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Abstract This paper shows that it is relatively easy to incorporate adaptive timesteps

into multilevel Monte Carlo simulations without violating the telescoping sum on

which multilevel Monte Carlo is based. The numerical approach is presented for

both SDEs and continuous-time Markov processes. Numerical experiments are

given for each, with the full code available for those who are interested in seeing

the implementation details.

1 Multilevel Monte Carlo and Adaptive Simulations

Multilevel Monte Carlo methods [8, 4, 6] are a very simple and general approach to

improving the computational efficiency of a wide range of Monte Carlo applications.

Given a set of approximation levels ℓ= 0,1, . . . ,L giving a sequence of approxima-

tions Pℓ of a stochastic output P, with the cost and accuracy both increasing as ℓ
increases, then a trivial telescoping sum gives

E[PL] = E[P0]+
L

∑
ℓ=1

E[Pℓ−Pℓ−1], (1)

expressing the expected value on the finest level as the expected value on the coars-

est level of approximation plus a sum of expected corrections.

Approximating each of the expectations on the r.h.s. of (1) independently using

Nℓ samples, we obtain the multilevel estimator

Y =
L

∑
ℓ=0

Yℓ, Yℓ = N−1
ℓ

Nℓ

∑
n=1

(
P
(n)
ℓ −P

(n)
ℓ−1

)
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with P−1≡0. The Mean Square Error of this estimator can be shown to be

E[(Y −E[P])2] =
(
E[PL]−E[P]

)2

+
L

∑
ℓ=0

N−1
ℓ Vℓ

where Vℓ ≡ V[Pℓ−Pℓ−1] is the variance of a single multilevel correction sample

on level ℓ. To ensure that the MSE is less than some given accuracy ε2, it is then

sufficient to choose the finest level L so that the bias |E[PL]−E[P]| is less than ε/
√

2,

and the number of samples Nℓ so that the variance sum is less than ε2/2.

If Cℓ is the cost of a single sample Pℓ−Pℓ−1, then a constrained optimisation,

minimising the computational cost for a fixed total variance, leads to

Nℓ = 2ε−2
√

Vℓ/Cℓ

L

∑
ℓ′=0

√
V ′
ℓ C′

ℓ.

In the particular case in which

∣∣∣E[Pℓ]−E[P]
∣∣∣∝ 2−αℓ, Vℓ ∝ 2−βℓ, Cℓ ∝ 2γℓ, as ℓ→∞,

this results in the total cost to achieve the ε2 MSE accuracy being

C =





O(ε−2), β > γ ,

O(ε−2 (logε−1)2), β = γ ,

O(ε−2−(γ−β )/α), β < γ .

The above is a quick overview of the multilevel Monte Carlo (MLMC) approach.

In the specific context of outputs which are functionals of the solution of an SDE,

most MLMC implementations use a set of levels with exponentially decreasing uni-

form timesteps, i.e. on level ℓ the uniform timestep is

hℓ = M−ℓ h0

where M is an integer. When using the Euler-Maruyama approximation it is usually

found that the optimum value for M is in the range 4−8, whereas for higher order

strong approximations such as the Milstein first order approximation it is found that

M=2 is best.

The MLMC implementation is then very straightforward. In computing a single

correction sample Pℓ−Pℓ−1, one can first generate the Brownian increments for the

fine path simulation which leads to the output Pℓ. The Brownian increments can then

be summed in groups of size M to provide the Brownian increments for the coarse

path simulation which yields the output Pℓ−1. The strong convergence properties of

the numerical approximation ensure that the difference between the fine and coarse

path simulations decays exponentially as ℓ→ ∞, and therefore the output difference

Pℓ−Pℓ−1 also decays exponentially; this is an immediate consequence if the output

is a Lipschitz functional of the path solution, but in other cases it requires further

analysis.
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In the computational finance applications which have motivated a lot of MLMC

research, it is appropriate to use uniform timesteps on each level because the drift

and volatility in the SDEs does not vary significantly from one path to another, or

from one time to another. However, in other applications with large variations in

drift and volatility, adaptive timestepping can provide very significant reductions in

computational cost for a given level of accuracy [15]. It can also be used to address

difficulties with SDEs such as

dSt =−S3
t dt +dWt ,

which have a super-linear growth in the drift and/or the volatility, which otherwise

lead to strong instabilities when using uniform timesteps [11].

