eδj1,j2 = 1 if j1 = j2 and zero otherwise) and the Itô

operators are defined by: eLj :=
dX

k=1

ebk,j ∂

∂Zk

Using the definition of the variables and consider the vector fields independent of

time, the coefficients for the Lévy Area (4.40) are equal to:

³
RL
(j1,j2)

´
i
=

dX
k=1

MX
s1=1

MX
s2=1

bk,s2

Ã ∂bi,s1
∂Zk

(Θs1,j2Θs2,j1 −Θs1,j1Θs2,j2)

+bi,s1

³
Θs2,j1

∂Θs1,j2

∂Zk
−Θs2,j2

∂Θs1,j1

∂Zk

´ ! (4.41)

Using orthogonal properties, (4.41) can be reduced to:

³
RL
(j1,j2)

´
i
=

dX
k=1

Ã
(−1)k+1

MX
s=1

bi,sbk,s + θk

MX
s1<s2=1

µ
bk,s1

∂bi,s2
∂Zk

− bk,s2
∂bi,s1
∂Zk

¶!

where θk are the orthogonal functions defined by:

θk = (−1)k+1
³
Θk,k+1 eXkΘk,k −Θk,k eXkΘk,k+1

´
To avoid having to simulate the Lévy areas L(j1,j2), one needs to impose the following

conditions: ³
RL
(j1,j2)

´
i
= 0

4.5 Conclusions

Strong convergence properties of discretizations of stochastic differential equations

(SDEs) are very important in stochastic calculus. We have shown that under certain

conditions the use of the orthogonal θ scheme can achieve the first order strong

convergence properties of the Milstein numerical discretization without the expensive

simulation of Lévy areas. Conversely, the Milstein scheme with zero Lévy Area has a

0.5 strong order convergence.

The bias or error in the computation of the rotation angle θ that makes the Lie

bracket equal to zero in the orthogonal scheme is crucial to obtain a better convergence

order. When the conditions for integrability are satisfied, one can use the formulae for

θ to obtain the value of the rotation angle and obtain first order strong convergence.

Otherwise, one has to use the 3−Dimensional transformation and check the magnitude
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of the Lie brackets to decide if it is likely to give computational savings in the solution

of our system.

The numerical results demonstrate a better strong order of convergence than the

standard Milstein scheme (4.4) when an orthogonal transformation is applied to the

quadratic volatility model (4.22), or the 3/2 Model (4.23) or the GARCH diffusion

Model (4.24). Unfortunately, similar results are not achieved with the Heston model

(4.25), and so the orthogonal transformation is not recommended in this case.
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Chapter 5

Pricing Exotic Options using
MSL-MC

In finance, the convergence properties of discretizations of stochastic differential equa-

tions (SDEs) are very important for hedging and the valuation of exotic options. The

last chapter shows that if certain conditions are satisfied, one can avoid the calcula-

tion of the Lévy area and obtain first order convergence by applying an orthogonal

transformation. We have demonstrated when the conditions of the 2−Dimensional
problem permit it and give an exact solution for the orthogonal transformation.

This chapter demonstrates how the use of stochastic volatility models and the θ

scheme can improve the convergence of the multi-level Monte Carlo method (ML-MC

[10]), so that the computational cost to achieve an accuracy of O(�) is reduced from

O(�−3) to O(�−2) for a Lipschitz payoff. We present a modification to the ML-MC

algorithm that can be used to achieve better savings in some cases. To illustrate these,

various examples of pricing exotic options using a wide variety of payoffs and the new

Multischeme Multilevel Monte Carlo method (MSL-MC) are given. For standard

payoffs, both European and Digital options are presented. For complex payoffs, such

as combinations of European options, examples are also given (Butterfly Spread, Strip

and Strap options). Finally, for path dependent payoffs, both Asian and Swap options

are demonstrated.

5.1 Multilevel Monte Carlo Path SimulationMethod
(ML-MC)

Usually, it is the weak convergence property of numerical discretizations which is most

important, because in financial applications one is mostly concerned with the accurate

estimation of expected payoffs. However, in the recently developed Multilevel Monte
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Carlo path simulation method (ML-MC [10]), the strong convergence property plays

a crucial role.

The key idea in the ML-MC approach is the use of a multilevel algorithm with

different time steps ∆t on each level. Suppose level L uses 2L time steps of size

∆tL = 2
−L T , and define PL to be the numerical approximation to the payoff on this

level. Let LF represent the finest level, with time steps so small that the bias due to

the numerical discretization is smaller than the accuracy � which is desired. Due to

the linearity of the expectation operator, the expectation on the finest grid can be

expressed as:

E [PLF ] = E [P0] +

LFX
L=1

E [PL − PL−1] (5.1)

The quantity E [PL−PL−1] represents the expected difference in the payoff approx-

imation on levels L and L − 1. This is estimated using a set of Brownian paths,
with the same Brownian paths being used on both levels. This is where the strong

convergence properties are crucial. The small difference between the terminal values

for the paths computed on levels L and L − 1 leads to a small value for the payoff
difference. Consequently, the variance:

VL = V [PL − PL−1]

decreases rapidly with level L. In particular, for a European option with a Lipschitz

payoff, the order with which the variance converges to zero is double the strong

order of convergence. Using ML independent paths to estimate E [PL−PL−1], if one

defines the level 0 variance to be V0 = V [P0] then the variance of the combined

multilevel estimator is
PLF

L=0M
−1
L VL. The computational cost is proportional to the

total number of time steps:
PLF

L=0ML∆t−1L . VaryingML to minimize the variance for

a given computational cost gives a constrained optimization problem whose solution

is ML = CM

√
VL∆tL. The value for the constant of proportionality, CM , is chosen to

make the overall variance less than the �2, so that the r.m.s. error is less than �.

The analysis in [10] shows that in the case of an Euler discretization with a

Lipschitz payoff, the computational cost of the ML-MC algorithm is O(�−2 (log �)2),

which is significantly better than theO(�−3) cost of the standardMonte Carlo method.

Furthermore, the analysis shows that first order strong convergence should lead to

O(�−2) cost for Lipschitz payoffs; this will be demonstrated in the results to come

which have been published in [29].
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5.1.1 Pricing European Options using ML-MC

Consider the following four stochastic volatility and variance models presented in the

first chapters:

dS = S
³
µdt+ σ dcW1,t

´
;σ = ν2

• The Quadratic Volatility Model (Case 1)

dσ = k ('2 −σ) dt+ β2 σ
2dcW2,t (5.2)

• The 3/2 Model (Case 2, [24]);

dν = kν('3/2−ν) dt+ β3/2 ν
3/2dcW2,t (5.3)

• The GARCH Diffusion Model (Case 3)

dν = k ('1−ν) dt+ β1 νdcW2,t (5.4)

• The Square Root Model (Case 4, [14])

dν = k ('1/2 − ν) dt+ β1/2
√
νdcW2,t (5.5)

The first set of numerical results are for a European option with strike K and

maturity T , for which the payoff is given by:

P =

½
max (S(T )−K, 0) for call options
max (K − S(T ), 0) for put options

¾
(5.6)

Using the Case 2 volatility model (5.3) and a put option with strike K = 1.1, the ML-

MC results in Figure 5.1 are obtained. The top left plot shows the weak convergence

in the estimated value of the payoff as the finest grid level L is increased. All of

the methods tend asymptotically to the same value. The bottom left plot shows the

convergence of the quantity VL = V [PL − PL−1]. The 3D− θ scheme, defined in

(4.34), exhibits second order convergence due to the first order strong convergence.

The Milstein approximation with the Lévy areas set equal to zero (setting L(1,2)=0

in (4.4)) and the Euler discretization both give first order convergence, which is

consistent with their 0.5 order strong convergence properties. We have used the

following parameters: to = 0; T =1; ρ= −0.50; µ=0.1; k=1.4; '2 =0.322; β= 2.44,
initial conditions: S(to)=1; ν(to)='2

2.
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Figure 5.1: European put option, Case 2. Top left: convergence in option value with
grid level. Bottom left: convergence in the ML-MC variance. Top right: number
of Monte Carlo paths Nl required on each level, depending on the desired accuracy.
Bottom right: overall computational cost as a function of accuracy �.

The top right plot shows three sets of results for different values of the desired

r.m.s. accuracy �. The ML-MC algorithm uses the correction obtained at each level

of time step refinement to estimate the remaining bias due to the discretization, and

therefore determine the number of levels of refinement required [10]. The results

illustrate the aforementioned, with the smaller values for � leading to more levels

of refinement. To achieve the desired accuracy, it is also necessary to reduce the

variance in the combined estimator to the required level, so many more paths (roughly

proportional to �−2) are required for smaller values of �. The final point to observe

in this plot is how many fewer paths are required on the fine grid levels compared

to the coarsest grid level for which there is just one time step covering the entire

time interval to maturity. This is a consequence of the variance convergence in the

previous plot, together with the optimal choice for ML described earlier.

The final bottom right plot shows the overall computational cost as a function

of �. The cost C� is defined as the total number of time steps, summed over all

paths and all grid levels. It is expected that C� will be O(�−2) for the best ML-MC

methods and so the quantity which is plotted is �2C� versus �. The results show

that �2C� is almost perfectly independent of � for the 3D− θ scheme and varies only

slightly with � for the Milstein scheme. The Euler ML-MC scheme shows a bit more
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Figure 5.2: European put option, Case 3. Top left: convergence in option value.
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growth as � → 0, which is consistent with the analysis in [10], which predicts that

C� = O(�−2(log �)2). The final comparison line is the standard Monte Carlo method

using the Euler discretization, for which C� = O(�−3).

The use of fewer Monte Carlo paths ML is reflected directly in the computational

cost of the process. For the most accurate case, � = 10−5, the Euler, the Milstein and

3D− θ schemes using the ML-MC algorithm are respectively approximately 50, 150

and 300 times more efficient (5.8) than the standard Monte Carlo method using the

Euler discretization.

CML-MC
� =

LFX
L=0

¡
ML2

L
¢
; CStd Euler

� = 2

µ
V [PL]

�2

¶
2L (5.7)

Savings (�) =
CStd Euler
�

CML-MC
�

(5.8)

Figures 5.2 and 5.3 show the corresponding results for Cases 3 and 4, corresponding

to the GARCH Diffusion Model (5.4) and the Heston Model (5.5) respectively. For

Case 3 , the computational savings (5.8) from using the ML-MC method are similar

to Case 2 (the 3/2 Model), while for Case 4 the savings (5.8) from the Euler, Milstein

and 3D− θ scheme versions of the ML-MC scheme are roughly 20, 40 and 40, in the

most accurate case. The parameters and initial conditions for Cases 3 and Case 4

are the same as in Case 2 except for β=0.78 and β=0.25; which are chosen so that

x and y will have approximately the same relative volatility (see the Steady-State

Probability Distribution section for more information (Chapter 2, Section 2.2.4)).

5.2 Multischeme Multilevel Monte Carlo Method
(MSL-MC)

Strong convergence properties play a crucial role in Multilevel Monte Carlo path

simulation method (ML-MC [10]). The better the strong convergence order γ and

constant of proportionality C4t, the more efficient the ML-MC:

E
h ¯̄̄

S(T )− bS(T,4t)
¯̄̄ i
≤ C4t4tγ (5.9)

Chapters 3 and 4 demonstrate that using the SVMs (5.2-5.5), the Euler, the Malliavin1

and the Milstein schemes with zero Lévy areas (setting L(1,2) = 0 in (4.4)) give a

strong convergence order of 0.5. On the other hand, the use of θ−scheme (orthogonal
Milstein scheme) with zero Lévy areas can give either 0.5 or 1.0 strong convergence

1Scheme defined in chapter 4 (4.14) or it has been published in [6] and [25].
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orders depending on the model parameters. When a proper value for the distribution

of the Lévy area is simulated (through simulating the Lévy area using N subintervals

within each time step) the Milstein scheme and the 3D − θ scheme both give 1.0

order strong convergence. However, the constant of proportionality C4t (5.9) changes

depending on the parameters of the system and for some cases the Euler or the

Malliavin scheme can give a better strong convergence error than the Milstein or θ

scheme. Everything depends on the parameters and initial conditions of the problem.

This is demonstrated more clearly in Figure (5.4) where the strong convergence tests

for a European Call option price with various parameters (5.10) and SVMs (5.2-5.5)

are presented.

