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Abstract

Algorithm Developments for an

Unstructured Viscous Flow Solver

Pierre Moinier Doctor of Philosophy
St Hugh’s College Trinity Term 1999

An efficient preconditioned multigrid method is developed for both inviscid and
viscous flow applications on unstructured hybrid grids. The work builds upon recent
breakthroughs in convergence acceleration on structured grids using preconditioning
and multigrid. It is motivated by the results obtained with standard multigrid
methods with a scalar time step which performs well for Euler calculations but is
far less effective for turbulent Navier-Stokes calculations due to the highly stretched
cells needed to resolve high Reynolds number boundary layers.

The new scheme provides rapid and robust convergence, and yields computa-
tional savings of roughly a factor of three compared to the standard method for
a wide range of 2D and 3D inviscid and viscous cases (airfoils, wings, airplane
and internal flows). The good performance of the numerical method is explained
by analysis of the stability limits of a first order upwind discretisation of the Eu-
ler equations, which is a close approximation to the viscous discretisation on the
coarser multigrid levels. In the analysis, the preconditioned system is shown to
have a field of values which remains inside the stability region of the Runge-Kutta
scheme, thereby guaranteeing algebraic stability.

For improved accuracy and convergence for low Mach number applications, the
scheme is modified through the additional use of a low Mach number preconditioner.
The conclusions of the numerical analysis remain unchanged provided the low Mach
number preconditioner is symmetric and positive definite. Analysis of the precondi-
tioned Euler equations also shows the very significant effect of the preconditioning

on the effectiveness of boundary conditions in eliminating initial transients.
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Chapter 1

Introduction

In the last two decades, a large variety of computational fluid dynamics methods has
been developed to solve the compressible Euler and Navier-Stokes equations used in
aeronautical applications. Progress in algorithm development (including multigrid
methods) and parallel computing techniques have made the prediction of inviscid
flow around complex geometries a rapid and robust procedure. Numerical modelling
of transonic flow over a complete aircraft using the Euler equations is now reliable
and efficient so that the need for further development does not appear overwhelming.
However, for an accurate aerodynamic analysis, viscous effects must be considered.
To capture these viscous effects, the Reynolds-averaged Navier-Stokes equations are
solved with some turbulence model, and transition must also be modelled. The
problem is that at high Reynolds numbers typical of aeronautical applications such
flows are physically and numerically stiff, and a dramatic degradation of the iter-
ative convergence is observed. The present work focuses entirely on this aspect,
and is a continuation of recent breakthroughs in that perspective. The reason why
viscous calculations are problematic is the highly stretched computational cells that
are needed to efficiently resolve a high Reynolds number boundary layer. These
very high aspect ratio cells are required to accurately represent the steep gradients
across the boundary layer but increase considerably the size of the problem to solve,
in term of storage and computational cost. With the development of computers, the

size of these problems will become even larger, therefore, it is important that the



Chapter 1 - Introduction 2

convergence rate of the iterative method used should be grid-independent. To over-
come these drawbacks, the solution procedure most commonly adopted is multigrid.
The theory of multigrid is very well developed for the case of elliptic problems, and
is based on an updating scheme acting as a smoothing operator on each grid level.
Roughly speaking, a sequence of successively coarser grids that can represent the
smooth error modes of the finer grid is required, as well as some iterative procedure
which eliminates the high frequency error modes on each grid. Although the theory
is not well developed for hyperbolic p.d.e’s, nevertheless excellent convergence rates
are achieved for the Euler equations. Therefore, multigrid is the most attractive

approach for Navier-Stokes calculations as well.

1.1 The numerical solution of the Navier-Stokes equa-

tions

In the present work, attention is focused on developing efficient numerical methods
in the context of multigrid for steady viscous flows from nearly incompressible to
transonic and supersonic speeds. The steady state is achieved by eliminating the
transient behaviour either by damping or by expulsion from the computational do-
main [60]. The damping is essentially a local process, whereas the propagation is
a global one. Consequently, it is the damping properties of the relaxation scheme
that are the most critical for insuring insensitivity to problem size. To drive the
multigrid algorithm, explicit or implicit relaxation schemes can be used. Explicit
schemes, limited by a CFL condition, offer a cheap computational cost, low stor-
age requirements and good parallel capabilities. Alternatively, implicit schemes,
theoretically unconditionally stable, require a high operation count, much more
memory and are more difficult to parallelise. In the current approach, an explicit
scheme is retained. The semi-discrete scheme proposed by Jameson et al [72] uses
multi-stage Runge-Kutta time-stepping with coefficients chosen to promote rapid
damping and propagation of error modes, by ensuring that the amplification factor

is small in the region where the eigenvalues corresponding to high frequency modes
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are concentrated. Such an algorithm has proven to be highly successful for inviscid
calculations, and has shown good multigrid performance. However, when dealing
with the Navier-Stokes equations, the multigrid performance is not nearly so good.

In his thesis, Pierce [63] has given a very complete diagnosis of Multigrid Break-
down. The three fundamental causes of poor multigrid performance are (a) stiffness
in the discrete system, due to the disparity in the propagative speed of convective
and acoustic waves, (b) decoupling of modes which happens when the flow is aligned
with the grid causing the convective error mode which is saw-tooth in the cross-flow
direction but smooth in the flow direction not to be eliminated on the fine grid,
and (c) the highly stretched cells inside the boundary layer. The first two manifest
themselves in a identical manner by causing the corresponding eigenvalues of the
discrete residual operator to fall near the origin in the complex plane so that they
can not be damped efficiently by the multi-stage Runge-Kutta scheme. They are
the cause of degraded multigrid performance for inviscid calculations, and persist
for Navier-Stokes calculations. The highly stretched cells are a far more serious
problem for viscous calculations and lead to acute ‘numerical stiffness’ problems.
This numerical stiffness is related to the fact that the timescale for viscous diffusion
across a high Reynolds number boundary layer is much greater than the timescale
for the propagation of a pressure wave across the boundary layer. Using explicit
solvers restricted by the acoustic timescale, this leads to very slow convergence for
the convection/diffusion of streamwise momentum and temperature. There is also
numerical stiffness directly related to the source terms in the turbulence model;
these will be treated by a point implicit method in order to achieve a satisfactory
level of robustness.

To cope with the problem of highly stretched cells, different methods have been
proposed, including a semi-coarsening multigrid strategy and the use of a precon-
ditioner. All these methods aim to produce the same effect, which is to damp as
efficiently as possible all the error modes. The idea of the semi-coarsening, suggested
by Mulder [57], is not to coarsen the mesh in every direction simultaneously, so that

each level of the sequence of grids used in the multigrid strategy involves several
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grids which can cope separately with each mode.

Alternatively, Allmaras [2] suggests the use of a preconditioner, depending on the
multigrid strategy used. For example, he recommended the block-Jacobi matrix
preconditioner proposed by Morano et al. [55] with a semi-coarsened strategy. The
effect of the preconditioner is to move the eigenvalues away from the origin of the
Fourier complex plane providing, within an optimised Runge-Kutta update, a very
good damping of the high-frequency error modes.

Recently, Pierce and Giles [65] have analysed different combinations of precondi-
tioner and multigrid method for both inviscid and viscous flow applications. For
turbulent Navier-Stokes calculations, a block-Jacobi preconditioner and a semi-
coarsening multigrid method provides an effective damping of all modes inside the
boundary layer, both in theory and in practice. The preconditioner damps all the
convective modes, while the multigrid strategy, in which the grids are coarsened
only along the normal to the boundary layer, ensures that all acoustic modes are
eliminated efficiently. Thus, they have demonstrated that considerable speed-up can
be achieved when using stretched structured meshes.

In this work the same idea is followed, but for unstructured grids. The preconditioner
is implemented in a multigrid solver which has proven to be highly successful for
inviscid meshes [17, 18], but is modified to treat the highly stretched cells required
for high Reynolds number flows [20] so that the equivalent of a semi-coarsening

strategy is employed.

1.2 Unstructured grids

Navier Stokes flow solvers on structured grids have been developed to a point where
complex flows can be accurately modeled. [83, 40]. However, the required grid for
an aircraft configuration is difficult and time consuming to generate; multiple blocks
are required to allow for both the geometrical complexity and the disparate length
scales of the flowfield. Thus, the use of unstructured mesh techniques has become

more popular because of the added flexibility they offer in dealing with complex
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Figure 1.1 Refined grid for Onera M6 wing

geometries, and enabling grid adaptation where extra grid points can simply be
added where they are needed (see figure 1.1).