The most significant prior research on adaptive timestepping in MLMC has been

by Hoel, von Schwerin, Szepessy and Tempone [9] and [10]. In their research, they

construct a multilevel adaptive timestepping discretisation in which the timesteps

used on level ℓ are a subdivision of those used on level ℓ−1, which in turn are

a subdivision of those on level ℓ−2, and so on. By doing this, the payoff Pℓ on

level ℓ is the same regardless of whether one is computing Pℓ−Pℓ−1 or Pℓ+1−Pℓ,

and therefore the MLMC telescoping summation, (1), is respected. Another notable

aspect of their work is the use of adjoint/dual sensitivities to determine the optimal

timestep size, so that the adaptation is based on the entire path solution.

In this paper, we introduce an alternative approach in which the adaptive timesteps

are not nested, so that the timesteps on level ℓ do not correspond to a subdivision of

the timesteps on level ℓ−1. This leads to an implementation which is perhaps a lit-

tle simpler, and perhaps a more natural extension to existing adaptive timestepping

methods. The local adaptation is based on the current state of the computed path, but

it would also work with adjoint-based adaptation based on the entire path. We also

show that it extends very naturally to continuous-time Markov processes, extending

ideas due to Anderson & Higham [1, 2]. The key point to be addressed is how to

construct a tight coupling between the fine and coarse path simulations, and at the

same time ensure that the telescoping sum is fully respected.

2 Non-nested Adaptive Timesteps

The essence of the approach to non-nested adaptive timestepping in MLMC is illus-

trated in Figure 1.

For Brownian diffusion SDEs, level ℓ uses an adaptive timestep of the form hℓ =
M−ℓ H(Sn), where M>1 is a real constant, and H(S) is independent of level. This

automatically respects the telescoping summation, (1), since the adaptive timestep

on level ℓ is the same regardless of whether it is the coarser or finer of the two paths

being computed. On average, the adaptive timestepping leads to simulations on level

ℓ having approximately M times as many timesteps as level ℓ−1, but it also results in

timesteps which are not naturally nested, so the simulation times for the coarse path
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coarse path

fine path
t

✲✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

Fig. 1 Simulation times for multilevel Monte Carlo with adaptive timesteps

do not correspond to simulation times on the fine path. It may appear that this would

cause difficulties in the strong coupling between the coarse and fine paths in the

MLMC implementation, but it does not. As usual, what is essential to achieve a low

multilevel correction variance Vℓ is that the same underlying Brownian path is used

for both the fine and coarse paths. Figure 1 shows a set of simulation times which

is the union of the fine and coarse path times. This defines a set of intervals, and

Algorithm 1 Outline of the algorithm for a single MLMC sample for ℓ > 0 for a

scalar Brownian SDE with adaptive timestepping for the time interval [0,T ].

t := 0; tc := 0; t f := 0

hc := 0; h f := 0

∆W c := 0; ∆W f := 0

while (t < T ) do

told := t

t := min(tc, t f )
∆W := N(0, t−told)
∆W c := ∆W c +∆W

∆W f := ∆W f +∆W

if t = tc then

update coarse path using hc and ∆W c

compute new adapted coarse path timestep hc

hc := min(hc,T−tc)
tc := tc +hc

∆W c := 0

end if

if t = t f then

update fine path using h f and ∆W f

compute new adapted fine path timestep h f

h f := min(h f ,T−t f )
t f := t f +h f

∆W f := 0

end if

end while

compute Pℓ−Pℓ−1
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for each interval we generate a Brownian increment with the appropriate variance.

These increments are then summed to give the Brownian increments for the fine and

coarse path timesteps.

An outline implementation to compute a single sample of Pℓ−Pℓ−1 for ℓ > 0 is

given in Algorithm 1. This could use either an Euler-Maruyama discretisation of the

SDE, or a first order Milstein discretisation for those SDEs which do not require the

simulation of Lévy area terms.

Adaptive timestepping for continuous-time Markov processes works in a very

similar fashion. The evolution of a continuous-time Markov process can be de-

scribed by

St = S0 +∑
j

ν j P̃j

(∫ t

0
λ j(Ss)ds

)

where the summation is over the different reactions, ν j is the change due to reaction

j (the number of molecules of each species which are created or destroyed), the P̃j

are independent unit-rate Poisson processes, and λ j is the propensity function for

Algorithm 2 Outline of the algorithm for a single MLMC sample for a continuous-

time Markov process with adaptive timestepping for the time interval [0,T ].

t := 0; tc := 0; t f := 0

λ c := 0; λ f := 0

hc := 0; h f := 0

while (t < T ) do

told := t

t := min(tc, t f )
h := t − told

for each reaction, generate Poisson variates P̃(min(λ c,λ f )h), P̃(|λ c−λ f |h),
use Poisson variates to update fine and coarse path solutions

if t = tc then

update coarse path propensities λ c

compute new adapted coarse path timestep hc

hc := min(hc,T−tc)
tc := tc +hc

end if

if t = t f then

update fine path propensities λ f

compute new adapted fine path timestep h f

h f := min(h f ,T−t f )
t f := t f +h f

end if

end while

compute Pℓ−Pℓ−1
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the jth reaction, meaning that λ j(St)dt is the probability of reaction j taking place

in the infinitesimal time interval (t, t+dt).
λ j(St) should be updated after each individual reaction, since it changes St , but

in the tau-leaping approximation [7] λ j is updated only at a fixed set of update

times. This is the basis for the MLMC construction due to Anderson & Higham [1].