Example 1 2 3 4 5 6 7

T = 10 1 1 1 0.2 0.2 1
k = 1 10 0.2 0.2 1 1 1
'i = 0.32 0.32 0.12 0.12 0.32 0.32 0.032

βi = 0.2 0.2 0.2 3 1 3 0.2
Case = 4 4 3 3 2 2 4

(5.10)

to = 0; S(to) =1; ρ= −0.50; µ=0.05; ν(to)='i

KCall = 0.95S(to)e
µ(T−to); KPut = 1.05S(to)e

µ(T−to)

In the top of Figure (5.4), example 1 (EX1) and example 2 (EX2), are the strong

convergence tests using the Square Root Model (Case 4) and maturity T or the mean

reverting speed k equal to 10. The graphics show a "lump" for big ∆t. Pricing a

European Call option using these parameters and an estimated error � = 10−2, the

Euler scheme is the optimal scheme to use. In contrary, for � ≤ 10−4, the 3D − θ

scheme gives the best results. Using case 3 (SVM (5.4)) and small mean reverting

speed k (EX3 & EX4 in (5.4)), the optimal scheme depends on the value of β. Using

case 2 (SVM (5.3)) and small maturity T (EX5 & EX6), the θ scheme is first in

computational time. For small mean ' (EX7), all schemes have a poor behavior.

For � = 10−2, the Euler scheme is the optimal scheme to use. However, for � ≤ 10−3,
the Malliavin scheme gives the best results. In the Appendix of the thesis are the

corresponding strong convergence tests for the asset S (Figure C.1), the variance

υ (Figure C.2), the rotation or angle θ (Figure C.3) and the European Put option

price (Figure C.4) using (5.10). It is no surprise that all strong convergence plots are

almost the same, having the same order of convergence as the European Call option

plot (Figure 5.4) presented in this example.
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When analyzing the option pricing problem in depth, the accuracy or error "�"

between the price option and the estimated price depends mainly on the character-

istics or importance of the problem. The stochastic volatility model (SVM) and its

parameters depend on the stock market data for the asset S. However, the scheme,

the number of time steps and how many Monte Carlo paths are used to estimate the

option price depends only on the method or algorithm applied. On the other hand,

Figure (5.4) proves (as is well known in practice) that a single optimal scheme does

not exist for general purposes. The selection of the scheme and the number of time

steps depends totally on both the required accuracy of the problem and the parame-

ters of the SVM. Therefore, the construction of an intelligent algorithm that can use

different time approximations for different inputs will be found to be helpful.

5.2.1 Definition of the MSL-MC

Proposed algorithms when using different schemes:

A) Use the ML-MC method with an intelligent algorithm that, depending on the

parameters of the SVM, can select both the optimal starting level LO and the optimal

scheme to calculate (5.1):

E [PLF ] = E [PLO ] +

LFX
L=LO+1

E [PL − PL−1] (5.11)

B) Use the ML-MC method with an intelligent algorithm that, depending on

the parameters of the SVM, can select both the optimal starting level LO and the

optimal scheme it uses in each level L to calculate (5.1). Because of the use of different

schemes, (5.1) has to change to:

E [PLF ] = E
h
PSLO

i
+

LFX
L=LO+1

E
£
PSL − PSL−1

¤
(5.12)

where PSL is the payoff value using the optimal scheme for level L. In the Appendix

of the thesis (page 133) a formal definition of the MSL-MC algorithm is presented.

5.2.2 Pricing European Options using MSL-MC

Consider the GARCH Diffusion Model (Case 3 (5.4)) and the proposed solution A

(5.11) using different starting level LO = 2, 3, 4, 5 for the Milstein scheme and the

3D − θ scheme (setting the Lévy Area equal to zero). When simulating the strong

convergence test for the call option price (Figure (5.5)), the convergence in the ML-

MCmean (E[PL−PL−1]) and the ML-MC variance (V [PL−PL−1]) with grid level does
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not change if one uses a non-zero starting level LO. Because the Lévy Area is not sim-

ulated, all schemes give 1 order of strong convergence (which is consistent with their

0.5 order strong convergence properties) with different constant of proportionality.

This example has the following parameters and initial conditions:

S(to) = 1; ν(to)=0.2
2; '2 =0.3

2; to = 0; ρ= −0.5; µ=0.05 (5.13)

T = 3; k=5; β= 0.3; KCall = 0.95e
µ(T=to)

Calculating a call option using different accuracy or error � demonstrates in Figure

(5.6) that the number of Monte Carlo paths ML change when (5.11) has a non-zero

starting level LO. The use of fewer Monte Carlo paths ML is reflected directly in the

computational cost of the process (simulation time). The computational cost of the

process C� is defined as the total number of time steps, summed over all paths and

all grid levels (5.7). For the most accurate case, � = 10−4, the Euler, the Milstein and

3D− θ schemes (LO = 0) are roughly 3.4, 3 and 3.6 times more efficient (5.8) than

the standard Monte Carlo method using the Euler discretization. On the other hand,

using a starting level (LO = 3), the Milstein and 3D− θ schemes are respectively

approximately 10.5 and 12.5 more efficient (5.8) in the most accurate case. It is

important to note that if you start on level 0, for � = 10−2 and � = 10−3, the ML-MC

gives you equal or poorer computational cost than the standard Euler method. This

is because of the strong convergence properties the example gives for big ∆t (Figure

5.5). These results show the importance of starting at the right level in (5.11).

Another important result to mention for Figure 5.6 is the computational Euro-

pean option price for different accuracy or error �. For � ≤ 10−2, one can see that
all schemes give different estimated prices, however they are inside the boundaries
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or limits required
³
P = bP ± �

´
. As � → 0, all schemes converge to the same com-

putational price. The MSL-MC algorithm2 stops when the estimated option price is

inside the boundaries.

The computation time for each scheme to complete one subroutine is another

important factor to consider in the selection of the optimal scheme. Each scheme

takes different computational time to complete the simulation. This is because they

have extra terms or more equations to calculate in one subroutine. Table 5.1 shows

that when LO = 3 the MSL-MC gives the best computation time for all � (2.7 times

faster than when LO = 0). Because the 3D− θ scheme takes roughly 1.9 times more

to complete one subroutine, Milstein scheme is the optimal scheme to use for this

example. If one wants a better accuracy for the option price, e.g. � = 10−5, the 3D−
θ scheme will be the optimal scheme.

Scheme LO � = 10−2 � = 10−3 � = 10−4

Euler (Standard) n/a 0.007 1.195 977.5
Milstein (Standard) n/a 0.007 1.216 987.6
3D− θ scheme (Standard) n/a 0.013 2.200 1788.7
Euler scheme LO = 0 0.011 1.036 126.0
Milstein scheme LO = 0 0.014 1.299 145.0
Milstein scheme LO = 2 0.007 0.808 87.3
Milstein scheme LO = 3 0.006 0.379 46.4
Milstein scheme LO = 4 0.010 0.425 49.8
Milstein scheme LO = 5 0.020 0.751 82.6
3D− θ scheme LO = 0 0.024 2.214 231.3
3D− θ scheme LO = 2 0.013 1.342 142.6
3D− θ scheme LO = 3 0.011 0.703 77.1
3D− θ scheme LO = 4 0.020 0.774 85.3
3D− θ scheme LO = 5 0.039 1.417 146.0

Table 5.1: Computation time for a European option using the MSL-MC (minutes).

The computational time using the scheme Sj and the standard Monte Carlo

method can be calculated roughly by:

Time
Sj
Std ≈

µ
V [PL]

�2/2

¶
Time

Sj
L

where Time
Sj
L is the simulation time for one Monte Carlo subroutine using the the

scheme Sj and ∆t = 2L.

2In the Appendix of the thesis (page 133) a formal definition of the MSL-MC algorithm is pre-
sented.
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5.2.3 Digital Option

The payoff for a digital option is given by:

P =

½
H (S(T )−K) for call options
H (K − S(T )) for put options

¾
where H(x) is the Heaviside function (H(x) = 1 if x > 0, else H(x) = 0). Figure

5.7 shows the results of pricing a Digital option using the 3/2 Model model (Case 2

(5.3)) and the MSL-MC. The parameters and initial conditions are the same as the

European example (5.13) except for T =0.2, κ = 1 and β=3. Because this payoff is

not Lipschitz continuous, it shows the poorest benefits from the MSL-MC approach.

For the most accurate case, � = 10−4, the Euler, the Milstein, 2D− θ scheme and

3D− θ scheme (Lévy area equal to zero) using the MSL-MC algorithm are respectively

approximately 2.5, 10, 18 and 25 times more efficient (5.8) than the standard Monte

Carlo method using the Euler discretization. The difference in savings in θ schemes

is because we are using µ(θ) = 0 in the 3D− θ scheme. It would be the same efficient

if one uses (4.26).

Because these parameters give a linear variance reduction (Figure 5.7), applying

a non-zero starting level (LO = 1) to calculate (5.11) does not provide any improve-

ment in the option price simulation and in some cases it can be less efficient. The

computational cost is reflected directly in the simulation time one requires to calcu-

late the option price with a certain accuracy � (Table 5.2). This example shows the

importance of the 2D− θ scheme using the MSL-MC which is 6 or 2 times faster than

the Euler or Milstein schemes respectively.

Scheme � = 10−3 � = 10−4

Euler (Standard simulation) 0.28 226.9
Euler scheme (LO = 0) 0.29 174
Milstein scheme (LO = 0) 0.15 53.5
2D− θ scheme (LO = 0) 0.08 29.1
3D− θ scheme (LO = 0) 0.10 47.2
2D− θ scheme (LO = 1) 0.13 35.5

Table 5.2: Computation time for a Digital option using the MSL-MC (minutes).

5.2.4 Multi-Options

Combinations of options are frequently used in the market. Using the appropriate

portfolio allows the buyer to fix a strategy depending of his expectation of the market.
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The payoff for a multi-European option is given by:

P = #CPC (T,K) + #PPP (T,K)

where PC and PP are Call and Put European options (5.6) with strike price K and

maturity T . #C and #P are the number of call and put options in the portfolio.

The most frequent and simple combination when KC = KP is called "Strips" or
"Straps". Strip derivatives use 1 call and 2 put options and the point of view of the
market is that the stock price at maturity will finish below or above the strike price,

below more likely. Strap derivatives use 1 put and 2 call options and the point of view

of the market is the same as a Strip option, however above the strike price is more

likely. When KC > KP a "Strangle" can be obtained. Another famous combination
of Vanilla options is called "Butterfly spread" which have a payoff equal to:

P = PC (T,KC) + PP (T,KP )− PC (T,KA)− PP (T,KA)

where: KA =
KC +KP

2

Figure 5.8 shows the option price for a Strip derivative using the MSL-MC algorithm,

the Quadratic Volatility Model (Case 1 (5.4)) and the same parameters as the exam-

ples above (5.13), except for T =1, κ = 10, β=0.5 and KCall = KPut. For the most

accurate case, � = 10−4, the Euler scheme, the Milstein scheme, 2D− θ scheme and

3D− θ scheme are only roughly 3 times more efficient (5.8) than the standard method

using the Euler scheme. However, using a non-zero starting level (LO = 3), the 2D−
θ scheme and 3D− θ scheme are 19 and 21 times more efficient than the standard

method. This example shows again that the use of µ(θ) = 0 instead of µ(θ) =(4.26) in

the 3D− θ scheme is the optimal solution.

On the other hand, using the same parameters as before (5.13) except for κ = 0.4

and KPut = 1.1e
µ(T=to), Figure 5.9 shows the option price for a Butterfly derivative.

For the most accurate case, � = 10−5, the Euler scheme, the Milstein scheme, 2D− θ

scheme and 3D− θ scheme are 10, 46, 80, 112 times more efficient than the standard

method using the Euler scheme. However, using a non-zero starting level (LO = 3),

the 2D− θ scheme and 3D− θ scheme are 48 and 52 times more efficient than the

standard method. In contrary with the Strip option price (Figure 5.8), this example

does not give any improvement in the use of a non-zero starting level. The simulation

times to calculate the option prices with a certain accuracy � are presented in Table

5.3. Both examples show the importance of analyzing the parameters of the model
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before simulation to make the right decision when selecting the scheme and starting

level in (5.11).

Strip Strip Butterfly
Scheme � = 10−3 � = 10−4 � = 10−5

Euler (Standard) 13.8 104.7 28.39
Euler scheme (LO = 0) 0.56 64.1 13.23
Milstein scheme (LO = 0) 0.75 79.3 3.36
2D− θ scheme (LO = 0) 1.31 135.1 2.85
3D− θ scheme (LO = 0) 1.20 122.6 2.28
2D− θ scheme (LO = 3) 0.18 20.2 4.98
3D− θ scheme (LO = 3) 0.20 21.6 5.12

Table 5.3: Computation time for Multi-options using the MSL-MC (minutes).