However, a major drawback of such techniques remains their lower efficiency
and increased computational cost as compared to structured mesh techniques. This
lower computational efficiency is due to several factors; one is that it is much harder
to formulate higher order discretisations, and so instead one may need to use more
grid points than for a structured grid calculation. Another is the computational cost
(and memory requirements) of indirect addressing. A third factor is an increased
cost per grid point due to the use of simplex grids (triangles in two dimensions,
tetrahedra in three dimension). The additional cost incurred by the use of tetrahe-
dral meshes can be demonstrated by considering a structured hexahedral mesh of
N vertices. For an edge-based finite volume scheme, there are N unknowns, and
3N fluxes which must be evaluated (effects of the boundaries are neglected). If this
hexahedral mesh is now subdivided into a tetrahedral mesh, the equivalent finite-
volume scheme consists of N unknowns, as previously, but the evaluation of 7NV
fluxes is now required to construct the discretisation (again neglecting boundary

effects). Thus, a tetrahedral mesh discretisation is roughly twice as expensive to
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i

Figure 1.2 Closeup views of the flap edge and the cove for a wing-flap configuration

evaluate as a hexahedral mesh discretisation. One possible solution to reduce the
cost of the discretisation is to switch to other types of elements in region of high grid
stretching, where their number is very dense. The idea is then to use quadrilaterals
out of a pairs of triangles in two dimensions, or prisms, pyramids and hexahedra out
of groups of tetrahedra in three dimensions. The use of mixed elements, or hybrid
grids, in a unstructured mesh technique offers to some extent the best compromise
between mesh quality, efficiency and flexibility. Figure 1.2 show the closeup views of
the surface grid near the cove and the flap edge for a wing-flap configuration, where
a blend of hexahedra and tetrahedrals are used. Typically these meshes are com-
posed of prismatic elements close to the surface of the geometry being modeled and
tetrahedral elements in the far fields. The prisms provide the option to use sufficient
grid-clustering in the normal direction as well as flexibility in geometric modelling
by using unstructured tesselation, whereas the tetrahedrals are used to fill the outer
inviscid region with a gradual transition in grid sizes at the grid interface between
prism and tetrahedra [85, 39]. The hybrid approach has already been advocated by

several authors[39, 5, 11], and constitutes the framework in which this work is done.
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1.3 Low Mach regime capability

Another aspect of this work concerns the capability to solve low Mach number flows.
For small Mach number, it can be shown that the incompressible equations approx-
imate the compressible equations. But there are many problems, particularly in
turbomachinery, where the flow can vary from low subsonic to supersonic. Also in
low speed aerodynamics at high angle of attack most of the flow has a low Mach
number, but there are localised regions containing shocks. Consequently, it is ap-
propriate to use the compressible equations even where the Mach number of the
flow is small. However, the observed convergence rate gets substantially slower and
the solution produced is usually of poor quality, with pressure oscillations visible
in contour plots. The slowdown is due to some analytic stiffness arising from the
inherent propagative disparities in the limit of vanishing Mach number, where the
ratio of the convective speed to the acoustic speed approaches zero. This type of
stiffness is often treated using preconditioning techniques [82, 86, 77]. By altering
the acoustic speeds of the system such that all eigenvalues become of the same or-
der this difficulty is completely alleviated. In addition, the solution can also be
improved by changing the artificial dissipation in the spatial discretisation. Based
on the preconditioned system, the relative scaling of different numerical smooth-
ing terms can be improved, and the steady-state solution becomes more accurate.
Unfortunately, these benefits are achieved with difficulty because local precondition-
ers designed for low Mach number performance have poor robustness at stagnation
points. Darmofal and Schmid have shown that this lack of robustness is due to un-
limited transient amplification of perturbations resulting from a degeneration of the
structure of the eigenvectors of the preconditioned equations [23]. These becomes
highly non-orthogonal as M — 0. The most common technique to avoid this robust-
ness problem is based on limiting the effect of preconditioning below a multiple of
the freestream Mach number. This multiple is typically greater than one [66], and
destroys the locality of the preconditioning, since the limit becomes more global.

Furthermore, there are problems where a reference Mach number is inappropriate
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or non-existent and where this type of limiting is difficult to realize. Examples of
these type of flow would be a hypersonic flow around a blunt body (which would
contain regions of subsonic flow) or flows in pumps and turbomachinery. A possible
way to address this problem is to base this limit on the local Mach number, or on
strict local information like the pressure [24].

For non-linear calculations where the local mean flow is altered by the perturba-
tions, the poor eigenvector conditioning can lead to significant transient growth and
therefore slow down convergence as transient effects are continuously stimulated by
incoming waves. The van Leer and Turkel preconditioners both suffer from signifi-
cant initial growth rate whereas the block Jacobi preconditioner does not. Although
the block Jacobi preconditioner is the best approach to avoid transient effects, it
does not accelerate the long wavelength modes as M — 0 and does not improve
the solution quality for nearly incompressible flows since the characteristic speeds
are not effectively equalised. However, this stiffness can be fully addressed by in-
tegrating a low Mach number preconditioner in the dissipation and hence in the
block Jacobi preconditioner. This approach, which is the one followed in this work,

is attractive because it does not require any change of variables in the current code.

1.4 Stability analysis

The preconditioned system thus defined and integrated in an appropriate multigrid
strategy shows good multigrid performance for any Mach number. Analytic expres-
sions for the preconditioner Fourier Footprints inside an asymptotically stretched
boundary layer cell reveal why the preconditioner damps all convective modes and
leads to substantial improvements [63]. But there is now a need for the supporting
numerical analysis to investigate and give local timestep stability limits. Considering
linear differential equations with constant coefficients on structured grids, the Von
Neumann method for stability analysis is generally applied. The central idea is that
such equations have particular solutions based on a Fourier expansion and to eval-

uate the conditions for which the amplitude of any error harmonic does not grow in
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time. Using unstructured grids and variable coefficients, this approach is not appro-
priate, and consequently another method is applied. There are two well-documented
stability analysis method which can then be used. One involves consideration of the
eigenvalues of the matrix representing the discretisation of the spatial differential
operator. For a lot of cases, this leads to sufficient conditions for asymptotic sta-
bility, but there are well-known examples such as the first order upwinding of the
convection equation on a finite 1D domain (e.g., [67], [42], [80]) for which this is
not a practical stability criterion because it allows an unacceptably large transient
growth before the eventual exponential decay. The other one, which is the one that
is used in this work, is the energy method [68] which relies on the construction of
a suitable defined “energy” which can be proven to monotonically decrease. In his
paper [28], Giles analyses the semi-discrete and fully discrete Navier-Stokes equa-
tions arising from a Galerkin discretisation on a tetrahedral grid, and presents two
bounding sets for the field of values arising from this discretisation. From these he
obtains sufficient time-step stability limits for both time accurate and local timestep
computations.

This work also examines and evaluates the limits of the stability region of the
scheme, but since the discretisation uses an edge-based data structure, which at the
moment is the most common approach [3, 61, 7, 54, 51], the same stability analysis
can not be performed. Within the edge-based discretisation, the treatment of the
viscous terms appears to be too difficult, and thus, only the Fuler equations are
considered in a first order upwinding scheme. Although the Navier-Stokes equations
are solved, a purely first order numerical dissipation is used on all coarser meshes
of the multigrid, and on these coarser levels the viscous terms are not significant.
Thus, the conclusions that are drawn from the inviscid stability analysis remain

pertinent enough to explain the good behaviour of the Navier-Stokes calculations.
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1.5 Summary

The main body of the dissertation is divided into five chapters corresponding to the
development of a basic Navier Stokes solver to incorporate preconditioning and a
low Mach number capability, to end up with an algorithm capable of dealing with
a complete range of Mach numbers for any internal and external flows.

Chapter Two begins with the spatial discretisation followed by the time-stepping
scheme, and the edge collapsing multigrid method. Specific attention is focussed on
the treatment of the highly stretched cells required for turbulent calculations, in both
the discretisation and the edge-collapsing multigrid method. Finally, the turbulence
model is introduced, and its treatment described.

To cluster the residual eigenvalues in regions where the multi-stage Runge-Kutta
has a rapid damping and propagating effect, the block Jacobi preconditioner is used.
Chapter Three describes how to evaluate it, and how to adjust it in order to include
a slip boundary condition. Components of the matrix are also given.

The following chapter presents a stability analysis of the resulting method and
explains the reasons why good multigrid performance is observed. After first consid-
ering applications with periodic boundary conditions, the influence of a slip bound-
ary condition is investigated.

Chapter Five describes the new discretisation that the introduction of a low
Mach number preconditioner implies and also investigates the influence of this pre-
conditioner on the boundary conditions. When the solution has almost converged to
the steady state, so that only low frequency waves remain, the analysis determines
whether an exponential decay of the amplitude of these waves can be expected.
Finally, the extension of the stability analysis of the previous chapter is presented,
giving a complete study of the method used throughout this work.

All the results in two and three dimensions are gathered in Chapter Six. Going
from inviscid to viscous, a complete set of test cases exemplify the resulting method
on grids of various complexities.

A concluding chapter summarises the main results of the research and provides
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some suggestions for future work.



Chapter 2

Discretisation

The objective of this work is the prediction of steady compressible turbulent flows
over complex geometries using hybrid grids. The starting point was a turbulent
Navier-Stokes algorithm on tetrahedral grids developed with Dr. Paul Crumpton
[20]. This used a fully automatic edge-collapsing multigrid method in a framework
allowing parallel computation [10] and included the Spalart-Allmaras turbulence
model [76]. Moving to hybrid grids for the reasons outlined in the Introduction
required the development by Dr. Jens-Dominic Miiller of a modified grid-collapsing
strategy [59]. For the flow discretisation there are also some changes due to the use
of hybrid grids, but the key features are unchanged. In particular two important
aspects of the discretisation remain valid: first the introduction of an anisotropic
linear preserving Laplacian and then the addition of some edge derivative terms in
the evaluation of the gradient. Both increase the robustness of the algorithm.

This chapter is organised as follows: firstly, the spatial discretisation is described
followed by the time-stepping scheme, and then the element-collapsing multigrid
method. Specific attention is focussed on the treatment of the highly stretched
cells required for turbulent calculations, in both the discretisation and the element-
collapsing multigrid method. Finally, the turbulence model is introduced, and its

treatment described.