Using nested uniform timesteps, with hc = 2h f , each coarse timestep is split into

two fine timesteps, and for each of the fine timesteps one has to compute appropriate

Poisson increments P̃j

(
λ c

j h f
)

for the coarse path and P̃j

(
λ

f
j h f

)
for the fine path.

To achieve a tight coupling between the coarse and fine paths, they use the fact that

λ c
j = min(λ c

j ,λ
f
j )+ |λ c

j −λ
f
j | 111

λ c
j >λ

f
j

,

λ
f
j = min(λ c

j ,λ
f
j )+ |λ c

j −λ
f
j | 111

λ c
j <λ

f
j

,

together with the fact that a Poisson variate P̃(a+b) is equivalent in distribution to

the sum of independent Poisson variates P̃(a), P̃(b). Hence, they generate common

Poisson variates P̃(min(λ c
j ,λ

f
j )h f ) and P̃(|λ c

j −λ
f
j |h f ) and use these to give the

Poisson variates for the coarse and fine paths over the same fine timestep.

As outlined in Algorithm 2, the extension of adaptive timesteps to continuous-

time Markov processes based on the tau-leaping approximation is quite natural. The

Poisson variates are computed for each time interval in the time grid formed by

the union of the coarse and fine path simulation times. At the end of each coarse

timestep, the propensity functions λ c are updated, and a new adapted timestep hc is

defined. Similarly, λ f and h f are updated at the end of each fine timestep.

The telescoping sum is respected because, for each timestep of either the coarse

or fine path simulation, the sum of the Poisson variates for the sub-intervals is equiv-

alent in distribution to the Poisson variate for the entire timestep, and therefore the

expected value E[Pℓ] is unaffected.

3 Numerical experiments

3.1 FENE SDE Kinetic Model

A kinetic model for a dilute solution of polymers in a fluid considers each molecule

as a set of balls connected by springs. The balls are each subject to random forc-

ing from the fluid, and the springs are modelled with a FENE (finitely extensible

nonlinear elastic) potential which increases without limit as the length of the bond

approaches a finite value [3].

In the case of a molecule with just one bond, this results in the following 3D SDE

for the vector length of the bond:
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dqt =− 4µ

1−‖qt‖2
qt dt +2dWt

where µ =4 for the numerical experiments to be presented, and Wt is a 3D driving

Brownian motion. Note that the drift term ensures that ‖qt‖< 1 for all time, and this

property should be respected in the numerical approximation.

An Euler-Maruyama discretisation of the SDE using timestep hn gives

qn+1 = qn −
4µhn

1−‖qn‖2
qn +2∆Wn

and because the volatility is constant, one would expect this to give first order strong

convergence. The problem is that this discretisation leads to ‖qn+1‖ > 1 with posi-

tive probability, since ∆Wn is unbounded.

This problem is addressed in two ways. The first is to use adaptive timesteps

which become much smaller as ‖qn‖ → 1. Since ∆Wn =
√

h Zn, where the compo-

nent of Zn in the direction normal to the boundary is a standard Normal random

variable which is very unlikely to take a value with magnitude greater than 3, we

choose the timestep so that

6
√

hn ≤ 1−‖qn‖
so the stochastic term is highly unlikely to take across the boundary. In addition, the

drift term is singular at the boundary and therefore for accuracy we want the drift

term to be not too large relative to the distance to the boundary so that it will not

change by too much during one timestep. Hence, we impose the restriction

2µhn

1−‖qn‖
≤ 1−‖qn‖.

Combining these two gives the adaptive timestep

H(qn) =
(1−‖qn‖)2

max(2µ ,36)
,

on the coarsest level of approximation. On finer levels, the timestep is hn = 2−ℓ H(qn)
so that level ℓ has approximately 2ℓ times as many timesteps as level 0.