5.2.5 Asian Option

Asian options are another type of exotic options. They have a payoff that depends

on some average property of the asset price over life, or part of the life, of the option

and is given by:

P =

½
max

¡
S(T )−K, 0

¢
for call options

max
¡
K − S(T ), 0

¢
for put options

¾
Where S is either, the arithmetic average which can be approximated numerically as:

S(T ) =
1

T

Z T

0

S(t)dt ≈ ∆t

2T

N∆tX
n=1

³bSn + bSn−1´ (5.14)

or the geometric average which can be calculated numerically as:

S(T ) =

µ
N∆tQ
n=1

bSn¶1/N∆t

(5.15)

The average is less volatile than the asset itself, so options may be cheaper and

less subject to manipulation. Asian options may be found embedded in structured

products. Using the GARCH Diffusion Model (Case 3 (5.4)) and the arithmetic

average of S (5.14), Figure 5.10 shows that for the most accurate case, � = 10−5, the

Euler, the Milstein and 3D− θ schemes using the ML-MC algorithm are respectively

approximately 67, 90 and 115 times more efficient (5.8) than the standard method

using the Euler scheme. On the other hand, taking the MSL-MC approach B (5.12)

with zero starting level (LO = 0), the results are disappointing. Unfortunately, when
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one makes the change of scheme at level L in (5.12), the difference between the payoffs

using different schemes: £
PSL − PSL−1

¤
(5.16)

is bigger than if one uses the same scheme. As a result of this, the MSL-MC algorithm

require more Monte Carlo paths to calculate (5.16) and increase the simulation cost

in the option price (Figure 5.10 and Table 5.4). We have used the Milstein scheme if

0 < L ≤ 6 and the 3D− θ scheme for the rest of the levels (L > 6). The parameters

and initial conditions for this example are the same as all examples presented above

(5.13), except for T =1, κ = 1, β=0.5 and KPut = E [S(to)]. The simulation times to

calculate the option price with a certain accuracy � are presented in Table 5.4. Using

the MSL-MC method (5.11), this example shows the importance of considering the

use of different schemes depending on the accuracy or error "�" between the price

option and the estimated price. Unfortunately, these results also demonstrate that

the MSL-MC method (5.12) that uses different schemes at different level L converges

to the right price but does not help to improve the computation cost of the process.

Asian Asian Swaps Swaps
Scheme � = 10−4 � = 10−5 � = 10−3 � = 10−4

Euler (Standard) 6.12 478 0.13 82.12
Euler scheme (LO = 0) 0.52 64.16 0.10 12.41
Milstein scheme (LO = 0) 0.44 51.36 0.12 10.52
3D− θ scheme (LO = 0) 0.67 41.23 0.45 75.32
Milstein scheme (LO = 4) n/a n/a 0.03 2.10
Multi—scheme (LO = 0) 0.90 95.93 n/a n/a

Table 5.4: Computation time for exotic options using the MSL-MC (minutes).

5.2.6 Variance Swap Option

A variance swap on an interval [0, T ] is a derivative contract on an underlying spot

price that has payoff given by:

P = N (ν(T )−Kvar)

where ν(T ) is the average of the variance in the time interval [0, T ], Kvar is a fair

price of variance of the underlying over the period [0, T ] and N is the notional amount

or nominal price of the swap. The definition of the realized variance is specified in

the contract but in generally, it can be approximated numerically in the same way as

S(T ) in the previous example (5.14-5.15).
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Using the GARCH Diffusion Model (Case 3 (5.4)) and the arithmetic average of v

(5.14), Figure 5.11 and Table 5.4 show that for the most accurate case, � = 10−4, the

Euler, the Milstein and 3D− θ schemes using the ML-MC algorithm are respectively

approximately 7, 9 and 2 times more efficient (5.8) than the standard method using the

Euler scheme. As mention in examples above, to improve the computational cost, one

needs to use a non-zero starting level in (5.11). Using the Milstein scheme and Lo = 4,

the MSL-MC is 55 more efficient than the standard method. The simulation times to

calculate the option price with a certain accuracy � are presented in Table 5.4. The

parameters and initial conditions are the same as the Asian example (5.13) except for

T =10, β=0.2, Kvar = '2 and N = 1. As expected, in this case the Milstein method

gives first order strong convergence for ν, whereas the 3−Dimensional θ scheme gives
similar accuracy initially but tails off towards order 0.5 strong convergence on the

finest grids.

5.3 Conclusions

In finance, stochastic variance and volatility models are very important for the valua-

tion of exotic options. The Multilevel Monte Carlo path simulation method (ML-MC

[10]) works without any problems with all schemes and calculates the right price for

all exotic options presented in this chapter. It is a powerful tool, and in combination

with the new θ scheme, can substantially reduce the computational cost in pricing

options, lowering the cost required to achieve an r.m.s. error of size � from O(�−3) to

O(�−2)) for some cases. The Multischeme Multilevel Monte Carlo (MSL-MC) is an

improved/updated version of the ML-MC algorithm that, depending on the parame-

ters of the stochastic volatility models (SVM) and accuracy or error "�" between the

price option and the estimated price, can select both the optimal starting level and

the optimal scheme. Unfortunately, the use of different schemes at different levels

does converge to the right price but does not help improve the computation cost of

the process. Pricing exotic option examples demonstrate considerable computational

savings when both the θ scheme and the MSL-MC are applied to stochastic volatility

models in order to price exotic options.

When one reviews all the exotic option pricing examples presented in this chapter,

we can conclude that the ML-MC have to be improved to obtain even better savings in

the computation time. It is important to analyze the parameters of the model before

simulation to make the right decision in the selection of the scheme and starting

level. Figures 5.6 and 5.8 show the importance of starting at the right level in (5.11).
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Figures 5.7 and 5.9 demonstrate the importance of the θ scheme using the MSL-

MC method (5.11) which is 6 or 2 times faster than the Euler or Milstein schemes

respectively. Figure 5.10 and 5.11 shows the importance of considering the use of

different schemes depending on the accuracy or error "�" between the price option

and the estimated price. In conclusion, the MSL-MC method provides better or

equal savings or computational cost that the ML-MC if you use the correct scheme

and starting level in the algorithm.
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Chapter 6

Outlook and Extensions

The prices of exotic options given by models based on Black-Scholes assumptions

can be wildly inaccurate, because they are frequently even more sensitive to levels

of volatility than standard European calls and puts. Therefore, currently traders or

dealers of these financial instruments are motivated to find models to price options

which take the volatility smile and skew into account. To this extent, stochastic

volatility models are partially successful because they can capture, and potentially,

explain the smiles, skews and other structures which have been observed in market

prices for options. Indeed, they are widely used in the financial community as a

refinement of the Black-Scholes model. A strong example of the existence of random

correlated volatility is when the historic volatility of the Stock Exchange index is

plotted (Figure 2.4). This evidence shows that stock volatility is not constant at all

and moreover that volatility shocks persistently through time. This conclusion was

reached by many authors in the literature; stochastic volatility models are needed to

describe and explain volatility patterns.

When one analyses the steady-state probability distribution of the stochastic

volatility models that are outlined in the literature, you can conclude that despite

some similarities, all SVMs are important and have different properties. The defini-

tion of a more general stochastic volatility model (2.18) that represents all of them

is necessary for the study and understanding of the option price properties. The se-

lection of the parameters in (2.18) will depend on the properties of the real data one

wants to match or simulate.

Strong convergence properties of discretizations of stochastic differential equations

(SDEs) are very important in stochastic calculus. If one applies any discrete approx-

imation scheme to a stochastic process and wants to numerically evaluate the strong

or weak convergence order of our approximation bX(T ), an exact solutionX(T ) is nor-
mally required. However, at present, there are no solutions available for many SDEs.
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The use of Theorems 2 and 3, "Strong and Weak Convergence Order without an

Exact Solution", successfully determines the strong and weak orders of convergence.

Each theorem was tested using exact solutions or expectations to verify the results.

Examples in Chapter 2 demonstrate that the use of both theorems require at least 100

times fewer Monte Carlo paths than the standard method to correctly calculate the

order of convergence. Because there are no exact solutions for the stochastic volatility

model (2.18), the use of the theorems was fundamental to establish its convergence

order.

Numerical examples in the thesis demonstrate, as expected, a 0.5 and 1.0 strong

order of convergence for Euler and Milstein schemes respectively. Conversely, a 1.0

weak order of convergence for all schemes is obtained (the same expectation error).

The application of either the Euler or Milstein schemes to calculate an expectation

in the standard way has negligible difference at all in the outcome. To obtain a 1.0

strong order of convergence with the Milstein scheme, one has to apply the scheme to

the vector form of the SDE, use independent Wiener processes and compute correctly

the double integral or Lévy Area.

We have shown that under certain conditions the use of the orthogonal θ scheme

can achieve the first order strong convergence properties of the Milstein numerical

discretization without the expensive simulation of Lévy areas. Conversely, the Mil-

stein scheme with zero Lévy Area has a 0.5 strong order convergence. The bias or

error in the computation of the rotation angle θ that makes the Lie bracket equal to

zero in the orthogonal scheme is crucial to obtain a better convergence order. When

the conditions for integrability are satisfied, one can use the formulae for θ to obtain

the value of the rotation angle and obtain first order strong convergence. Otherwise,

one has to use the 3−Dimensional transformation and check the magnitude of the Lie
brackets to decide if it is likely to give computational savings in the solution of our

system. The numerical results in chapter 4 and 5 demonstrate a better strong order of

convergence than the standard Milstein scheme when an orthogonal transformation

is applied.

In finance, stochastic variance and volatility models are very important for the

valuation of exotic options. The Multilevel Monte Carlo path simulation method

(ML-MC [10]) works without any problems with all schemes and calculates the right

price for all exotic options presented in this chapter. It is a powerful tool, and in

combination with the new θ scheme, can substantially reduce the computational cost

in pricing options, lowering the cost required to achieve an r.m.s. error of size � from
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O(�−3) to O(�−2)) for some cases. The Multischeme Multilevel Monte Carlo (MSL-

MC) is an improved/updated version of the ML-MC algorithm that, depending on

the parameters of the stochastic volatility models (SVM) and accuracy or error "�"

between the price option and the estimated price, can select both the optimal starting

level and the optimal scheme. Unfortunately, the use of different schemes at different

levels does converge to the right price but does not help improve the computation

cost of the process. Pricing exotic option examples demonstrate considerable compu-

tational savings when both the θ scheme and the MSL-MC are applied to stochastic

volatility models in order to price exotic options. The MSL-MC method provides

equal or better computational cost than the ML-MC.

In summary, this thesis proposes a better numerical approximation to calculate

solutions for multi dimensional SDE’s than the standard Monte Carlo integration. We

introduce a new scheme or discrete time approximation where, for some conditions,

a better strong convergence order is obtained than that using the standard Milstein

scheme without the simulation of the expensive Lévy Area. We demonstrate when

the conditions of the 2−Dimensional problem permit this and give an exact solution

for the orthogonal transformation (θ Scheme or Orthogonal Milstein Scheme).

Using a wide variety of pricing exotic option examples we demonstrate that con-

siderable computational savings can be made by using the new θ Scheme [29] and

the improved Multischeme Multilevel Monte Carlo method (MSL-MC). The compu-

tational cost to achieve an accuracy of O(�) is reduced from O(�−3) to O(�−2) for

some parameters or Lipschitz conditions. A general stochastic volatility model that

represents most of the stochastic volatility models that are outlined in the literature

is proposed. Because it does not have a closed-form solution for option prices (as

usual), we have demonstrated and tested with numerical examples two theorems that

measure with confidence the order of strong and weak convergence of schemes with-

out an exact solution or expectation of the system. We have focused our research on

continuous time diffusion models for the volatility and variance with their discrete

time approximations (ARV).

For future work, we recommend that for multi dimensional SDE’s such as port-

folios with a large variety of exotic options, the investigation and test of the multi

dimensional θ scheme would be very interesting. For some parameters, it will be ob-

vious that the new orthogonal scheme will provide considerable computational time

savings when calculating the strong and weak solutions and therefore find use in the

calculation of the portfolio expectation price.
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The future work in the pricing of exotic options could take many paths. Primarily,

a further study should be undertaken into the improved MSL-MC algorithm using

different schemes to improve the computational cost. The use of quasi-Monte Carlo

method will definitely help improve the computational cost in the MSL-MC. For

non Lipschitz payoffs or payoffs dependent on the asset price or volatility of the

process, the use of advanced tools for their calculation, as suggested by Giles [11] or

Glasserman [12], is highly recommended.
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Appendix A

Stochastic Volatility

A.1 Mathematical Definitions

A.1.1 Ornstein-Uhlenbeck or Gauss-Markov Process

By definition, a stochastic process {YT : t º 0} is:

• stationary if, for all t1 < t2 < ... < tn and h > 0, the random n−vectors
(Yt1, Yt2, ..., Ytn) and

¡
Yt1+h , Yt2+h , ..., Ytn+h

¢
are identically distributed. That is,

changes in time do not modify the probability or distribution.