12
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2.1 Governing equations

In Cartesian coordinates (z, y, z), the Navier-Stokes equations are non-dimensionalised

using the variables

LT _ Y i Z o _tUrey
z = ) y = Y = 9y = )
Lref Lref Lref L

W o

) M e |
Uref Pref UrefLref

7U - )
Uref Uref
s _ P s P o T

p = ) p = ) )
Pref Pref Tref
where the reference length scale L,.; is 1 metre and the reference density p,.;,

pressure p,.; and temperature T;..; correspond to atmospheric standard temperature

and pressure at sea level. A reference velocity U,y is then defined by U,..; = , /?—6;.

Omiting the asterisks for clarity, the three-dimensional Navier-Stokes equations then

take the form

0 0F, O0F, OF,
09 + =2+

ot or oy 0z 21
where
p pu
pou PU2 +DP— Tzz
Q = pv fz = PUV — Tyq
pw PUW — Tyy
pE (PE +p)u — uTpy — 0Typ — WTay + Gy
PV
PUV — Tyy
Fy= pv>+p = Ty
PUW — Tyy

(PE + p)v — uTypy — 0Ty — WTay + qy
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pw

PUW — Ty

F, = PUW — Ty,

pw2 +D— Tz

(pE +p)w — uTy, — 0Ty, — WToy + Q2

P, u, v, w,p, B denote the density, the three Cartesian velocity components, the pres-

sure, and the total internal energy, respectively. To complete the system of equations

requires an equation of state for an ideal gas,

1
p:pRT:(7—1)p<E—§(u2+02+w2)>,

in which R, T, are thr gas constant, temperature and uniform specific heat ratio,

respectively, as well as equations defining the heat fluxes,

T ar
oy

q$=—k%, Qyz_k

qr = —k—

with the coefficient of thermal conductivity & = % and Pr the Prandtl number

(Pr = 0.72 for air). The deviatoric stress are given by:
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where the molecular viscosity i is modeled by Sutherland’s law,

_ 1.461 x 107°73/2
- T+1103

1

and the bulk viscosity A is defined by invoking Stokes’ hypothesis

A=—Zu.
S

For turbulent calculations, the Reynolds averaged Navier-Stokes equations [70]
are solved using a turbulence model for closure. The one chosem througout this
work is the Spalart-Allmaras turbulence model [76]. Following from the Boussinesq
hypothesis [8], the averaged equations take the same form as the Navier-Stokes
equations if the definitions of the viscosity and thermal conductivity are modified to
incorporate both molecular and turbulent contributions. The total viscosities then

become

2
Wtot = b+ [ht, Aot = —g,utot,

and the thermal conductivity is given by

Y Y
kypy = — 4 %
ot pr T Pry’

where p; is the turbulent eddy viscosity and Pr; is the turbulent Prandtl number
(Pr; = 0.9 for air).

To obtain a well-posed problem, appropriate boundary conditions must be im-
posed on the domain boundary. For the Euler equations, the appropriate solid wall
boundary condition is zero velocity normal to the wall. For the Navier-Stokes equa-
tions, both the normal and tangential velocity components are zreo at the wall and
either the temperature or the heat flux must be specified at the wall. Calculations
are generally performed on a truncated domain, so in practice it is also necessary

to introduce boundary conditions at the far field boundary.
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2.2 Spatial Discretisation

For clarity, the 3D compressible Reynolds-averaged Navier-Stokes equations are ex-

pressed in the more concise way

%—f +V.F(Q,VQ) =8(Q,VQ). (2.2)

Q(x) is the vector of conserved variables, (p, pu, pv, pw, pE)T. F(Q,V Q) is the total
flux and the source term S is of the form (0,0,0,0,0)”.

The discretisation described here is appropriate for any hybrid grids. Using the
finite volume approach, equation (2.2) is integrated over some control volume, which

after the application of the divergence theorem gives the expression

1
Rj=— ( - F(n,Q,VQ)ds —

S(Q,VQ)dv> =0, Vj (2.3)
Vj

v
where V; is the measure of the control volume associated with index j. Here the
unknowns are stored at the nodes of a given grid, and the control volume is the
‘median-dual’ [6] which is constructed around each node x; of the grid by joining
the centroids of the cells surrounding the node with the midpoints of the edges
(see figure 2.1). For interior grid points, the flux integration in equation (2.3) is
approximated by using pre-computed weights for each edge of the grid, see [56, 38,

59]. These edge weights are anti-symmetric; the contribution of the edge appears

Figure 2.1 Median dual around an internal node.
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with opposite signs at either end, ensuring conservation by construction.

F(n,Q,VQ)ds ~ Y F(ni;,Q, V), Asij (2.4)

iEE]‘

oV =g (xitx;)
J

where E; is the set of all nodes connected to node j via an edge, n;; is a unit vector
and As;; an area associated with the edge connecting nodes 4 and j.
For nodes on a boundary, extra terms from the boundary faces are added, so
that the approximation of the flux will be written as
Fn,,)ds =Y F0ijy ) et sy 2 815 + Yo Flog,,)lg Ase (25)

L 2
3‘/} ’iGEj kEBj

Here Bj is the set of boundary faces associated with node j (e.g. wall 4 inflow).
ny is the corresponding normal and Asjy an area. The edge weight conservation (or
closure of the control volumes) implies that

ZnijASij+ Z ng,As,=0.

i€R; kEB;

Hence, the discrete equivalent to equation (2.3) becomes

1 .
Rj = Z Fij A sij+ Z Fp Asp—SiVi| Vg (2.6)
J 1€E; kEBj

where Fj; is the numerical flux in the direction n;; associated with an antisymmetric
edge (i,7), and F} is the one associated with the boundary face k& with no viscous
contribution, since at the wall the boundary conditions are an adiabatic boundary
with a zero relative velocity between the fluid and the solid wall.

It now remains to define the discrete flux functions, and then the spatial dis-
cretisation is complete. Since the flux F can be split into an inviscid and viscous
part

F(1n,9,VQ) =F'(n,Q) +F"(n,Q,VQ)

for any unit normal n, the discrete approximation F' of F will have an inviscid and

viscous part. Each of these is presented in the next two sections.
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2.2.1 Evaluation of F’
Basic discretisation

The scheme described here is motivated by the well-known MUSCL [32] approach,
in which a functional representation of () is used within each control volume to
arrive at a Riemann problem at the interface between control volumes. Consider
the flux Fj; to be evaluated at %(xZ + x;). Let @' and @~ be values obtained by
reconstruction within volumes ¢ and j, respectively. Then, the flux at the interface
is based on the flux-differencing ideas of Roe [69] combining central differencing
of the nonlinear inviscid fluxes with a smoothing flux based on one-dimensional

characteristic variables. It is expressed as
1 — —
Fj =5 (FHQN) + F@Q) ~ 1451(@ - @) (2.7)

where F;; = F(n;;,,) and A;; = OF/0Q. This approach is often seen in the
literature [46, 6, 75]. It is crucially important to note that this characteristic de-
composition is performed in a one-dimensional fashion in the direction n;; at the
interface between volumes ¢ and j. With the premise that any inaccuracies associ-
ated with this approach are derived from this one dimensional approach, here we
endeavour to modify the above to be (a) robust, (b) cheap to evaluate and (c) a
good smoother for multigrid.

Since the reconstruction of Q™ and @~ is an expensive process, the first step is

to approximate equation (2.7) by
1 _
Fj = 5 (Fi5(Qi) + F3(Q5) = [451(QF - Q7))

The flux terms now use the nodal variables and so this expression can be more easily
interpreted as a central difference (or Galerkin) method with numerical smoothing,
as in [56]. The evaluation of this central difference term is computationally cheap
since the reconstruction of the values QT and @~ is not necessary. Since this
discretisation is to be used within a 5-stage Runga-Kutta (see section 2.3) where

the numerical smoothing will only be evaluated on a few of the steps, and the basic
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flux terms will be evaluated on every step, a considerable computational saving has
been made.

The next step is to modify the form of the numerical smoothing term. To
motivate this, we consider the approach adopted by Lohner [46] in which the values
Q;+ and @Q;- are constructed at points x;+ and x;- such that x;+, x;, x; x;- are
equi-spaced along a straight line. Consequently, many well-established four point
schemes for the evaluation for the flux can be employed, see [32]. In particular,
ignoring any limiting that may be necessary, the dissipation term for one such family
of methods can be expressed as

1

1 1 1 1
[451(QF —Q7) = S(1=m)|A;] | (GQ+ — Q5 +5Q:) — (5@ — Qi+ 5Qi-)| (28)

where k € [0, 1] represents a one-parameter family of second order schemes for a
one-dimensional uniform mesh, with the exception x = 1/3 being a third order
scheme. The value, k = 1/2, is used throughout this work.

With this motivation, we define the numerical inviscid flux FZIJ to be

1

Pl % (f{j(Qi) + FLQ;) - 5 (1= m)1A441(L;(Q) - LAQ))) (2.9)

where L is an undivided pseudo-Laplacian with a negative unit central coefficient.
Here, this is generalised for unstructured grids by defining L as

1
#(Ej)

Li(Q) = > (Qi— Q) (2.10)

1EF;
where #(E;) represents the number of elements in set £;. This scheme is now very
similar to some structured grid discretisations [35], and similar algorithms have also

been successfully employed on unstructured grids [38].

Another important comment concerns the upwinding treatment. In areas where
one of the characteristic speeds passes through zero, the definition of these must
be modified to avoid the formation of non-physical expansion shocks and problems
with stability. The treatment that is used is based upon the ideas of van Leer [81],
and written as

Aoz, = mazx (|A], 2AX) .
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In this definition, X is the eigenvalue, and AM the difference between the corre-
sponding eigenvalues evaluated at each node of one edge. The effect of this fix is
to maintain a certain minimum level of numerical smoothing which prevents non

physical behaviour but without unnecessary corruption of the physical solution.