Despite the adaptive timestep there is still an extremely small possibility that the

numerical approximation gives ‖qn+1‖> 1. This is handled by introducing clamping

with

q
clamped

n+1 :=
1−δ

‖qn+1‖
qn+1

if ‖qn+1‖> 1−δ , with δ typically chosen to be 10−5, which corresponds to an adap-

tive timestep of order 10−10 for the next timestep. Numerical experiments suggest

that this value for δ does not lead to any significant bias in the output of interest.
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Fig. 2 MLMC results for the FENE model using adaptive timesteps.

The output of interest in the initial experiments is E[‖q‖2] at time T =1, having

started from initial data q= 0 at time t = 0. Figure 2 presents the MLMC results,

showing first order convergence for the weak error (top right plot) and second order

convergence for the multilevel correction variance (top left plot). Thus, in terms of

the standard MLMC theory we have α=1,β =2,γ=1, and hence the computational

cost for RMS accuracy ε is O(ε−2); this is verified in the bottom right plot, with the

bottom left plot showing the number of MLMC samples on each level as a function

of the target accuracy.
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Fig. 3 The temporal evolution of a single sample path of reaction system (2) on two different

time-scales. Reaction rates are given in (3) and initial conditions are as described in the text.

3.2 Dimerization Model

This dimerization model involving 3 species and 4 reactions has been used widely as

a test of stochastic simulation algorithms [16, 7] as it exhibits behaviour on multiple

timescales. The reaction network is given by:

R1 : S1
1−→ /0, R2 : S2

1/25−−→ S3,

R3 : S1 +S1
1/500−−−→ S2, R4 : S2

1/2−−→ S1 +S1.
(2)

and the corresponding propensity functions for the 4 reactions are

λ1 = S1, λ2 = (1/25)S2,

λ3 = (1/500)S1(1−S1), λ4 = (1/2)S2,
(3)

where S1,S2,S3 are the numbers of each of the 3 species.

We take the initial conditions to be [S1,S2,S3]
T = [105,0,0]T . In order to un-

derstand the dynamics of system (2), Figure 3 presents the temporal evolution of a

single sample path of the system generated by the Gillespie method which simulates

each individual reaction. The behaviour is characterised by two distinct time scales,

an initial transient phase in which there is rapid change, and a subsequent long phase

in which the further evolution is very slow.

This motivates the use of adaptive timesteps. The expected change in species Si

in one timestep of size h is approximately equal to h∑ j νi jλ j, where νi j is the change

in species i due to reaction j and the summation is over all of the reactions. Hence,

to ensure that there is no more than a 25% change in any species in one timestep,

the timestep on the coarsest level is taken to be
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Fig. 4 MLMC results for the continuous-time Markov process using adaptive timesteps.

H = 0.25 min
i

{
Si +1

|∑ j νi jλ j|

}
. (4)

On level ℓ, this timestep is multiplied by M−ℓ. The choice M=4 is found to be good;

this is in line with experience and analysis of SDEs which shows that values for M

in the range 4− 8 are good when the multilevel variance is O(h), as it is with this

continuous-time Markov process application [2].

The output quantity of interest is E[S3] at time T = 30, which is the maximum

time shown in Figure 3. The value is approximately 20,000, so much larger val-

ues for ε are appropriate in this case. The MLMC results for this testcase in Figure

4 indicate that the MLMC parameters are α = 2,β = 2,γ = 2, and hence the com-
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putational cost is O(ε−2(logε)2). Additional results show that the computational

efficiency is much greater than using uniform timesteps.

Note that these numerical results do not include a final multilevel correction

which couples the tau-leaping approximation on the finest grid level to the unbiased

Stochastic Simulation Algorithm which simulates each individual reaction. This ad-

ditional coupling is due to Anderson & Higham [1], and the extension to adaptive

timestepping is discussed in [12]. Related research on adaptation has been carried

out by [14, 13].

4 Conclusions

This paper has just one objective, to explain how non-nested adaptive timesteps

can be incorporated very easily within multilevel Monte Carlo simulations, without

violating the telescoping sum on which MLMC is based.

Outline algorithms and accompanying numerical demonstrations are given for

both SDEs and continuous-time Markov processes. For those interested in learning

more about the implementation details, the full MATLAB code for the numerical

examples is available with other example codes prepared for a recent review paper

[5, 6].

Future papers will investigate in more detail the FENE simulations, including

results for molecules with multiple bonds and the interaction with fluids with non-

uniform velocity fields, and the best choice of adaptive timesteps for continuous-

time Markov processes [12].

The adaptive approach could also be extended easily to Lévy processes and other

processes in which the numerical approximation comes from the simulation of in-

crements of a driving process over an appropriate set of time intervals formed by a

union of the simulation times for the coarse and fine path approximations.
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