• Gaussian if, for all t1 < t2 < ... < tn, the n vector (Yt1 , Yt2 , ..., Ytn) is multi-

variate normally distributed.

• Markovian if, for all t1 < t2 < ... < tn, the P (Ytn ≤ y|Yt1 , Yt2 , ..., Ytn−1) =
P (Ytn ≤ y|Ytn−1). That is, the future is determined only by the present and not
the past.

Also, a process {YT : t º 0} is said to have independent increments if, for
all t0 < t1 < t2 < ... < tn, the random variables Yt1 − Yt0 , Yt2 − Yt1, ..., Ytn − Ytn−1
are independent. This condition implies that {YT : t º 0} is Markovian, but not
conversely. Furthermore, the increments are said to be stationary if, for any t > s and

h > 0, the distribution of (Yt+h − Ys+h) is the same as the distribution of (Yt − Ys).

This additional provision is needed for the following definition.

A stochastic process {WT : t º 0} is a Wiener-Lévy process or Brownian
motion if it has stationary independent increments, if WT is normally distributed,

the E(Wt) = 0 for each t > 0, and if W0 = 0. It then follows that {WT : t º 0} is
Gaussian and that Cov(Wt,Ws) = σ2min {t, s}, where the variance parameter σ2 is
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a positive constant. Almost all paths of Brownian motion are always continuous but

nowhere differentiable.

One technical stipulation is required for the following. A stochastic process {YT :
t º 0} is continuous in probability if, for all u ∈ <+ and ε > 0,

P (|Yv − Yu| ≥ ε)→ 0 as v → u

This holds true if Cov(Yt, Ys) is continuous over<+×<+. Note that this is a statement
about distributions, not simple paths.

Using these definitions, we can now define our intended topic. A stochastic process

{XT : t º 0} is an Ornstein-Uhlenbeck Process or a Gauss-Markov process
if it is stationary, Gaussian, Markovian, and continuous in probability.

A.1.2 Itô’s Lemma (1D)

Itô’s lemma is the most important result about the manipulation of random variables

that one requires. It is to functions of random variables what Taylor’s theorem is

to functions of deterministic variables. It relates the small change in a function of

a random variable to the small change in the random variable itself. The lemma

is, of course, more general than this and can be applied to functions of any random

variable. If X satisfy the following SDE:

dX = A(X, t)dt+B(X, t)dW

where A usually called drift term, B noise intensity term or volatility function and

W is a Wiener-Lévy process or Brownian motion1. Thus given f(X, t), Itô’s lemma

says that:

df = B
∂f

∂X
dW +

µ
∂f

∂t
+A

∂f

∂X
+

B2

2

∂2f

∂X2

¶
dt (A.1)

A.1.3 Fokker-Planck Equation

The Fokker-Planck equation (named after Adrian Fokker andMax Planck; also known

as the Kolmogorov forward equation) describes the time evolution of the probabil-

ity density function p(X, t) of the position and velocity of a particle, but it can be

1A stochastic process {WT : t º 0} is aWiener-Lévy process or Brownian motion if it has
stationary independent increments, W0 = 0 and Wt is normally distributed (E [Wt] = 0).

105



generalized to any other observable, too. The general form of the N−dimensional
Fokker-Planck equation is then:

∂p

∂t
= −

NX
i=1

∂

∂xi
(pAi) +

NX
i,j=1

∂2

∂xi∂xj
(pBi,j) (A.2)

where Ai(X, t) is the drift vector and Bi,j(X, t) the diffusion tensor, which results

from the presence of the stochastic force. The Fokker-Planck equation can be used

for computing the probability densities of stochastic differential equations. Consider

the Itô stochastic differential equation:

dXt = f(Xt, t)dt+ g(Xt, t)dWt : f(Xt0) = X0

where Xt ∈ RN is the sate variable, Wt ∈ RM<N is a standardM−dimensionalWiener
process. The probability density p(X, t) of Xt is given by the Fokker-Planck equation

with the drift and diffusion terms equal to:

Ai = fi (Xt, t) ; Bi,j =
1

2

NX
k=1

gi,k (Xt, t) gk,j (Xt, t)

Under certain conditions, this evolves towards a steady-state distribution in which

∂p/∂t = 0 and hence:

NX
i=1

∂

∂xi
(pAi) =

NX
i,j=1

∂2

∂xi∂xj
(pBi,j) (A.3)

A.2 Financial Definitions

A.2.1 Arbitrage Possibility

An arbitrage possibility2 on a financial market is a self-financed portfolio "h" such
that its value "V ” has the following behaviour during a period of time:

V h(0) = C, C > 0

V h(T ) > C, − a.s.

We say that the market is arbitrage free if there are no arbitrage possibilities. An

arbitrage possibility is thus equivalent to the possibility of making a positive amount

of money out of nothing with probability 1 or a.s. (almost sure). It is thus a riskless

money making machine or, if you will, a free lunch on the financial market.

2Definition by T. Björk [2].
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A.2.2 In-Out-At the Money

Out of the money3: An option with no intrinsic value. A call option when the asset

price is below the strike, a put option when the asset price is above the strike.

In the money: An option with positive intrinsic value. A call option when the

asset price is above the strike, a put option when the asset price is below the strike.

At the money: A call or put with a strike that is close to the current asset level.

A.2.3 Risk-Neutral Valuation (1D)

A.2.3.1 Market Price of Risk

The term "traded security" is mainly described as a traded asset that is held solely

for investment by a significant number of individuals. Stocks, bonds, gold and silver

are all traded securities. However, interest rates, inflation rates, volatility and most

of the commodities are not. Consider the following stochastic process:

dθ

θ
= αdt+ βdW (A.4)

where α and β are the expected growth rate and the volatility of θ, respectively and

they are only functions of time t and θ. dW is a Wiener processes. We do not assume

that θ is the price of a trade security. It could be something as far removed from

financial markets as the temperature in the center of Mexico.

Suppose that f1 and f2 are two derivative securities dependent only on θ and t.

These could be options or other securities that are defined so that they provide a

payoff equal to some function of θ. Using Itô formulation, one can derived that these

contracts follow a SDE in the form:

dFj = Fj

¡
µjdt+ σjdW

¢
for j = 1, 2

where µj, σj are only functions of θ and t, and dW is the same Wiener process as in

equation (A.4). If one constructs a portfolio Π as:

Π = φ1F1 + φ2F2

then one can make Π an instantaneously riskless portfolio if:

φ1 = σ2F2; φ2 = −σ1F1
3Definition by P. Wilmott [37].
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Since Π is instantaneously riskless, it must earn the risk-free rate. Hence

dΠ = rΠdt

Doing some substitutions:
µ1 − r

σ1
=

µ2 − r

σ2
= λ

The parameter λ, as the value of each side, is in general depended only on both θ

and t, however it is not dependent on the nature of the derivative security Fj. It is

known as the "market price of risk4" and it is a measure of the level of the market’s
risk aversion. The higher it is, the more compensation (measured in terms of excess

expected rate of return) the market requires for taking the risk (measured in terms

of standard deviation of return). In general, for assets like stocks, the market price

of risk λ is defined as follows:

λ =
µ− r

σ
(A.5)

where µ is the expected return of a financial security F , r is the risk-less interest

rate and σ is the volatility of F . The market price of risk is more difficult to define

in cases of fixed income securities since it depends on assumptions made about the

interest rates term structure. In the Cox—Ingersoll—Ross (CIR) model, [4] and [5]

that is based on the following stochastic differential equation:

drt = κr (wr − r) dt+ σ
√
rdWt

Wt is a standard Brownian motion, κr is the speed of adjustment and wr is the long-

term average rate. The market price of risk Λ is determined endogenously within the

context of a highly abstract general equilibrium approach.

A.2.3.2 Risk-Neutral Valuation

Suppose that a derivative security F which depended on θ (A.4) provides a payoff at

time T . This security F can always be valued as if the world were risk neutral. To

make this true one needs to make the "Risk adjustment5" and it is necessary to set
the expected growth rate of each underlying variable θ equal to (α− λβ) rather than

α. The volatility β remains the same. λ is the market price of risk of the underlying

variable θ. For convenience, we will refer to a world where expected growth rates are

changed to a "risk-neutral world" if:

F (t) = e−(T−t)rEQ [F (θk, T )]

4Definition by J. Hull [20].
5Definition by J. Hull [20].
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Where EQ denotes the expected value in a risk-neutral world (Risk adjustment), then

F is the correct value of the financial security. The probability measure in the risk-

neutral world is thus called an "equivalent martingale measure". This result was first

developed by Cox, Ingersoll and Ross [4] and represents an important extension to

the Risk-neutral valuation argument.

Example [20]: The current price of θ, say copper, is 0.8 pounds. The risk-free

interest rate r is 5% per annum. The expected growth rate of copper α is 20% per

annum and its volatility β is 20% per annum. The market price of risk λ associated

with copper is 0.5. A contract is traded which allows the holder to receive 1000

pounds of copper at no cost in 6 months time. The expected growth rate of the price

of copper in a risk-neutral world is:

α− λβ = −0.08

or −8% per annum. The discounting expected payoff from the contract in a risk-

neutral world is therefore:

EQ [F (θk, T )] = 800e
−0.08∗0.5 = 768.63

So then, we estimate the current value of the contract F (t) as:

F (t) = e−(T−t)rEQ [F (θk, T )] = 749.65

A.2.4 Risk-Neutral Valuation (Stochastic Volatility Models)

Generally speaking, stochastic volatility models are not complete, hence typical con-

tingent claims (such as European options) cannot be priced by arbitrage. Still, it

is possible to derive, under additional hypothesis, the partial differential equation

satisfied by the value of a contingent claim. To derive this PDE - which generalizes

the Black-Scholes PDE - one needs first to specify the so called market price for risk,

which reflects the expected excess return per unit risk over the risk-free rate. In-

tuitively, the market price for risk represents the return-to-risk trade-off demanded

by investors for bearing the volatility risk of the stock. For some specifications of

the dynamics of stochastic volatility and the market price of risk, a few close-form

expressions are available, otherwise, numerical procedures need to be employed.

In this section we consider the option pricing implications of diffusion models for

stochastic volatility. In particular it is no longer true that there are unique preference

independent option prices. Instead the model is incomplete and economic consid-

erations (such as risk aversion) must be introduced to obtain pricing formulae. If
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volatility were a traded asset then it would be possible to invest in volatility and the

stock to form a riskless hedge portfolio for the option. However this is not the case so

there is no riskless hedge and the price of options will depend on the risk preferences

of investors. These preferences may be expressed via a utility function (see reference

[24],[17] for example), or via a local-risk minimization criterion (see Hofmann, Platen

and Schweizer [18]).

Consider the following volatility model or probability measure P under which dWi

are Brownian motions:

P :

(
dS = S(µ−D)dt+ S

√
νdcW1

dν = f(ν)dt+ g(ν)dcW2

)
(A.6)

To value an option or financial security F , do not use (A.6), but a closely related

process which is often call the risk-adjusted process bP (replace the expected return µ
by the interest rate r, and use the risk-adjusted volatility drift ϕ). This procedure is

carried out explicitly for a class of equilibrium models. The risk-adjusted process bP
will be in the risk-neutral world or equivalent martingale measure and will produce

the theoretical fair price of the financial security F .

bP : ( dS = S(r −D)dt+ S
√
νdcW1

dν = (f(ν)− ϕ (ν)) dt+ g(ν)dcW2

)
(A.7)

Where ϕ (ν) can be defined as [17]:

ϕ (ν) = g(ν)
³
λρ− Λ

p
1− ρ2

´
λ is themarket price of asset risk (A.5) associated with dW1 and Λ is themarket
price of volatility risk associated with dW2. The latter shows how much of the

expected return of V is explained by the risk (standard deviation) of ν in the Capital

Asset Pricing Model framework. The option pricing equation has an analogue in

expressions given by Wiggins [34], Scott [30] and Stein and Stein [33].