Modifications to pseudo-Laplacian

The drawback of using the simple pseudo-Laplacian is outlined in [13]. Broadly
speaking, one wants

L;(@Q) ~ 0k v*Q|,_,

so that the dissipation term in equation (2.9) is O(h%). After being integrated
around the control volume in equation (2.6), and divided by the volume, this gives
an error which is O(h?) consistent with the truncation error of the basic central
difference Galerkin approximation.

However, a simple Taylor series expansion of LQ about x; reveals that
L= L;(x). VQl,_y, +O()

where L;(x) = (Ljz, Ljy, Ljz)T. Consequently, the local truncation error will not
be second order unless the mesh is sufficiently smooth.

Another interpretation is that L will not preserve a linear solution. The basic
Galerkin discretisation is exact when F(Q) is a linear function and Q varies linearly
with x. However, if L;(x) is not identically zero, Q; = Q(x;) will not give a zero
residual and so it is not a solution of the discrete flow equations.

This has been found to give poor results on general grids [13], so the following

modification is made
L?(Q) = Lj(Q) — VQ;.L;(x)
so that L;p (@) will be ‘linear preserving’ provided V@Q); is exact for linears. That is,
if @ = a.x + ¢ then L;(Q) = a.Lj(x) and VQ; = a, and so L;p(Q) =0.
The calculation of V(); is approximated using the edge weights.

VQ; = Z %(Qi-l-Qj)nijASij-l- Z QjniAsy, = Z %(Qi_Qj)nijASij . (2.11)

iEE]‘ kEB]‘ ’iGEj
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(O,h)
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Figure 2.2 Schematic of highly stretched grid

It is worth noting that this discretisation is to be used within a multigrid method
(see section 2.4), which requires the damping of high frequency error modes. A local
mode analysis of L; in equation (2.10) on a structured grid reveals good damping
properties for high frequency modes [14]. The advantage of this linear preserving
operator is the high-frequency damping properties of L are identical to those of L
since the correction term involves a central difference type of operator, which has
minimal effect on high frequency modes. However, at boundary nodes the effect of
the linear preserving correction can cause some of the weights of points other than
the central one to become negative, threatening the stability. Such problems are
avoided by limiting the linear preserving correction to prevent negative weights.

When calculating inviscid flows on unstructured grids which are not highly
stretched, the use of the linearly-preserving Laplacian operator L;-p (Q) gives a method
which has been shown to be both accurate and robust [73, 74, 18]. However, a criti-
cal modification is required for the highly stretched grids needed to efficiently resolve
a high Reynolds number boundary layer.

To exemplify the problems associated with applying L” on a highly stretched
grid, consider the piece of two-dimensional grid in Fig. 2.2. Around the leading edge
of an airfoil, the ratio ratio H/h is very large, of the order of 10® or greater, and o

can also be more than 100. The central difference approximation to V@ is given by

— 1
Qz — 5t

o @ Q=]0 0 o0]|@

o o O
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The simple pseudo Laplacian L(Q) is given by

1
1
L@=7]1 —4 1@
1
and hence L(x) = (0,2ah), and therefore
a

Consequently, severe difficulties can be expected if || > 1 because the coefficients
of the linear preserving correction will then become much larger than those of the
basic Laplacian operator L. This loss of diagonal dominance in the smoothing
discretisation typically results in numerical instability.

To avoid this problem, the following anisotropic scaling is introduced

-1

L= | Y ] SR

jem, il | g il
In the example above one now gets
1
Hh "
Q== | L _oH+h 1
1
h
and hence
. Hh 0
L(x) = ——— )
)
H
and
6]
Hh i
L(x) = ———— :
—a
H

Thus, numerical difficulties will occur only if |o|h > H which is a much more

reasonable restriction.
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Figure 2.3 demonstrates the effect of the linear preserving modification for an
RAE2822 2D airfoil; wiggles in the Mach contours are evident when using L, but
do not appear when L is used. This extra smoothness in the solution only due
to the linear preserving dissipation (the numerical dissipation has not been tuned
or modified in any other respect) is thought to be especially important for the
turbulence model, which uses highly non-linear functions in the definition of the
source and destruction terms in different regions of the boundary layer.

The one disadvantage of this approach is the numerical smoothing operator Lv
is anisotropic on highly stretched grids, and so will only damp error modes which are
high-frequency in the direction of highest grid resolution (i.e. across the boundary

layer). This will become crucial to the multigrid strategy that is employed.

Treatment of shocks

A major challenge is the monotonic resolution of discontinuous or very steep inte-
rior layers such as shocks and shear layers, whilst maintaining accuracy where the
solution is smooth, for instance in boundary layers or in the far field. For that
reason, the artificial dissipation consists of a nonlinear blend of second and fourth-
differences, and a limiter is introduced so that the smoothing reverts to first order
characteristic upwinding at shocks well known to be monotone and non-oscillatory.

This formulation is designed to ape the one used in [35, 19], and is written as

R = 3 (@ + #5(@) - 14yl (30 - (I @ - 1) + v(@i - ) )
(2.12)
where
¥ = min <e(2> pi—pif’ : 1) (2.13)
Di + Ppj

Here € is a global user defined constant (taken as () = 8) and p the pressure
at the corresponding node. As already mentioned in the previous section, the error
introduced by the artificial dissipation terms is O(h?) and consequently, when the
solution is smooth and the computation performed on a smoothly varying grid,

second-order accuracy of the basic discretisation scheme is therefore observed. The
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role of fourth-difference smoothing is to damp high frequency solution component
which is essential for the successful application of a multigrid method to improve

convergence to a steady state.

2.2.2 Evaluation of FV

The viscous fluxes can be evaluated in a number of ways. One possibility is to use
the Galerkin finite element approximation (see [38]). This has some difficulties asso-
ciated with the treatment of the non-linearity within the edge-based data structure,
and requires the storage of numerous viscous edge-weights. Another possibility,
adopted here, is to approximate the viscous flux half-way along each edge (ie. ]—"Z‘J/)
and then use the usual integration rule around each volume, equation (2.3), thus
giving a consistent finite volume treatment of the inviscid and viscous terms. This
requires an approximation of V@ at the midpoint of each edge. The gradients of
the flow variables can be approximated at the nodes using the existing edge-weights,

equation (2.11). An approximation at the midpoint of the edge can then be obtained

by a straightforward average,

Y, = 3 (V@i + Q)

However, as this is the average of two central differences, it will not damp high
frequency modes. Although the inviscid flux includes numerical dissipation terms
that will damp these modes, this is insufficient inside the boundary layer where the
viscous terms dominate. To remedy this, the component of V@ in the direction

along the edge is replaced by a simple difference along the edge, giving

VQ;; =VQi; — (VQU 085 — %) 08ij (2.14)
i J
where
.
08;j x|

In the boundary layer, it is the simple differences along the shortest edges which
contribute to the dominant viscous flux terms, and so this formulation damps the

high-frequency error modes. Fig. 2.4 illustrates what the stencil of the Laplacian
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will be in a 1D representation, when V(@ is discretised using a central difference
scheme or a simple difference along the edge. When applied to a high frequency
mode (Fig. 2.5) it appears that in the first case the Laplacian will not have any
influence on it, and no damping will occur, which will be different in the other
case. In other words, without the modification, a sawtooth mode in the boundary
layer will not be damped because the stencil, spread over 5 points, will not see it,
whereas with the correction, the 3 adjacent point stencil will. Without the addition
of the ‘edge-derivative’ terms the algorithm failed to converge. Furthermore, this
discretisation is still linear preserving, in the sense that a solution ) with linear

spatial variation would give identically zero residuals if the function F(Q, VQ) were

linear.
1\ /-1 X /1
VQ VQ ° Y
AQ 1 0 -2 0 1 A Q 1 -2 1

Figure 2.4 Stencils in 1D of AQ using a central difference scheme and a simple difference along

the edge.

Figure 2.5 Representation of a high frequency mode.

2.2.3 Boundary Conditions

Because a multigrid method is being used, it is important that the residual R; is well
defined for all nodes, including boundary nodes. It is often the case with single-grid

pseudo timestepping methods, that boundary conditions are imposed on the update
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vector, or even on the solution after the update has taken place. Here a residual
with the boundary conditions included is defined, which is appropriate since the
FAS multigrid scheme transfers residuals between grids. The differing boundary

conditions are summarised below.

slip This condition is imposed on inviscid walls, where boundary layer effects are
ignored. The mass flux in the boundary flux F} in equation 2.6 is set to zero.
In addition, to enforce the slip condition the normal momentum components
of the residual at all slip boundary nodes are explicitly removed. Thus the
resulting update will not change the normal velocity components which are
initialised to zero. To ensure that spurious normal velocity components are
not introduced by the multigrid process, all nodal normal components are

removed during the multigrid transfer operations.