A. Lewis [24] explains how to obtain the volatility drift adjustment ϕ (ν) in func-

tion of the risk-aversion parameter γ also called constant proportional risk aversion

(CPRA), which means:

U (t) = e−Rt
(Ct)

γ

γ
; B (T ) = e−RT

(WT )
γ

γ

where γ is the CPRA parameter and R ≥ 0 is an impatience parameter, both con-
stants. Assuming that the representative agent is either risk neutral (γ = 1) or risk
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averse (γ < 1). For any γ, U (t) is an increasing function of the rate of consumption

utility Ct at time t. With (γ < 1), U has a negative second derivative
¡
UCC ≤ 0

¢
and means the agent is risk-averse. Clearly, B has the same properties where WT is

the society’s wealth. The CPRA parameter is related to Pratt [27] in 1964 with the

following identity:

γ =
−∂2U
∂C2

µ
∂U

∂C

¶−1
= (1− γ)

To obtain the volatility drift adjustment ϕ (ν, t) one needs to solve the risk premium
coefficient A(ν, t) which satisfies the non-linear PDE6:

∂A

∂t
= − (1− γ)A−γ(1−γ) +A

·
R− rγ − γν (1− γ)

2

¸
− f(ν)

∂A

∂ν
− g(ν)2

2

∂2A

∂ν2
(A.8)

where the boundary conditions A(ν, T ) = 1. Then, compute ψ:

ψ(ν, t) =
∂A(ν, t)

∂ν
/A(ν, t) (A.9)

to obtain:

ϕ (ν, t) = (1− γ) ρ
√
νg(ν)− g(ν)2ψ(ν, t) (A.10)

If T → ∞ (infinite horizon problems like pension funds), then the risk coefficient

becomes independent of time [A(ν, t) = A(ν)] and the PDE (A.8) changes to:

(1− γ)A−γ(1−γ) = A

·
R− rγ − γν (1− γ)

2

¸
− f(ν)

∂A

∂ν
− g(ν)2

2

∂2A

∂ν2
(A.11)

If T < ∞ (pure investment problem, any option prices), then the PDE (A.8) yields

the form:
∂A

∂t
= A

·
R− rγ − γν (1− γ)

2

¸
− f(ν)

∂A

∂ν
− g(ν)2

2

∂2A

∂ν2
(A.12)

If γ = 0 (Log-utility), regardless of the horizon (time to maturity), A(ν, t) is inde-

pendent of ν, and so ψ = 0. Then the martingale pricing process for any option is

(A.7) with:

ϕ (ν, t) = ρ
√
νg(ν)

If γ = 1 (Risk-neutrality) is a degenerate one and technically (A.8) is ill-defined,

especially if R 6= r. With R = r, A(ν, t) sticks at its boundary value A(ν, t) = 1, and

there is no adjustment to volatility drift:

ϕ (ν, t) = 0

6Definition by A. Lewis [24].
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Fortunately for our purpose, when it is only considering a pure investment problem

(A.12), [24] gives some exact solutions for the risk-adjusted volatility drift ϕ (ν, t) in

function of the risk-aversion parameter γ. For the square root model (2.9):

P :

(
dS = S(µ−D)dt+ S

√
νdcW1

dν = (κ(' − ν)− Λν) dt+ ξ
√
νdcW2

)
where:

Λ = −κ+ (1− γ) ρξ +
q
κ2 − γ (1− γ) ξ2

with the restriction on the parameters:

γ ≤ 1 and κ2 ≤ γ (1− γ) ξ2

For the the 3/2 Model (2.11):

P :

(
dS = S(µ−D)dt+ S

√
νdcW1

dν = ν (κ(' − ν)− Λν) dt+ ξv3/2dcW2

)
where:

Λ = −
µ
κ+

ξ2

2

¶
+ (1− γ) ρξ +

sµ
κ+

ξ2

2

¶2
− γ (1− γ) ξ2

with the restriction on the parameters:

γ ≤ 1 and γ (1− γ) ξ2 ≤
µ
κ+

ξ2

2

¶2

A.3 Formulae derivation for Heston Volatility

Starting with the general stochastic volatility model (2.18)7:

dS = S(µ−D)dt+ S
√
νdcW1

dν = νλ1 (κ(' − ν)) dt+ ξνλ2dcW2

or the second equation can be represented in the form:

dν = f(ν)dt+ g(ν)dcW2

In doing so, one arrives at the General PDE for stochastic volatility (2.16):

∂V

∂t
+
1

2
S2ν

∂2V

∂S2
+ ρS

√
νg(ν)

∂2V

∂S∂ν
+
1

2
g (ν)2

∂2V

∂ν2
+ S(r −D)

∂V

∂S
+ f (ν)

∂V

∂ν
= rV

(A.13)

7Information referenced from W. Shaw [31].

112



The last PDE (A.13) and the original Black-Scholes PDE (2.2) have a lot of similar-

ities. Applying a similar set of transformations and using T equal to the maturity of

the contract:

τ = T − t

x = log(S) + (r −D)(T − t)

V = U(x, ν, τ)e−r(T−t)

After some routine calculus using the chain rule, leads to a PDE for "U" in the form

of:
1

2
ν

µ
∂2U

∂x2
− ∂U

∂x

¶
+ ρ
√
νg(ν)

∂2U

∂x∂ν
+
1

2
g (ν)2

∂2U

∂ν2
+ f (ν)

∂U

∂ν
=

∂U

∂τ

Now, we introduce the Fourier transform in the form:

U(x, ν, τ) =
1

2π

∞Z
−∞

e−iwx bU(w, ν, τ)dw (A.14)

bU(w, ν, τ) = ∞Z
−∞

eiwxU(x, ν, τ)dx

At maturity, where τ = T − t = 0, you have:

bU(w, ν, 0) = ∞Z
−∞

eiwxU(x, ν, 0)dx =

∞Z
−∞

eiwxV (x, ν, 0)dx

which is the Fourier Transform of the payoff expressed in terms of the logarithm of

the asset price. So the differentiation w.r.t.8 x is equal to the multiplication by (−iw)
in the transform:

1

2
g2(ν)

∂2 bU
∂ν2

+
¡
f (ν)− iwρ

√
νg(ν)

¢ ∂ bU
∂ν
− 1
2
ν
¡
w2 − iw

¢ bU = ∂ bU
∂τ

(A.15)

• The Vanilla Call

The payoff of a call European option is max[S − K, 0] in terms of our original

variables. In terms of logarithmic variables:

V (x, ν, 0) = max [ex −K, 0]

8w.r.t. is a mathematical abbreviation of "with respect to"
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so the Fourier transform of the payoff is:

\UV−Call(w, ν, 0) =

∞Z
−∞

eiwxV (x, ν, 0)dx =

∞Z
−∞

eiwxmax [ex −K, 0] dx

=

∞Z
log[K]

eiwx (ex −K) dx =

∞Z
log[K]

¡
e(1+iw)x −Keiwx

¢
dx

so for Im(w) > 1:

\UV−Call(w, ν, 0) =
·
e(1+iw)x

(1 + iw)
−K

eiwx

iw

¸x=∞
x=lnK

=
K(1+iw)

iw − w2

one needs to check when this integral actually converges and bear in mind that "w"

can be any complex number. The exponential needs to decay as x becomes large,

so that the integral converges. This ONLY happens if Im(w) > 1 and, when this is

true, one can evaluate the integral with some simplifications:

\UV−Call(w, ν, 0) =
K(1+iw)

iw − w2

subject to: Im(w) > 1

• The Vanilla Put
Here conditions remain the same, except that this time the integral converges only

if Im(w) < 0. When this is true, one obtains an identical transform:

\UV−Put(w, ν, 0) =
K(1+iw)

iw − w2

subject to: Im(w) < 0

The difference in this approach between the Call and the Put option is where the

transform is defined, and hence where the inversion contour lies.

• Digital Calls and Puts
For a digital call, the transformed payoff is:

\UD−Call(w, ν, 0) =
−Kiw

iw
subject to: Im(w) > 0

For a digital put:

\UD−Put(w, ν, 0) =
+Kiw

iw
subject to: Im(w) < 0
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The fundamental solution

Suppose we find the solution of the PDE, say G(w, ν, τ), with the property that

at t = T , G(w, ν, 0) = 1. Then the solution to the transformed PDE (A.15) with

payoff condition bU(w, ν, 0) (which does not depend on v) is just the product of this

with G and the solution to our original PDE is the discounted value of this with our

various coordinate changes unwound:

V =
1

2π
e−r(T−t0)

ic+∞Z
ic−∞

e−iwx bU(w, ν, 0)G(w, ν, τ)dw (A.16)

where x = log(S) + (r −D)(T − t); τ = T − t0

Lewis [24] discusses how to solve (A.16) for the general case, here we will solve only

for the Heston model (γ = 1
2
).

• Greeks for free

Before figuring out G, we should point out that (A.16) is a remarkably useful

representation. If one wants to differentiate V with respect to S to obtain ∆, one

merely multiplies the integral by:

−iw
S

and for Γ, the integral is multiplied by:

−w
2

S2

This representation also makes obvious the link between ρ and ∆.

Finding the fundamental solution for the Heston Model

For the Heston Model,
¡
λ1 = 0, λ2 = 1

2

¢
, the PDE (A.15) yield the form:

∂G

∂τ
=
1

2
ξ2ν

∂2G

∂ν2
+ ((k(' − ν)− Λν)− iwρξν)

∂G

∂ν
− 1
2
ν
¡
w2 − iw

¢
G (A.17)

What Heston did in [14] was to try to find a solution in the form:

G = eA[τ,w]+νB[τ,w]

with:

A [0, w] = 0 = B [0, w]
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in order to satisfy the condition that G[0, w] = 1 (at maturity). Substituting this

assumption for the form ofG into the PDE (A.17), one obtains the following condition:

A0 +B0ν =
1

2
ξ2νB2 +B ((k(' − ν)− Λν)− iwρξν)− 1

2
ν
¡
w2 − iw

¢
The A0 and B0 denote the τ− derivative. This must be true for all ν so we separately
equate the terms that are independent of ν and linear in ν to obtain the pair of

ordinary differential equations:

A0 = k'B

B0 =
1

2
ξ2B2 −B (κ+ Λ+ iwρξ)− 1

2

¡
w2 − iw

¢
Solving this, one gets:

A =
k'

ξ2

µ
(κ+ Λ+ iwρξ + c1) τ − 2 log

µ
1− c2e

c1τ

1− c2

¶¶
B =

(κ+ Λ+ iwρξ + c1)

ξ2

µ
1− ec1τ

1− c2ec1τ

¶
where:

c1 =

q
(w2 − iw) ξ2 + (κ+ Λ+ iwρξ)2; c2 =

κ+ Λ+ iwρξ + c1
κ+ Λ+ iwρξ − c1

It is however, better to do direct numerical integration of the ODE for A as you avoid

the branch cut difficulties arising from the choice of the branch of the complex log

(see [31]).