The normals at the boundary nodes are calculated by averaging the face nor-
mals arising from all the surrounding faces of each boundary node. If a bound-
ary node lies on the junction between some surface and a symmetry plane, the
nodal boundary normal of the surface is projected onto the symmetry plane

for consistency.

no-slip This condition is imposed on viscous walls, where the boundary layer is be-
ing modelled. All components of the momentum and the turbulence equation

of the residual are explicitly set to zero.

free-stream This condition is imposed through the inviscid boundary flux term in

equation (2.6), which is evaluated by solving the Riemann problem, that is

F, = (}—lg(Qk) +fl£(Qoo) - |Ak|(Qk - Qoo))

DN | =

where (Q is a pre-described free-stream state.

periodic Periodic boundaries are gridded such that nodes are matched across peri-
odic boundaries. For example, if the top and bottom of a grid is periodic, then
grid nodes on the top and bottom are matched. By summing contributions

from the finite volume integrals at matching nodes, a consistent residual can
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be constructed. By ensuring the residual is identical at matching nodes, along
with At, @ and V@ the periodic condition is consistently imposed. The multi-
grid transfer operations are also modified to ensure that periodic conditions

remain consistent.

other The basic methodology employed to specify a particular inlet/outlet con-
dition, such as static pressure, enthalpy, etc.. is to modify the free-stream
condition, so instead of using (o, in the Riemann solver on the boundary,

another state is used with the particular boundary condition imposed.

2.3 Smoothing iteration

The iterative scheme used to converge the discrete residuals to zero is pseudo time-
stepping using the 5-stage Runge-Kutta method developed by Martinelli [48]. This

can be expressed as

QW = Q' — ARV k=1,2,3,4,5 (2.15)

Qn+1 Q(5)
J J
where

= G ) - B

BV = 5D Q%) + (1-) B

where C;(Q*~1) is the convective contribution to R; arising from the Galerkin ap-
proximation of the inviscid terms in equation (2.2), and D;(Q%*~")) are the remain-
ing parts due to the source term and the dissipation, both physical and numerical.

The coefficients «y and G are
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This Runge-Kutta scheme is designed to have a large stability region with a low
computational cost, since 3> and (34 are zero and so Dj(Q(Q)) and Dj(Q(4)) need not
be computed.

Preconditioning will be described later, but if one does not use it, then the
standard approach is to use local timesteps. For the Navier-Stokes equations, the

local timestep At; is based on a combination of inviscid and viscous timesteps,

1 1 1 €

where CFL is the inviscid CFL number and € = 0.5. The reason for this is
that for the 5-stage Runge-Kutta scheme used in the present work, the maximum
extent along the negative real axis is roughly twice the extent in either direction
along the imaginary axis, suggesting that the parabolic Courant number is twice the
hyperbolic one, since these two numbers reflects the extent of the stability region of
the Runge-Kutta time-stepping scheme along the negative real and imaginary axes,
respectively.

The inviscid time step is based on a spectral radius upper bound on the Jacobians
of the discrete inviscid operator.

= Z p(Aij) A Sij + Z p(Ag) A sg

At§ Vi =0 kEB;
Here p(A) is the spectral radius of the matrix 0F7/0Q.

The viscous timestep is obtained from the quasi-linear form in term of primitive
variables of the viscous terms and based again on the maximum spectral radius of
the Jacobian matrices [19]. If |x; — x;| is chosen as representative of the geometric
quantities for each edge (i, 7), the viscous timestep is defined by

1 1
o= 3 p(Bij)——— Asyj.
A Vg el T

where p(B) denotes the spectral radius of the matrix dF" /0Q.
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2.4 Multigrid method

2.4.1 Basic approach

Multigrid has had a major impact on CFD and has become an essential part of
any successful steady-state flow algorithm. The fundamental concept behind any
multigrid method is to have a sequence of successively coarser grids that can rep-
resent the smooth error modes of the finer grid, and some iterative ‘smoothing’
procedure which eliminates the high frequency error modes on each grid. Thus, all
error modes are eliminated. This, along with the transfer operations of restriction
(fine to coarse) and prolongation (coarse to fine) defines a multigrid method [87].
On structured grids, a sequence of grids can be constructed trivially by retaining
alternate grid points in each direction. On unstructured grids, however, the gener-
ation of a sequence of grids becomes a non-trivial task. The four main approaches

in the literature are briefly outlined below.

Non—nested Here an independent sequence of grids is produced by some ‘black-
box’ grid generator, and then linked together through the use of efficient
searching algorithms. This has been successfully adopted by several authors
[62, 49, 15]. This approach allows the flexibility of using any grid-based solver,
independent of the data structure used by the solver. However, the generation
of the sequence of grids is not automatic, and requires a robust mesh genera-
tor which has good control of both the surface and interior point distribution.
Often, this involves extensive user interaction. There are also severe problems
in viscous applications with curved boundaries in which the boundary layer

nodes at one location on one grid can lie wholly outside the other grid.

Agglomeration An increasingly popular approach is agglomeration, which has
been successfully applied to very complex problems [84, 50, 51, 53, 52]. Here,
coarse grid ‘edge-weights’ are constructed by fusion of fine grid control vol-
umes. This is completely automatic and very powerful but is totally reliant on
having a discretisation dependending only on ‘edge-weights’, not requiring an

underlying grid. It also has the problem that the sum of accuracy of multigrid
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restriction and prolongation violates the condition established by Hackbush
[30] as being necessary for grid-independent convergence for the Navier-Stokes
equations (see section 2.4.3). An ad hoc fix has then to be used to overcome

it.

Refinement Another strategy is to produce a sequence of fine grids from a coarse
grid, preferably in some sort of adaptive refinement procedure [4]. This seems
an attractive proposition, however, this requires a strong coupling between the
grid refinement and the surface spline definition. There are also difficulties
with complex geometries (e.g. aircraft) when certain features (e.g. fairing)

may not appear on the coarsest grid.

Grid Collapse The philosophy adopted in this work, as in [17, 18], is to use an
automatic point removal algorithm to generate a sequence of coarse grids from
an initial fine grid. This is completely automatic, needing no interaction with
any grid generation process. The resulting grid sequence can be used by any

grid based algorithm, including those which use an edge-based data structure.

choose edge see if valid

Figure 2.6 An example of a collapsed edge with retriangulation

2.4.2 Point-removal

Initially, the strategy was to replace two nodes connected by an edge, by a single
node at the mid-point of the original edge, removing all the elements that were
formed with that edge. The cavity created had then to be retriangulated (see

Figure 2.6) subject to two constraints; all elements had to have positive volume
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Figure 2.7 Collapsing the edge a-b. In the simplex algorithm, the resulting cavity is retriangulated

(center). In the hybrid algorithm the type of all neighboring elements is maintained, except for

those that are formed with the edge, element A-c-d (right).

and not more than a specified number of fine grid vertices could collapse into one
coarse grid point. This algorithm developed by Crumpton [20] works well for simplex
meshes of triangles in two dimensions or tetrahedra in three dimensions, but is not
suitable for hybrid grids. The reason is that given a mesh composed of quadrilaterals
and triangles, the removal of one edge will create a mesh with only triangles (see
Figure 2.7). To be able to coarsen hybrid meshes, maintaining a large number of non-
simplex element, Miiller [59] has developed a similar algorithm which prevents the
neighboring elements that are not formed with the collapsed edge to be triangulated
(see Figure 2.7).

Figure 2.8 shows two possible collapsing sequences for a hexahedron when using
this edge collapsing strategy. In the first sequence the hexahedron nicely degenerates
into a tetrahedron via a prism and a pyramid. All of these elements are nicely
shaped. In the second sequence an odd element is formed with three triangular faces
and two highly twisted quadrilateral ones. Most likely a higher order discretisation
on this element will be unstable and the formation of elements of this quality has to
be prohibited. Due to the incremental nature of the collapsing process, prohibiting
these elements stalls the edge collapsing algorithm rapidly.

The alternative that produces better shaped elements with an appropriate size
on the coarser meshes is the element-collapsing algorithm, presented by Miller in
[58]. The basic ingredients are maintained: a collapse is only permissible if (a) the
edges are not overly lengthened, (b) the resulting geometry is of good quality and

(c) the number of vertices collapsed into a particular one must not exceed a specific
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Figure 2.8 Collapsing edges on a hexahedron.
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Figure 2.9 Parallel edges on primitive elements (shown in dashed lines). Parallel edges share no

vertices, but connect the same faces. If a set of parallel edges is collapsed, the element disappears.

number. The major difference is that instead of collapsing the shortest edge of the
mesh, the smallest element of the mesh is collapsed. In order to make an element
disappear several edges have to be collapsed . In the current implementation the
shortest edge of an element and all of the parallel ones are chosen to be collapsed.
These are edges that connect between the same faces (see figure 2.9). An element
collapse then happens by two faces of an element falling onto each other.

For isotropic meshes, the implementation of this algorithm is straightforward.
Given a fine mesh, each edge is tagged with its length times a growth factor, say
2, as maximum length. The elements are sorted in a heap list for smallest volume
and the algorithm tries to collapse the shortest edge and its parallel siblings. Fixing

a certain maximum angle for the elements in the collapsed geometry, in the 2D
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examples 135°, guarantees a minimum quality of the coarser mesh as well as positive
volumes. This test is done by looping over all elements that are formed with any of
the collapsed vertices and considering what remains on each element. Other edges on
these elements may have been collapsed in earlier steps. E.g. a quadrilateral with one
collapsed edge becomes a triangle, a doubly collapsed quadrilateral vanishes. The
algorithm terminates once there are no edges left to be collapsed. All remaining
elements and nodes are then identified and a coarsened grid is created.

The algorithm has to be modified once more to achieve directional coarsening
in stretched layers. All long edges in stretched regions have to be prevented from
collapsing. For this we need to identify short edges in stretched regions. A first
criterion is that these edges are shorter by a given factor, say 3, compared to the
largest neighbouring edge. Additionally it is required that there is at least one other
neighbouring edge that is short and points into the same direction. This criterion
ensures that single short edges in very irregular unstructured grids do not define a
stretched region.

If an element is in a stretched region, all neighbouring long edges of the ones
to be collapsed are prevented from any collapse. Once the stretched regions have
been directionally coarsened in this way, the isotropic process collapses the rest of
the domain. Figures 2.10 show the two first collapses for a hybrid grid around a
RAE 2822 airfoil. It can be seen that the stretched part of the grid close to the
airfoil remains regular and is coarsened exactly 1:2. The outer part of the structured
region which is not stretched loses some regularity and the quadrilaterals collapse
into larger quadrilaterals and triangles.

Figures 2.11 shows the finest grid and the two first levels of coarsening of a
standard Onera M6 wing. The finest level has 147000 elements, and the sequence
of coarser grids contains 60400 and 3900 elements respectively, corresponding to a
coarsening ratio of 2.4 and 15.5. The low coarsening ratio between the two first level
is due to the poor quality of the initial mesh where the strongest influence at this
level is the angular tolerance. By looking at the grids, it is worth noting that places

like trailing edge, leading edge or junction between wing and symmetry plan can be
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The multigrid method used here is the well-known Full Approximation Scheme [9].

Figure 2.10 Coarsening a hybrid grid around a RAE2822 airfoil. Finest and two successive coarser
more or less severely distorted. However, this is not of paramount importance to

convergence to a steady state as it will be shown later.

Chapter 2

levels.

2

(section 2.3), it remains to define the

Having established the smoother to be used

strategy, every point j on the

transfer operators used. With this point removal

coarse grid has associated with it the set K; of points on the fine grid from which

collapse procedure.

it has been derived through repeated application of the element-

the index of the coarse grid point to which it has

?

for each fine grid point

Conversely,

been collapsed is easily determined. This latter information is the only grid-to-grid
connectivity needed for the transfer operations used here, and thus requires little

addition storage.
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Figure 2.11 Coarsening a tetrahedral grid around an Onera M6 wing. Finest and two successive

coarser levels.
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To guarantee good convergence rate, multigrid theory [30] requires that
Op + Or > Og (2.16)

where Op and Op are defined as the highest degree plus one of the polynomials that
are interpolated exactly by the prolongation and restriction operator and Of is the
order of the differential equation, which equals 2 for the Navier-Stokes equations.

The transfer operators which are used are described below.

Prolongation: transfers corrections A from the coarse grid to the fine grid. A

linear interpolation is used by the reconstruction of the gradients of corrections,
Vie K; AQN=AQ) + (x! —x!").v(AQ");

where AQY and AQ" are the coarse and fine grid corrections respectively. The

gradients of the corrections, V(AQ™) are evaluated using equation (2.11).

Restriction: transfers residuals from fine to coarse grids. The most obvious choice,

analogous to full weighting for the elliptic case, is volume weighting

R;q _ Zz‘eKj VI'R}!
Zz‘eKj v
This assumes that VJH Y ic K; Vih, which is true for the majority of the grid,
however, near boundaries where the surface is constrained, VJH can be con-
siderably larger than ), K; Vih. Consequently the following limited volume
weighting is used.

h ph
" Yiek; Vi Bj

R =
’ maX(VjHa Zie}(j V)

Throughout this work V-cycles have been employed, along with first order up-
winding for the inviscid discretisation (that is ¥ = 1 in equation (2.13)) on the

coarse grids.

2.4.4 The Full Approximation Scheme (FAS)

The multigrid algorithm follows the Full Approximation Storage (FAS) scheme. If

N(Q) = f is a nonlinear system whose solution () approximates a partial differential
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equation, the iterative solver is expressed as
Q' = Q"+ U(f - N(QY) n=12,.. (2.17)

where U denotes the Runge-Kutta procedure and the quantity f—N(Q™) the residual
operator identically equals to —R in the previous text. R = 0 leads to a zero update,

and the FAS procedure is then the following [16]:

e Pre-smooth errors on the fine grid by doing u; relaxations:
Q" = Q" +Un(f" — N"(Q")).

e Form a coarse grid right hand side:
N(Q) = f is a nonlinear system, where @ is the solution vector, and f is a forc-
ing function, the discrete approximation of the system on a grid characterized
by spacing h is written as
Nh (Qh) — fh
where Qh is the exact solution to the discrete system. Let Q" be the current

approximation and now define the error E" as

EM =0~ Q"
so one can write

Nh <Qh +Eh> — fh,
Subtract N*(Q") from both sides to obtain
Nh (Qh +Eh> ~ NP(Q") = P — NMQM) = R".
Written for the coarse grid, characterised by spacing H, this equation becomes
NH (I,?Qh + EH) ~ NH (I,?Qh) i (fh - Nh(Qh)> .
By rearranging terms the coarse grid forcing function is defined as
=1 ("= N"QY) + N (1TQ") .

Solve N7 (Q") = fH using multigrid unless it is the coarsest mesh, in which

case N, iterations of smoother are applied.
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e Prolong the coarse grid correction:
Q"= Q"+ I Q" - I'Q").

e Post-smooth errors on the fine grid by doing ue relaxations:
Q" = Q" + Un(f" — N™(QM)).

The multigrid cycling parameters p1 and po for the smoothing are usually set to 1.

Ner, the number of iteration on the coarser grid, is always chosen to be 5.

Usually, three to five grids are used. Multigrid can be applied in different cy-
cling strategies, depending on the number of recursive calls of a coarser level (see
figure 2.12). In this work, the multigrid cycle is traversed in a V cycle, which has
proven to be the most efficient strategy.

Cycle Description Cycle Description

Figure 2.12 Multigrid cycle descriptions: (e) Apply M-stage Runge-Kutta scheme and transfer.

2.4.5 Influence of higher order discretisation on coarse grids

Usually, the switched higher order formulation of the numerical dissipation is used
on the fine mesh and the first order treatment is used on all coarser meshes. Tables
2.1 and 2.2 show the influence on the convergence of a high order discretisation on
coarse grids.

In a few cases, increasing the order of the numerical dissipation on coarser levels
does accelerate the convergence to the steady state. However, this can not be
generalised and is (a) grid dependent and (b) flow dependent. Note that by swapping

the current pressure switch to a switch based on the velocity, improvements are
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Naca0012 airfoil
Type of grid MG parameters | CPU Time (sec)

525115 833

Triangular grid 535115 799

545115 733

525115 2560

Quadrilateral grid 535115 DNC

545115 DNC

Table 2.1 Inviscid transonic flow calculation. Type of grid, multigrid parameters (# grids, level
on/above which first order smoothing is used, level for full multigrid startup, # pre and post

smoothing iterations, # iterations on coarsest level), CPU time in seconds. DNC: did not converge

RAE2822 airfoil
Type of grid | MG parameters | CPU Time (sec)
525115 1052
Triangular grid 535115 1126
525115 1137
Hybrid grid 535115 DNC
545115 DNC

Table 2.2 Standard RAE test Case 9. Types of grid, multigrid parameters (# grids, level on/above
which first order smoothing is used, level for full multigrid startup, # pre and post smoothing

iterations, # iterations on coarsest level), CPU time in seconds. DNC: did not converge

achieved for viscous calculations on hybrid grids, since convergence is obtained with
a speed up of roughly 30% using second order on the two first level instead of
on the finest one only. Although convergence is achieved, the solution appears
less accurate, particularly in terms of shock location. Consequently, the standard

technique remains the most robust and is retained throughout this work.
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2.5 Turbulence Model

2.5.1 Description

The turbulence model used throughout this work is the Spalart- Allmaras turbulence
model [76]. It is a one-equation model that takes the form of a scalar convection-

diffusion equation with source terms,

ov ov ov ov 1 N )

where v is the molecular kinetic viscosity and 7 is the turbulent working variable.

The source terms have the form

~\ 2
5) AN (2.19)

~ C,
S =cpSv — (Cwlfw - %fﬁ) <d

which may be divided into production, destruction and trip contributions
S=PWw)—D@w)+T
using the definition

P(ﬁ) = Cblgﬁa

2
D) = (Cwlfw - %lfw) (3) :
T = fﬂ(Au)Q.

The trip term provides a mechanism for triggering transition at a specified location

on the geometry.

The equation is put into a non dimensional form by introducing

U =, UV =, W = ———,
V/Poo/ Poo V/Poo/ Poo V/Poo/ Poo
* z E3 y * zZ ~% I;
"'E = _7 y = _7 z — _7 U - .
L L L oo/ Poc

The turbulent eddy viscosity is defined by

vy = I;fvla
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and the auxiliary relations used to construct the production and destruction terms

X
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+Cw3> R g:T‘I'CwQ(TG_T)a

fw_g<96+65}3
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Here, d is the distance to the nearest wall and the closure constants are
2 Cyl = 7.1,

o = 0.622, o =2

cw2 =0.3, cu3 =2, k=041

cp1 = 0.1355,

1
o Cbl + +Cb2’

The auxiliary relations for the trip terms are
5 [ +gt2df]> ,

fitt = ¢ g exp (—Ctz (Au)

ft2 = ¢ exp (—Ct4X2),
Au )

— min(0.1, —2
gt mm( ,StAfEt )

with the additional closure constants given by

Ct3 — ]_2, Ci4 — 0.5.

c1 =1, cp=2,

Here, d, is the distance to the trip point on the wall, S; is the wall vorticity at the
trip, Awu is the difference in velocity between the field cell and the trip and Az, is
the grid spacing along the wall at the trip. At a solid wall, the appropriate boundary

condition is 7 = 0.