In conclusion, the exact solution of the option price using Heston volatility is:

V (S, T ) =
1

2π
e−r(T−t0)

ic+∞Z
ic−∞

bU(w, ν, 0) ¡eA+νB¢ e−iwxdw
x = log(S) + (r −D)(T − t); τ = T − t0

using:

Type of option Payoff bU(w, ν, 0) Conditions

European Call max(S −K, 0) K(1+iw)

iw−w2 Im(w) > 1

European Put max(K − S, 0) K(1+iw)

iw−w2 Im(w) < 0

Digital Call H(S −K, 0) −Kiw

iw
Im(w) > 0

Digital Put H(K − S, 0) Kiw

iw
Im(w) < 0

If one wants to differentiate V with respect to S to obtain ∆ and/or Γ, one merely

multiplies the integral by:
∆ = ∂V

∂S
− iw

S

Γ = ∂2V
∂S2

−w2

S2

For further information or more details, see [31], or [24].
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A.4 Equilibrium between all SVMs

The SVM (2.18) can be represented as:

dx

x
= µdt+ max (σ, 0) dcW1,t

dy = kjy
λ3
¡
'λ0

j − y
¢
dt+ βjy

λ2dcW2,t

σ = yλ1 : j = case

Using Itô’s lemma:

dσ = fj (σ) dt+ gj (σ) dcW2,t

where:

fj (σ) = λ1kj
³
σ

λ1+λ3−1
λ1 'λ0

j − σ
λ1+λ3
λ1

´
+

λ1 (λ1 − 1)β2j
2

σ
λ1+2λ2−2

λ1

gj (σ) = λ1βjσ
λ1+λ2−1

λ1

To make a comparison between the steady-state distribution for different cases, one

needs to set the following equilibrium. For any choice of σ, using the asymptotic

approximation (2.21) and taking the square root Model (Heston model, j = H) as

the master model, we have:

A) fj (σ) = fH (σ) (A.18)

B) gj (σ) = gH (σ)

C)
∂fj (σ)

∂σ
=

∂fH (σ)

∂σ

where:

∂fj (σ)

∂σ
= kj

³
(λ1 + λ3 − 1) σ

λ3−1
λ1 'λ0

j − (λ1 + λ3)σ
λ3
λ1

´
+
(λ1 − 1) (λ1 + 2λ2 − 2)β2j

2
σ
2λ2−2
λ1

Taking the square root Model (Heston model) as the master model:

λ0 λ1 λ2 λ3
2 0.5 1/2 0

fH (σ) =
1

σ

µ
kH
2

¡
'2

H − σ2
¢− β2H

8

¶
gH (σ) =

βH
2
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∂fH (σ)

∂σ
=
1

σ2

µ−kH
2

¡
'2

H + σ2
¢
+

β2H
8

¶
Solving (A.18), one gets:

βj =
βH
2λ1

σ
1−λ1−λ2

λ1 then β2j =
β2H
4λ21

σ
2−2λ1−2λ2

λ1 (A.19)

kj = σ
−2λ1−λ3

λ1

Ã
kH
2λ1

¡
'2

H (2λ1 + λ3 − 1) + σ2 (1− λ3)
¢− Cλ1j

β2H

4

!
(A.20)

'λ0
j = σ

1
λ1

1 +
³
kH ('

2
H − σ2)− β2H

4

³
(2λ1−1)

λ1

´´
kH ('2

H (2λ1 + λ3 − 1) + σ2 (1− λ3))− β2H
4

³
2λ1Cλ1j

´
 (A.21)

Cλ1j
= 1− 2λ1 (λ2 − λ3) + (λ3 − 2λ2 + 1)

2λ21

Using the asymptotic approximation (2.21), fH (σ∗H) = 0:

σ∗H =

sµ
'2

H −
β2H
4kH

¶
(A.22)

Solving equations (A.19-A.21) using (A.22), one finally obtains:

βj =
βH
2λ1

Ã
kH

kH'2
H − 1

4
β2H

!λ1+λ2−1
2λ1

(A.23)

kj =

Ã
kH

kH'2
H − 1

4
β2H

! 2λ1+λ3
2λ1

Ã
kH'

2
H −

Cλjβ
2
H

8

!
(A.24)

'j =

Ãµ
'2

H −
β2H
4kH

¶ 1
2λ1

Ã
1− (λ1 − 1)β2H

λ21
¡
8kH'2

H − Cλjβ
2
H

¢!! 1
λ0

(A.25)

Cλj = 2 +
(λ1 − 1) (λ3 − 2λ2 + 1)

λ21

For σ = y (λ1 = 1):

Case λ0 λ1 λ2 λ3 — dy =

j = 1a 1 1 1 0 — dy = k1a ('1a − y) dt+ β1aydcW2,t

j = 2a 1 1 2 0 — dy = k2a ('2a − y) dt+ β2ay
2dcW2,t

j = 3a 1 1 2 1 — dy = k3a (y'3a − y2) dt+ β3ay
2dcW2,t

118



Solving equations (A.23-A.25):

k1a = kH '1a =
q
'2

H − β2H
4kH

β1a =

r
kHβ2H

4kH'2
H−β2H

k2a = kH '2a =
q
'2

H − β2H
4kH

β2a =
kHβH

2(kH'2
H− 1

4
β2H)

k3a =
2k
3/2
H√

4kH'2
H−β2H

'3a =
q
'2

H − β2H
4kH

β3a =
kHβH

2(kH'2
H− 1

4
β2H)

For σ = y0.5 (λ1 = 0.5):

Case λ0 λ1 λ2 λ3 — dy =

j = 1b 2 0.5 1/2 0 — dy = k1b ('
2
1b − y) dt+ β1by

0.5dcW2,t

j = 2b 2 0.5 1 0 — dy = k2b ('
2
2b − y) dt+ β2bydcW2,t

j = 3b 2 0.5 3/2 0 — dy = k3b ('
2
3b − y) dt+ β3by

3/2dcW2,t

j = 4b 2 0.5 3/2 1 — dy = k4b (y'
2
4b − y2) dt+ β4by

3/2dcW2,t

Solving equations (A.23-A.25):

k1b = kH '1b = 'H β1b = βH

k2b = kH − kHβ2H
4kH'2

H−β2H
'2b =

r
'2

H +
β4H

4kH(4kH'2
H−2β2H)

β2b =

r
kHβ2H

kH'2
H− 1

4
β2H

k3b = kH − 2 kHβ2H
4kH'2

H−β2H
'3b =

r
'2

H +
β4H

2kH(4kH'2
H−3β2H)

β3b =
kHβH

kH'2
H− 1

4
β2H

k4b =
8k2H(2kH'2

H−β2H)
(4kH'2

H−β2H)
2 '4b =

r
'2

H +
β4H−16kH'2

H

8kH(2kH'2
H−β2H)

β4b =
kHβH

kH'2
H− 1

4
β2H
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Appendix B

Time Discrete Approximations

B.1 Brownian Bridge

Conditioning a Brownian motion on its endpoints produces a Brownian bridge.

For example, if one has a Wiener process ∆Wt, one can construct a Brownian bridge

∆W
(B)
t that gives intermediate points between the time interval [t−∆t,∆t]

∆W
(B)
t =

h
∆W

(B)
t,1 ,∆W

(B)
t,2 ....∆W

(B)
t,NP

i
If Zt,j are independent normal distributed random numbers, and using :

∆W
(B)
t,1 =

1

2

³
∆Wt +

√
∆tZt,1

´
(B.1)

∆W
(B)
t,2 =

1

2

³
∆Wt −

√
∆tZt,1

´
one can obtain the first two intermediate points and then progressively obtain 4.8, 16, ..

points. The number of points or divisions NK in the Wiener path depends directly on

the number of times NSub is repeated the subroutine (B.1) and it can be calculated

by:

NK = 2
NSub−1

The main point here is to maintain the original properties:

NKX
i=1

∆Wt,i = ∆Wt
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Figure B.1: Brownian bridge with dt = 1/6 and NP = 8

E [∆Wt] = E
h
∆W

(B)
t,i

i
= 0

V ar [∆Wt] = ∆t V ar
h
∆W

(B)
t,i

i
=

∆t

NP

B.2 Itô’s Lemma (2D):

Itô’s lemma is the most important result about the manipulation of random variables

that one requires. It relates the small change in a function of a random variable to

the small change in the random variable itself.

A) If X and Y satisfy the following SDEs:

dX = A(X,Y, t)dt+B(X,Y, t)dcW1

dY = C(X,Y, t)dt+D(X,Y, t)dcW2

E [dW1dW2] = ρdt

where A and C are functions of X,Y and t, usually called drift terms, B and C

are the noise intensity terms or volatility functions and cW1,cW2 are two Wiener-Lévy

processes or Brownian motions with correlation "ρ". Thus given f(X,Y, t), Itô’s

lemma says that:

df = B
∂f

∂X
dcW1 +D

∂f

∂Y
dcW2 (B.2)
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+

µ
A
∂f

∂X
+ C

∂f

∂Y
+

∂f

∂t
+
1

2
B2 ∂

2f

∂X2
+ ρBD

∂2f

∂X∂Y
+
1

2
D2 ∂

2f

∂Y 2

¶
dt

B) If X and Y satisfy the following SDEs:

dX = A(X,Y, t)dt+B1(X,Y, t)dW1 +B2(X,Y, t)dW2

dY = C(X,Y, t)dt+D1(X,Y, t)dW1 +D2(X,Y, t)dW2

E [dW1dW2] = 0

and thus given f(X,Y, t), Itô’s lemma says that:

df = B1
∂f

∂X
dW1 +B2

∂f

∂X
dW2 +D1

∂f

∂Y
dW1 +D2

∂f

∂Y
dW2 (B.3)

+

µ
A
∂f

∂X
+ C

∂f

∂Y
+

∂f

∂t

¶
dt

+

µ
1

2

¡
B2
1 +B2

2

¢ ∂2f

∂X2
+ (B1D1 +B2D2)

∂2f

∂X∂Y
+
1

2

¡
D2
1 +D2

2

¢ ∂2f
∂Y 2

¶
dt

Example:

d

· exey
¸
=

·
µ(ex)
µ(ey)

¸
dt+

·
σ
0

¸
d
fcW 1,t +

·
0
ξ

¸
d
fcW 2,t (B.4)

where:  d
fcW 1,t

d
fcW 2,t

 = · 1 0
ρ bρ

¸ ·
cos θ − sin θ
sin θ cos θ

¸ ·
dW1,t

dW2,t

¸

and the correlation for dfcW 1,t is:

E

·
d
fcW 1,td

fcW 2,t

¸
= ρdt

Using independent Wiener processes, (B.4) can be represented as:

d

· exey
¸
=

·
µ(ex)
µ(ey)

¸
dt+

·
σ cos θ
ξ (ρ cos θ + bρ sin θ)

¸
dW1,t (B.5)

+

· −σ sin θ
ξ (−ρ sin θ + bρ cos θ)

¸
dW2,t

If one applies Itô’s lemma (B.2) to (B.4) or Itô’s lemma (B.3) to (B.5), then one

obtains the same expression for dθ:

dθ = σ
∂θ

∂exdfcW 1,t + ξ
∂θ

∂eydfcW 2,t (B.6)

+

µ
µ(ex) ∂θ

∂ex + µ(ey)∂θ
∂ey + 12σ2 ∂2θ∂ex2 + ρσξ

∂2θ

∂ex∂ey + 12ξ2∂2θ∂ey2
¶
dt
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B.3 Orthogonal Milstein Scheme (Operations)

B.3.1 Milstein Scheme (Itô Operators)

We start the following 2D Itô SDE with a 2D independent Wiener process:

d

·
X1,t

X2,t

¸
=

·
a1
a2

¸
dt+

·
b1,1 b1,2
b2,1 b2,2

¸ ·
dW1,t

dW2,t

¸
(B.7)

where we suppose ai,bi,k are sufficiently smooth functions of Xi,t in [t0...T ]. The 1

strong order Milstein scheme for (B.7) with time step ∆t using Itô operators is:" bX1,t+∆tbX2,t+∆t

#
=

" bX1,tbX2,t

#
+

·
a1
a2

¸
∆t+

·
b1,1 b1,2
b2,1 b2,2

¸ ·
∆W1,t

∆W2,t

¸
+
1

2
RM

where using Lévy Areas, RM is equal to:

RM =

·
L1b1,1
L1b2,1

¸ ¡
∆W 2

1,t −∆t
¢
+

·
L2b1,2
L2b2,2

¸ ¡
∆W 2

2,t −∆t
¢

(B.8)

+

·
L1b1,2 + L2b1,1
L1b2,2 + L2b2,1

¸
∆W1,t∆W2,t +

·
(L1b1,2 − L2b1,1)
(L1b2,2 − L2b2,1)

¸ £
L(1,2)

¤t+∆t

t

The Itô operators are defined by:

Lj :=
dX

k=1

bk,j
∂

∂Xk

(B.8) can be simplified by:

RM =
2X

j=1

·
Ljb1,j
Ljb2,j

¸ ¡
∆W 2

j,t −∆t
¢
+

·
H+
1

H+
2

¸
∆W1,t∆W2,t

+

·
H−
1

H−
2

¸ £
L(1,2)

¤t+∆t

t

where:

H±
j = L1bj,2 ± L2bj,1

Doing some computations, (B.8) is equal to:

RM =

·
C1,X
C1,Y

¸ ¡
∆W 2

1,t −∆t
¢
+

·
C2,X
C2,Y

¸ ¡
∆W 2

2,t −∆t
¢

+

·
C3,X + C4,X
C3,Y + C4,Y

¸
∆W1,t∆W2,t +

·
C3,X − C4,X
C3,Y − C4,Y

¸ £
L(1,2)

¤t+∆t

t
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where:
C1,X = b1,1b1,1X1 + b2,1b1,1X2 C1,Y = b1,1b2,1X1 + b2,1b2,1X2
C2,X = b1,2b1,2X1 + b2,2b1,2X2 C2,Y = b1,2b2,2X1 + b2,2b2,2X2
C3,X = b1,1b1,2X1 + b2,1b1,2X2 C3,Y = b1,1b2,2X1 + b2,1b2,2X2
C4,X = b1,2b1,1X1 + b2,2b1,1X2 C4,Y = b1,2b2,1X1 + b2,2b2,1X2

and the Lie bracket is equal to:·
H−
1

H−
2

¸
=

·
b1,1b1,2X1 + b2,1b1,2X2 − b1,2b1,1X1 − b2,2b1,1X2
b1,1b2,2X1 + b2,1b2,2X2 − b1,2b2,1X1 − b2,2b2,1X2

¸
Having example (4.3), you get:

σ(x, y) =

·
σ 0
ρ ξ bρ ξ

¸
then:

C1,X = σσx + ρξσy C1,Y = ρσξx + ρ2ξξy
C2,X = 0 C2,Y = bρ2ξξy
C3,X = 0 C3,Y = bρσξx + ρbρξξy
C4,X = bρξσy C4,Y = ρbρξξy

and the Lie bracket is equal to:·
H−
1

H−
2

¸
=

· −bρξσybρσξx
¸

B.3.2 Orthogonal Milstein Scheme

If one makes an orthogonal transformation to (B.7), one gets:

d

" eXteYt
#
=

·
a1
a2

¸
dt+

·
b1,1 b1,2
b2,1 b2,2

¸"
dfW1,t

dfW2,t

#
(B.9)

where: "
dfW1,t

dfW2,t

#
=

·
cos θ ∓ sin θ
sin θ ± cos θ

¸ ·
dW1,t

dW2,t

¸
(B.10)

One can represent the system (B.9) with independent noise as:

d

" eXteYt
#
=

·
a1
a2

¸
dt+

" eb1,1 eb1,2eb2,1 eb2,2
#·

dW1,t

dW2,t

¸
(B.11)

where: " eb1,1 eb1,2eb2,1 eb2,2
#
=

·
b1,1 b1,2
b2,1 b2,2

¸ ·
cos θ ∓ sin θ
sin θ ± cos θ

¸
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The 1 strong order Milstein scheme for (B.11) with time step ∆t using Itô operators

is: " beXt+∆tbeY t+∆t

#
=

" beXtbeY t

#
+

·
a1
a2

¸
∆t+

" eb1,1 eb1,2eb2,1 eb2,2
#·

∆W1,t

∆W2,t

¸
+
1

2
RM

where using Lévy Areas, RM is equal to:

RM =

" eL1eb1,1eL1eb2,1
# ¡

∆W 2
1,t −∆t

¢
+

" eL2eb1,2eL2eb2,2
# ¡

∆W 2
2,t −∆t

¢
(B.12)

+

" eL1eb1,2 + eL2eb1,1eL1eb2,2 + eL2eb2,1
#
∆W1,t∆W2,t +

 ³eL1eb1,2 − eL2eb1,1´³eL1eb2,2 − eL2eb2,1´
 £L(1,2)¤t+∆t

t

The Itô operators are defined by:

eLj :=
dX

k=1

ebk,j ∂

∂ eXk

(B.12) can be simplified by:

RM =
2X

j=1

" eLj
eb1,jeLj
eb2,j

# ¡
∆W 2

j,t −∆t
¢
+

" eH+
1eH+
2

#
∆W1,t∆W2,t (B.13)

+

" eH−
1eH−
2

# £
L(1,2)

¤t+∆t

t

where: eH±
j =

eL1ebj,2 ± eL2ebj,1
Doing some computation, (B.13) is equal to:

RM =

 eC1,X cos2 θ + eC2,X sin2 θ + ³ eC3,X + eC4,X´ sin θ cos θeC1,Y cos2 θ + eC2,Y sin2 θ + ³ eC3,Y + eC4,Y ´ sin θ cos θ
 ¡∆W 2

1,t −∆t
¢
(B.14)

+

 eC2,X cos2 θ + eC1,X sin2 θ − ³ eC3,X + eC4,X´ sin θ cos θeC2,Y cos2 θ + eC1,Y sin2 θ − ³ eC3,Y + eC4,Y ´ sin θ cos θ
 ¡∆W 2

2,t −∆t
¢

 ³ eC3,X + eC4,X´ ¡cos2 θ − sin2 θ¢+ 2³ eC2,X − eC1,X´ sin θ cos θ³ eC3,Y + eC4,Y ´ ¡cos2 θ − sin2 θ¢+ 2³ eC2,Y − eC1,Y ´ sin θ cos θ
∆W1,t∆W2,t

±
" eC3,X − eC4,XeC3,Y − eC4,Y

# £
L(1,2)

¤t+∆t

t
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where:eC1,X=C1,X+θX1b1,1b1,2+θX2b1,2b2,1 eC1,Y=C1,Y+θX1b1,1b2,2+θX2b2,1b2,2eC2,X=C2,X-θX1b1,1b1,2-θX2b1,1b2,2 eC2,Y=C2,Y − θX1b2,1b1,2 − θX2b2,1b2,2eC3,X=C3,X − θX1b
2
1,1 − θX2b1,1b2,1 eC3,Y=C3,Y − θX1b1,1b2,1 − θX2b

2
2,1eC4,X=C4,X + θX1b

2
1,2 + θX2b1,2b2,2 eC4,Y=C4,Y + θX1b1,2b2,2 + θX2b

2
2,2

Using the definition of the orthogonal Wiener process (B.10), one can deduce the

following expressions:

∆fW 2
1,t = cos2 θ ∆W 2

1,t ∓ 2 sin θ cos θ ∆W1,t∆W2,t + sin
2 θ ∆W 2

2,t

∆fW 2
2,t = sin2 θ ∆W 2

1,t ± 2 sin θ cos θ ∆W1,t∆W2,t + cos
2 θ ∆W 2

2,t

∆fW1,t∆fW2,t = sin θ cos θ
¡
∆W 2

1,t −∆W 2
2,t

¢± ¡cos2 θ − sin2 θ¢∆W1,t∆W2,t

Using the last equations, (B.14) can be simplified by:

RM =

" eC1,XeC1,Y
#³

∆fW 2
1,t −∆t

´
+

" eC2,XeC2,Y
#³

∆fW 2
2,t −∆t

´
(B.15)

+

" eC3,X + eC4,XeC3,Y + eC4,Y
#
∆fW1,t∆fW2,t +

 ±
³ eC3,X − eC4,X´

±
³ eC3,Y − eC4,Y ´

 £L(1,2)¤t+∆t

t

and the Lie bracket is equal to:

RL =

· ± ¡C3,X − C4,X − θX1

¡
b21,1 + b21,2

¢− θX2 (b1,1b2,1 + b1,2b2,2)
¢

± ¡C3,Y − C4,Y − θX1 (b1,1b2,1 + b1,2b2,2)− θX2

¡
b22,1 + b22,2

¢¢ ¸ (B.16)

To make zero (B.16), one needs:

(C3,X − C4,X) = θX1

¡
b21,1 + b21,2

¢
+ θX2 (b1,1b2,1 + b1,2b2,2)

(C3,Y − C4,Y ) = θX1 (b1,1b2,1 + b1,2b2,2) + θX2

¡
b22,1 + b22,2

¢
so then, for θX1 :

θX1 =
(C3,X − C4,X)

¡
b22,1 + b22,2

¢− (C3,Y − C4,Y ) (b1,1b2,1 + b1,2b2,2)¡
b21,1 + b21,2

¢ ¡
b22,1 + b22,2

¢− (b1,1b2,1 + b1,2b2,2)
2

and for θX2:

θX2 =
(C3,X − C4,X) (b1,1b2,1 + b1,2b2,2)− (C3,Y − C4,Y )

¡
b21,1 + b21,2

¢
(b1,1b2,1 + b1,2b2,2)

2 − ¡b21,1 + b21,2
¢ ¡

b22,1 + b22,2
¢

If:

(b1,1b2,2 − b1,2b2,1)
2 =

¡
b21,1 + b21,2

¢ ¡
b22,1 + b22,2

¢− (b1,1b2,1 + b1,2b2,2)
2
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·
H−
1

H−
2

¸
=

·
C3,X − C4,X
C3,Y − C4,Y

¸
then:

Φ
.
=

∂θ

∂X1
=

H−
1

¡
b22,1 + b22,2

¢−H−
2 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

Ψ
.
=

∂θ

∂X2
=

H−
2

¡
b21,1 + b21,2

¢−H−
1 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

Having example (4.6), you get:

σ(x, y) =

·
σ 0
ρ ξ bρ ξ

¸ ·
cos θ − sin θ
sin θ cos θ

¸
then: eC1,X = σσx + ρξσy eC1,Y = ρσξx + ρ2ξξy + θX1bρσξ + θX2ρbρξ2eC2,X = −θX2bρσξ eC2,Y = bρ2ξξy − θX2ρbρξ2eC3,X = −θX1σ

2 − θX2ρσξ eC3,Y = bρσξx + ρbρξξy − θX1ρσξ − θX2ρ
2ξ2eC4,X = bρξσy eC4,Y = ρbρξξy + θX2bρ2ξ2

and if one uses:

Φ
.
=

∂θ

∂X1
=

ξ2σy + ρσ2ξx
−bρσ2ξ =

−1bρ
µ
ξσy
σ2
+

ρξx
ξ

¶

Ψ
.
=

∂θ

∂X2
=

σ2ξx + ρξ2σybρσξ2 =
1bρ
µ
σξx
ξ2

+
ρσy
σ

¶
then: eC1,X = σσx + ρξσy eC1,Y = ρσξx + ρ2ξξy − bρ 2ξ2σy

σeC2,X = −ρξσy − σ2ξx
ξ

eC2,Y = −ρσξx + bρ2ξξy − ρ2ξ2σy
σeC3,X = bρ ξσy eC3,Y = bρσξx + ρbρ³ξξy + ξ2σy

σ

´
eC4,X = eC3,X eC4,Y = eC3,Y

(B.17)

Having example (4.16), you get:

bσ (x, y) = · αxγ1yλ1 0
ρβ xγ2yλ2 bρβ xγ2yλ2

¸ ·
cos θ − sin θ
sin θ cos θ

¸
then: " eH−

1eH−
2

#
=

· −bρλ1αβ xγ1+γ2yλ2+λ1−1bργ2αβxγ1+γ2−1yλ1+λ2
¸

and
Φ = λ1β yλC

−bραxγC+1 + ργ2
−bρ x Ψ = γ2α xγCbρβ yλC+1 + ρλ1bρ y

ΦX =
(γC+1)λ1β yλCbραxγC + ργ2bρx2 ΨX =

γCγ2α xγC−1bρβ yλC+1
ΦY =

λCλ1β yλC−1
−bραxγC+1 ΨY =

(λC+1)γ2α xγC

−bρβ yλC + ρλ1
−bρ y2

(B.18)
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B.3.3 θ Scheme

We start with the following 3−Dimensional Itô SDE with a 2−Dimensional Wiener
process:

d

 eX1,teX2,t

θt

 =
 a1

a2
aθ

 dt+
 b1,1 b1,2

b2,1 b2,2
bθ,1 bθ,2

" dfW1,t

dfW2,t

#
(B.19)

where:

aθ = Φa1 +Ψa2£
bθ,1 bθ,2

¤
=
£
Φb1,1 +Ψb2,1 Φb1,2 +Ψ b2,2

¤
Φ

.
=

H−
1

¡
b22,1 + b22,2

¢−H−
2 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

Ψ
.
=

H−
2

¡
b21,1 + b21,2

¢−H−
1 (b1,1b2,1 + b1,2b2,2)

(b1,1b2,2 − b1,2b2,1)
2

The 1 strong order Milstein scheme for (B.19) with time step ∆t is:
beX1,t+∆tbeX2,t+∆tbθt+∆t

 =

beX1,tbeX2,tbθt

+
 a1

a2
aθ

∆t+

 eb1,1 eb1,2eb2,1 eb2,2
bθ,1 bθ,2

 · ∆W1,t

∆W2,t

¸
+
1

2
RM (B.20)

RM =
2X

j=1

 eLj
eb1,jeLj
eb2,jeLj
eb3,j

 ¡∆W 2
j,t −∆t

¢

+

 eH+
1eH+
2eH+
3

∆W1,t∆W2,t +

 eH−
1eH−
2eH−
3

 £L(1,2)¤t+∆t

t

where: eH±
j =

eL1ebj,2 ± eL2ebj,1
Doing some computation, (B.20) is equal to:

RM =

 eC1,XeC1,YeC1,θ
³∆fW 2

1,t −∆t
´
+

 eC2,XeC2,YeC2,θ
³∆fW 2

2,t −∆t
´

(B.21)