2.5.2 Implementation
A first important point to notice is that the trip terms are omitted. These are
2

present to simulate the transition, but for many turbomachinery applications, like
the bypass duct of a turbofan engine, the flow is supposed to be fully turbulent.
Modelling of the transition is then not necessary and not considered in this work.

However it is possible to obtain transition, and the strategy would then consist of
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considering a small domain where the transition is expected in which the source
terms are multiplied by a factor which increases linearly from 0 to 1. The advection
and diffusion terms are not touched by this procedure, so that the transport of the
turbulent front is still realized. This approach is much more suitable for 3D prob-
lems for which the definition of the transition point becomes tricky and difficult to

implement.

The turbulence model requires the normal distance to the nearest viscous wall
at each node, which is pre-computed for each grid. It is important that only viscous
walls are considered when calculating this distance, in order to avoid the production
and destruction of turbulence viscosity at slip walls, where all boundary layer ef-
fects are ignored. At slip walls the turbulence model essentially reduces to a simple

advection operator, as required.

The diffusion term includes the non-conservative term
Vo.Vv

which is difficult to discretise in a manner that ensures positivity. Thus, the dif-
fusion operator is reformulated in a conservative form [76] by assuming that the
molecular viscosity v is constant, which is a good approximation, since it does not
vary significantly. The diffusion operator is then written as

l(V.((l/-l—l?)Vﬁ)-l-ch(Vﬂ)Z) - ﬂv.[(wa)w}-%(yquﬁ)v?ﬂ

o o
= %v (v + (1 + cp)i) V] — %ﬁv%}.

As far as possible, the turbulence model is discretised in the same way as
the Navier-Stokes equations, thereby simplifying the programming implementation.
However, because the advective part is not in conservative form, the formulation
changes slightly through the approximation

/ wvil dvV o~ Y %((uj.nij)(ﬂi + ) —

Vi i€E;

Juj ;| (1= ) (L2 (5) — LP (i) + (0 — ﬁj))) A sjj



Chapter 2 - Discretisation 44

where 1) is the scalar equivalent of ¥ in equation (2.13). Again the numerical
dissipation is a blend of second and fourth differences, but for robustness purposes,
1) is set to 1, enforcing a first order treatment of the turbulence model.

The source terms are sensitive to the method used to compute the distance to
the wall, and in particularly in regions which fall below the logarithmic region of
the boundary layer, the exact distance is required, consequently, for each vertex of
the mesh, the minimum distance from the vertex to the closest viscous solid wall,
which implies finding the perpendicular projection onto the wall, is precomputed

and stored.

To preserve the positivity of &, several modifications are made to the Runge-
Kutta time integration procedure. The contribution of the turbulent source operator
is treated implicitly to limit the rate of exponential decay in the solution. This is
equivalent to employing the standard explicit integration procedure with a reduced

local time step

At
Atimp =

oS
L-[5] At
where At is the explicit time step given, at node j by

2v + ) Asyj
— = u;.ni| A s+
At; 2V g};j'f il & i o |xi—x)

For robustness, the timestep is prevented from becoming too small by using the
Harten entropy fix [31] with a minimum cut off value set to g, where ¢ denotes the
local speed of sound.

While the implicit treatment described above provides a useful mechanism for
limiting the evolution of the turbulence equation in regions of the flow where rapid
decay might otherwise result in negative values of 7, this treatment does not guar-
antee positivity throughout the Runge-Kutta time-stepping procedure. Therefore,
it is important to limit the update to the scheme, whenever a negative value of ©

would result. Defining the standard update by

A = o Aty RFTY,
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positivity is guaranteed by the following limited update

_ AD, Av <0,
Ay, =

(0" = min ) AW ~
P T AT Av >0 .

A minimum value v,;, is maintained throughout the domain, and in practice, this
one is set to the freestream value Upip = Voo = 10 X pino.

Solved within the same multigrid algorithm, the source terms of the turbulence
model are poorly resolved on the coarse levels, and consequently, as in [63], the fine
mesh contribution to the forcing function that drives the coarse mesh corrections
is deflated in regions of the flow where the source terms are strongly active. This
is accomplished using the denominator from the implicit time step, which is equal
to unity in inviscid regions and dominated by the Jacobian ’g—f inside the boundary
layer.

The current implementation of the turbulence model has only be tested on a
series of airfoil calculations and compared with experimental data. Although it
performs reasonably well and seems to be in good agreement with the literature
[63, 71, 76], no further investigation and checking concerning the viscous sublayer
and log-law region have been made, so that the accuracy of the implementation can
be questioned. Nevertheless, it should be emphasised that the main focus of this
work concerns convergence acceleration rather than getting accurate prediction of

the computed flows.
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Preconditioner

Convergence rates obtained with the standard method described previously happen
to be rather poor, particularly for viscous calculations. A way to overcome discrete
stiffness in the Euler and Navier-Stokes equations is to use a matrix timestep or
preconditioner which seek to improve the convergence rate without affecting the

steady-state solution.

Preconditioning techniques belong to two classes. The first class, physical pre-
conditioners, is very successful for the Euler equations on structured meshes [82, 44]
but these preconditioners are difficult to extend to unstructured meshes due to the
lack of directionality in the unstructured case. The fundamental idea is to equalise
the characteristic wave speeds through a computational control volume in order to

eliminate analytic stiffness due to the disparity of the propagative speeds.

The other class of preconditioners look at the discretised system rather than the
analytical equations. They construct a matrix which has the effect of clustering the
eigenvalues of the residual spatial operator in a region of the complex plane where
the iterative method has good damping properties. The present work follows this
approach and uses the block Jacobi preconditioner which has been successfully ap-
plied to the turbulent Navier-Stokes equations on structured grids by Pierce [63] and

to the 2D inviscid and laminar viscous flows on unstructured grids by Ollivier-Gooch

46
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[61]. The extension to the 3D turbulent Navier-Stokes equations on unstructured
grids is straightforward and it has been incorporated within the multigrid solver
described in the previous chapter. In this chapter, the details of the construction of
the block Jacobi preconditioner, including crucial modifications at boundaries are

presented.

3.1 Approach

Scheme Description

The pre-conditioned semi-discrete equation appears as

P’I% +R(Q) =0, (3.1)

where @ denotes the set of conservative variables, R(Q) the residual vector of the
spatial discretisation and P~! the local preconditioner. The solution is updated via
the same multistage scheme described in section 2.3 with the local preconditioner

which may be interpreted as a matrix timestep as it will be demonstrated later.

The block-Jacobi preconditioner is based on a local linearisation of the 3D
Navier-Stokes equations, and constructed by extracting the terms corresponding
to the central node thereby giving a block-diagonal matrix. As the flux can be split
into an inviscid and viscous part, the matrix preconditioner will have contributions

coming from both.

3.2 The Inviscid Contribution

Using a finite volume approach, the integration of the inviscid terms over some

control volume () gives, after the application of the divergence theorem,

1
Rl=— ¢ Fl(n,Q)dS, 3.2
=V b (n, Q) (3.2)

where Vj is the measure of the control volume associated with index j, and F(n, Q)

is the inviscid flux in the direction of the unit vector n. As explained in section 2.2
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the discrete approximation to equation (3.2) is

1 .
Ri=o | Y FfDsiy+ Y FlAs ), Vi, (3:3)
J iEEj kEBj

and the numerical flux takes the form

F=3 (fé-(Qi) FEL@Q) ~ Al (0~ D)(LA(Q) — L;(Q)) + W(Qi - Qm)
(3.4)

where A;; = and its absolute value |A;;| is defined to be T|A|T~', with |A]

oF
09’
being the diagonal matrix of absolute eigenvalues, and T the corresponding matrix

of right eigenvectors. Linearising locally, the resulting equation becomes

1
I
Fijz5

1
(45Q: + 4505 = 14351 = D)(E(Q) — L(Q)) + 7(@i — Q1))
For convenience, the same name is used to denote the flux Jacobian, but it is un-

derstood that it is different from the one in equation (3.4), since it results from the

linearising procedure. It is listed in detail in Appendix A.

Turning now to the computation of the matrix preconditioner for the Fuler
part, Y, B (A;;Q;) is identically zero, because it corresponds to the integration of
a constant over a closed domain, and consequently, considering only the terms which

have a dependence on the central node, one gets

N 1+ 20 1+ 20
1EF; keB;

It appears that the preconditioner is not identical for a 2nd (¥ = 1) or for a 4th
order difference scheme (U = 0), but it shows that it is acceptable to base it on a first
order discretisation even when using higher order schemes; the resulting timestep
will only be underestimated. This is a slight difference from the structured approach
where the block-Jacobi preconditioner remains the same for both schemes [64].

Finally, the inviscid contribution is

-1 1
(PJI) = W Z |Al]| A Sij + Z |Ak| A Sk | - (3'5)
7 \ieE; keB;
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3.3 The Viscous Contribution

The integration of the viscous terms follows the usual rule over each volume, equation
(3.2), giving a consistent finite volume treatment of the inviscid and viscous fluxes.