+

 eC3,X + eC4,XeC3,Y + eC4,YeC3,θ + eC4,θ
∆fW1,t∆fW2,t +


±
³ eC3,X − eC4,X´

±
³ eC3,Y − eC4,Y ´
±
³ eC3,θ − eC4,θ´

 £L(1,2)¤t+∆t

t
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where: eC1,X = C1,X + Φb1,1b1,2 +Ψb1,2b2,1 eC1,Y = C1,Y + Φb1,1b2,2 +Ψb2,1b2,2eC2,X = C2,X − Φb1,1b1,2 −Ψb1,1b2,2 eC2,Y = C2,Y − Φb2,1b1,2 −Ψb2,1b2,2eC3,X = C3,X − Φb21,1 −Ψb1,1b2,1 eC3,Y = C3,Y − Φb1,1b2,1 −Ψb22,1eC4,X = C4,X + Φb21,2 +Ψb1,2b2,2 eC4,Y = C4,Y + Φb1,2b2,2 +Ψb22,2eC1,θ = b1,1bθ,1 eX1 + b2,1bθ,1 eX2 + bθ,1bθ,2eC2,θ = b1,2bθ,2 eX1 + b2,2bθ,2 eX2 − bθ,1bθ,2eC3,θ = b1,1bθ,2 eX1 + b2,1bθ,2 eX2 − b2θ,1eC4,θ = b1,2bθ,1 eX1 + b2,2bθ,1 eX2 + b2θ,2

Doing some operations, the Lie bracket is equal to: eH−
1eH−
2eH−
3

 =
 0

0
± (b1,1b2,2 − b1,2b2,1)

¡
Ψ eX1
− Φ eX2

¢
 (B.22)

Knowing that: £
bθ,1 bθ,2

¤
=
£
Φb1,1 +Ψb2,1 Φb1,2 +Ψ b2,2

¤
then: eC1,θ = Φ (C1,X + Φb1,1b1,2) +Ψ (C1,Y +Ψb2,1 b2,2) + ΦΨ (b1,1 b2,2 + b1,2b2,1)

+Φ eX1
b21,1 +Ψ eX2

b22,1 +
¡
Φ eX2

+Ψ eX1

¢
b1,1b2,1eC2,θ = Φ (C2,X − Φb1,1b1,2) +Ψ (C2,Y −Ψb2,1 b2,2)− ΦΨ (b1,1 b2,2 + b1,2b2,1)

+Φ eX1
b21,2 +Ψ eX2

b22,2 +
¡
Φ eX2

+Ψ eX1

¢
b1,2b2,2eC3,θ = Φ

¡
C3,X − Φb21,1

¢
+Ψ

¡
C3,Y −Ψb22,1

¢− 2ΦΨb1,1b2,1
+Φ eX1

b1,1b1,2 + Φ eX2
b1,2b2,1 +Ψ eX1

b1,1b2,2 +Ψ eX2
b2,1b2,2eC4,θ = Φ

¡
C4,X + Φb21,2

¢
+Ψ

¡
C4,Y +Ψ b22,2

¢
+ 2ΦΨb1,2 b2,2

+Φ eX1
b1,1b1,2 +Ψ eX1

b1,2b2,1 + Φ eX2
b1,1b2,2 +Ψ eX2

b2,1b2,2

Having example (4.12), you get:

σ(x, y) =

 σ 0
ρ ξ bρ ξ
σΦ ξΨ

 · cos θ − sin θ
sin θ cos θ

¸
then: eC1,θ = −bρ ¡2σyξx + ξσxy +

ξ
σ

¡−σxσy + ρ
¡
σyξy + ξσyy

¢¢¢
eC2,θ = bρ³2σyξx + σξxy +

ξ
σ
ρ
¡
σyξy + ξσyy

¢− σ
ξ
ξxξy

´
eC3,θ = ρ

¡
2σyξx + σξxy + ξσxy +

ξ
σ

¡−σxσy + ρ
¡
σyξy + ξσyy

¢¢¢
+σ

ξ

¡
σξxx + ξx

¡
σx − ρξy

¢¢
+ −σ2ξ2x

ξ2
+
−ξ2σ2y
σ2eC4,θ = ρ

¡
2σyξx +

ξ
σ
ρ
¡
σyξy + ξσyy

¢¢
+

ξ2σ2y
σ2
+ σ2ξ2x

ξ2
− ξ

σ

¡
σyξy + ξσyy

¢
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and eH−
3 from the Lie bracket (B.22) is equal to:

eH−
3 = ρ

µ
σξxy + ξσxy − ξ

σ
σxσy

¶
+

σ

ξ

¡
σξxx + ξx

¡
σx − ρξy

¢¢
+
−2ξ2σ2y

σ2
+
−2σ2ξ2x

ξ2
+

ξ

σ

¡
σyξy + ξσyy

¢
B.4 Orthogonal Transformation Theorems

In this section, we shall present two theorems where we prove that if an orthogonal

transformation is applied to a Wiener process dW , then the new orthogonal Wiener

process dfW is independent and have the same distribution as the original process

dW .

Theorem 6: Distribution of an orthogonal Wiener processes
If dW1,t, dW2,t are two independent Wiener process and you apply an orthogonal

transformation to them:"
dfW1,t

dfW2,t

#
=

·
cos θt sin θt
∓ sin θt ± cos θt

¸ ·
dW1,t

dW2,t

¸
(B.23)

then:

• A) the new orthogonal Wiener processes, dfW1,t and dfW2,t are independent.

• B) dWi,t and dfWi,t have the same distribution.

Proof:
A) If dW1,t and dW2,t are independent, then:

E [dW1,tdW2,t] = 0

Doing the same for the orthogonal Wiener process:

E
h
dfW1,tdfW2,t

i
= E

· ∓ sin θ cos θ ¡dW 2
1,t − dW 2

2,t

¢
±dW1,tdW2,t

¡
cos2 θ − sin2 θ¢

¸
= 0

B) The probability density function (PDF) of anN−dimensional multivariate normal
is [13]:

f(x) = f(x1, x2, ...xN) =
1

(2π)
N
2

s
det

µX¶ exp
µ
−1
2
(x− µ)T

X−1
(x− µ)

¶
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where µ = [µ1, µ2, ..., µN ]
T is the mean and

X
is the covariance matrix (positive-

definite real N x N matrix). If one calculates them for dWt:

µdWt
= [E [dW1,t] E [dW2,t]] = 0X

dWt

=

·
V [dW1,t] ρ

p
V [dW1,t]

p
V [dW2,t]

ρ
p
V [dW1,t]

p
V [dW2,t] V [dW2,t]

¸
=

·
dt 0
0 dt

¸
If dWt and dfWt have the same distribution, then they have the same mean and

covariance matrix.

µdfWt
=
h
E
h
dfW1,t

i
E
h
dfW2,t

ii
= 0 = µdWt

X
dfWt

=

·
dt 0
0 dt

¸
=
X

dWt

¤

Theorem 7: General representation for an orthogonal matrix
If Γ (Θt) is an orthogonal matrix:

Γ (Θt) :=

·
Θ1,1 Θ1,2

Θ2,1 Θ2,2

¸
Θ1,1Θ2,2 −Θ1,2Θ2,1 = ±1 = ψ

then:

• A) Γ (Θt) can have only two families of representations:

Γ (Θt) =

·
Θ1,1 Θ1,2
∓Θ1,2 ±Θ1,1

¸
Θ1,1 = ±Θ2,2

Θ2,1 = ∓Θ1,2

• B) If Γ (Θt) and Ξ (φt) are independent orthogonal matrices, the multiplication

of both still has the same two representation as point A)

Proof:
A) Using the definition of an orthogonal matrix:

Γ−1 = ΓT

then:

ΓΓ−1 = ΓΓT = ψ and Γ−1Γ = ΓTΓ = ψ
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computing operations:

ΓΓT =

·
Θ2
1,1 +Θ2

1,2 Θ1,1Θ2,1 +Θ1,2Θ2,2

Θ1,1Θ2,1 +Θ1,2Θ2,2 Θ2
2,1 +Θ2

2,2

¸
=

·
ψ 0
0 ψ

¸
ΓTΓ =

·
Θ2
1,1 +Θ2

2,1 Θ1,1Θ1,2 +Θ2,1Θ2,2

Θ1,1Θ1,2 +Θ2,1Θ2,2 Θ2
1,2 +Θ2

2,2

¸
=

·
ψ 0
0 ψ

¸
then:

Θ1,1Θ2,1 +Θ1,2Θ2,2 = 0

Θ1,1Θ1,2 +Θ2,1Θ2,2 = 0 then Θ1,2 = ±Θ2,1

Computing for the two solutions:

if Θ1,2 = −Θ2,1 then Θ1,1 = Θ2,2

if Θ1,2 = +Θ2,1 then Θ1,1 = −Θ2,2

¤

B): Using point A):

Γ (Θt) :=

·
Θ1,1 Θ1,2
∓Θ1,2 ±Θ1,1

¸
Ξ (φt) :=

·
φ1,1 φ1,2
∓φ1,2 ±φ1,1

¸
Doing the multiplication of both matrices:

solution 1 : Γ (Θt)Ξ (φt) =

·
Θ1,1 Θ1,2

∓Θ1,2 ±Θ1,1

¸ ·
φ1,1 φ1,2
−φ1,2 φ1,1

¸
=

·
Θ1,1φ1,1 −Θ1,2φ1,2 Θ1,1φ1,2 +Θ1,2φ1,1
∓ ¡Θ1,1φ1,2 +Θ1,2φ1,1

¢ ± ¡Θ1,1φ1,1 −Θ1,2φ1,2
¢ ¸

=

·
Φ1,1 Φ1,2
∓Φ1,2 ±Φ1,1

¸

solution 2 : Γ (Θt)Ξ (φt) =

·
Θ1,1 Θ1,2

∓Θ1,2 ±Θ1,1

¸ ·
φ1,1 φ1,2
φ1,2 −φ1,1

¸
=

·
Θ1,1φ1,1 +Θ1,2φ1,2 Θ1,1φ1,2 −Θ1,2φ1,1

± ¡Θ1,1φ1,2 −Θ1,2φ1,1
¢ ∓ ¡Θ1,1φ1,1 +Θ1,2φ1,2

¢ ¸
=

" bΦ1,1 bΦ1,2
±bΦ1,2 ∓bΦ1,1

#

¤
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Appendix C

MSL-MC

C.1 MSL-MC Algorithm

This section defines the algorithm one has to use to estimate an exotic option price

using the Multischeme Multilevel Montecarlo method (MSL-MC). The MSL-MC is

an updated algorithm of the ML-MC [10].

The expectation of a payoff P with maturity T is calculated by:

E [PLF ] = E [PLO ] +

LFX
L=LO+1

E [PL − PL−1] (C.1)

Or using multi-schemes in the simulation:

E [PLF ] = E
h
PSLO

i
+

LFX
L=LO+1

E
£
PSL − PSL−1

¤
where L is the level of the algorithm that simulates the scheme or time approximation

with different time steps ∆t:

∆t =
T − t0
mL

for m = 2, 4, 6...

LO is the optimal starting level and PSL is the payoff value using the optimal scheme

for level L. For a given �:

� = | exact solution − approximation |

the algorithm has to simulate a repeated cycle for each level L, where one calculates

the option price using ML paths:

ML =

&
2�−2

p
VL∆tL

LX
l=1

r
Vl
∆tl

'
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When L = LO, use ML = 1000. For L > LO, simulate extra samples at each level as

needed for new ML. The algorithm will stop when it converges:

max

½ |PL−1|
m

, |PL|
¾
<

�√
2
(m− 1)

Compared with the standard method and setting the Lévy Area equal to zero, the

mean square error MSE,

MSE ≈ c1dt+ c2dt
2 = O

¡
�−3
¢

is reduced in some cases to:

scheme Standard Method ML-MC

Euler or Milstein scheme (L = 0) O (�−3) O
¡
�−2 (log �)2

¢
θ scheme (L = 0) O (�−3) O (�−2)

[10] and results in Chapter 5 demonstrate that m = 2 is the optimal to use for all

schemes. Only for specific examples, m = 4 is used.

C.2 Strong Convergence Plots

This section presents the corresponding strong convergence tests for the asset S (Fig-

ure C.1), the variance υ (Figure C.2), the rotation or angle θ (Figure C.3) and a

European Put option price (Figure C.4). It is no surprise that all strong convergence

plots are almost the same, having the same order of convergence as the European

Call option plot (Figure 5.4) presented in Chapter 5. We have used the parameters

and initial conditions (5.10) with the stochastic volatility models (5.2-5.5).
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Figure C.1: Strong convergence tests for S using (5.10).
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Figure C.2: Strong convergence tests for the variance "ν” using (5.10).
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Figure C.3: Strong convergence tests for θ using (5.10).
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Figure C.4: Strong convergence tests for a European Put option using (5.10).
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