Consequently, the viscous residual may be written

RY = — ¢ FY(n,Q,VQ)dsS . (3.6)
T Vi Jaa

The viscous flux FV contains expressions of the form ,uu% that can be linearised
about a constant state (u,fi) to become ﬂﬂ%. Following this procedure, equa-
tion (3.6) is approximated using the same pre-computed edge weights as mentioned
previously, but without any viscous contribution from the boundary faces for the
reasons explained in section 2.2. Thus,

Z YV Nsij Vi, (3.7)

’LGE

where Fl‘]/ is the numerical viscous flux in the direction n;; associated with the
edge (7,7). The data structure which is used in representing the unstructured grids
is the edge structure. The evaluation of the gradients has to be done over the
control volume and consequently it makes direct use of quantities like % or ‘g—z

difficult. To write the viscous contribution of the matrix preconditioner the following

approximations are made:

e All cross derivatives are neglected.

e V(@ is approximated by 1. 31 , where 1 is a unit vector for the edge pointing
090 _ Q;—Qi

ol |xj—x;]°

from node ¢ to node j and

After having rearranged the terms, (3.7) can then be written
Z Y 2 N Sij
|XJ - X
’LGE
where B is a 5x5 matrix calculated with respect to the set of primitive variables

Q, = (p,u,v,w,p)T, and transformed to the conservative variables using the trans-

0Q

formation matrix M = ——. Thus, the viscous preconditioner takes the form

20,

( :_ZBM_ —x| A s (3.8)

zEE
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The full matrix preconditioner is

plt=(h (). (3.9)

In the Runge-Kutta integration (see equation 2.15), the local timestep A; is replaced
by CFL Pj, where CFL is set to the maximum value that guaranties the field of
values to lie inside the stability region. P may then be interpreted as a matrix time

step.

3.4 Slip Boundary Condition Adjustment to Precondi-

tioner

To form the block-Jacobi preconditioner, the inviscid and viscous Jacobians need
to be calculated at each node of the grid. However, at the wall, the conditions re-
quire an adiabatic boundary with zero normal pressure gradient and a zero relative
velocity between the fluid and the solid wall. Hence, no viscous contribution must
be evaluated since this one reduces itself to zero. In fact, only a no-slip condition
has to be satisfied which is achieved by setting all momentum components in the

residual to zero.

For Euler calculations, the procedure is slightly different. In addition to the
corrections made on the residual, the preconditioner is modified at the wall in order
that the condition u.n = 0 is satisfied; u and n denote respectively the velocity
vector and the unit normal vector to the wall. This is accomplished by re-evaluating
the matrix in the coordinate system (z,, x¢,, z,), by using a rotation matrix 7' from
the original (z,y, z) coordinate system to the new one. z, is the coordinate in the
direction normal to the surface and the other two are mutually orthogonal tangential
coordinates. Once done, it is transformed back to the original coordinate system
[26]. Generally speaking, the theory is the following:

Let us consider an iterative scheme expressed by

,dQ
P1==_R 3.10
7 , (3.10)
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where P~!, @, and R denote respectively the preconditioning matrix, the flow vari-
ables, and the residual. Calling by T the transformation matrix, whose expression

is

N
|
o o o
3
8
S
<
3
[
o o o o

0 0 0 0 1

the change in ) over a unit timestep can be written as
P T 'TAQ =P 'T 'AQ = —R,
and by multiplying by T,
TP 'T'AQ=-TR=-R

where @ denotes the flow variables, and R = [Ry, Ry, R3, Ry, R5]" the residual,
both of them in the transformed coordinate system. In this system, the normal
momentum equation must be discarded, including the residual Ry, and replaced by
the condition that u, = 0 and hence Au, = 0, where u,, is the normal component

of the velocity vector. The first step is achieved by writing

MTP™'T'AQ = -MR (3.11)
where ) )
10000
0000 O
M=]10010 0|,
00010
(000 0 1]

and the second step by adding the condition

SAQ =0 (3.12)
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where ) )
0 00O0O0
01000
S=100000
0 00O0O0
|00 0 0 0

The modified slip boundary matrix in the transformed coordinate system is obtained
by summing (3.12) and (3.11), and in the original system of coordinate, its expression
will then be

T-Y(MTP™'T™' + $)TAQ = -T"'MTR. (3.13)
Noting that M = I — S, equation (3.13) can be re-written as
(Pl—T'ST(P ' - D] AQ=—(I —-T 'ST)R, (3.14)

where T~ 1ST only involves the unit normal vector, and is written

0 0 0
’I’L2 Ny NyMN
T zTly zlTlz

T ST = NzNy Ny NNy

NgNy Nyn, nz

o o o o O
o o o o O

0 0 0

This correction to the preconditioner is important. Without it, the algorithm fails
to converge because zeroing out the normal momentum residual does not produce a

zero change to the normal velocity.

3.5 Components and implementation of the Matrix Pre-

conditioner

3.5.1 Components

Inviscid

The absolute value of the conservative Jacobian is [37]

A = TIAIT™,
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and the absolute value of the eigenvalue matrix appears as

@l 0 0 0

Al =

0
0 lgu| 0 0 0
0 gl 0 0

0

0
0 0 0 gt
0 0 0 0 lgn — ¢l |

where (ng,ny,n;) is unit normal of the surface through which the flux is evaluated,
and g, = ung + vny + wn,.

The right eigenvectors are the columns of

T = (R1|R2|R3|R4|R5)

where
Ny Ny
UNg Uy — CNy
R1 = VNgy + CNy , R2= Uy )
WNg — CNy Wy + €Ny
7 7
Tng + c(vn, —wny) Tny + c(wng —un,)
T, 1 1
UN, + CNy U+ Cny U — CNy
R3 = VNy — CNy , R4= v+ cny , R5= UV — CNy
WN, w —+ cny, W — CNy,
q2
Tn, + c(uny — vng) H + cqy H — cq,

and the left eigenvectors are the rows of

1
T~ = = (L1|L2|L3|LA4|L5)"
C
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given by
(c2 (y - 1)%) ng + c(wny — vn,)
(v — Dung
L1= (y — Dong + cn, ;
(v — Dwny — cn,,
—(v = 1ng
(c2 (y— 1)%) ny + c(un, — wng)
(y = L)uny — cn.,
L2 = (y — 1)vny, ;
(v — Dwny + cng
(v = 1)ny
(= (v =1)%) n. + c(vn, —uny)
(y — Dun. + cn,,
L3 = (y — 1)on, — cny ;
(y — Dwn,
—(y=1n.
L((r=1% - can) L((r=1% +cgn)
—3 ((y = Du —eny) —3 (v = Du+ eny)
LA= —5((v=Dv—eny) [+ L5=| —5((v—1v+eny)
—3((y = Dw — enz) —1((y = Dw + enz)
s(y—1) z(r=1)

¢*> = u? + v?> + w? and H is the stagnation enthalpy.

Viscous

Writing each quantity as the sum of a steady uniform value and some pertur-
bation, the matrix B is obtained from the linearisation of perturbations about the

uniform flow with the assumptions mentioned in section 3.3 and is given by

B = (C1|C2|C3|C4|C5)
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with
0 0
0 (1 + 1) (3nals + nyly +n.l2)
Cl= 0 , C2= 0 )
0 0
gy Pt P _ 4
ey u(p + pe) (3naly + nyly +nsl,)
0
0
C3 = (o + 1) (%nyly + ngly + nzlz) )
0
(i + pe) (37yly + naly +n2l2)
0 0
0 0
C4 = 0 , Cb= 0 ;
W(p+ ) (3120, + ngly +nyly) 0
D(p+ pe) (3150, + ngly +nyly) 7 ;El;f;ft T

with n, = ngl, +nyly +n.l,.

3.5.2 Implementation

The 5 x5 block-Jacobi preconditioner is computed and inverted for each node before
the first stage of each time step. The residual vector R is then multiplied by P at

each stage of the multistage Runge-Kutta scheme.

To prevent singularities at stagnation points, the matrix preconditioner incor-
porates an entropy fix which is different from the van Leer entropy fix [81] used in
the numerical dissipation, as it does not sufficiently limit the time step. The more
severe Harten entropy fix [31] is used with the minimum of the bounding parabola

equal to one eighth the speed of the sound.



Chapter 4

Stability Analysis

The purpose of this chapter is to examine and evaluate the limits of the stability
region of the scheme. Defining a suitable quantity, the “energy”, the way to proceed
consists of showing that, considering the semi-discrete equations, this “energy” is
monotonically decreasing, giving a sufficient stability condition, and considering the
fully discrete equations, to evaluate the limits of the stability region.

The stability analysis is achieved using the set of symmetrising variables of
Gustafsson and Sundstrom [29] and Abarbanel and Gottlieb [1], which yields an
equation in which the sub-matrices are all symmetric. Consequently, a first step
is to prove that the resulting analysis remains valid for the conservative variables.
Starting by considering periodic b.c.’s, the influence of a slip boundary condition is

then investigated.

4.1 The equivalent symmetrised problem

Linearising with respect to perturbations to a uniform flow, the 3D Euler equations

in Cartesian coordinates are

09 402 4 g8 402
r

ot 0 oy 0z 0, (4.1)

where A%, AY, A%, are the uniform inviscid flux Jacobian listed in detail in Ap-

pendix A. The transformation between the conservative variables and the sym-

o6
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metrising variables is accomplished by the matrix [29, 1]

42 0 0 0 0 ]
VI p 0 0 0
L= Y& 0 p 0 0
JIEE 0 0 p 0
VA o opvopw o [5E

Thus, if Q is the new set of variables, Q = LO and O = L~'Q, then equation (4.1)
becomes
5le) 00 00 09

TELATIE L QVIE 4 AP X = 4.2
ot TV e T T T (42)

where A* = LYA*L, AY = L-YAVL, A* = L' A*L.
Using a first order upwinding scheme on a Cartesian grid, the semi discrete equation

can then be written

40 A |A$|
E = _E(SQJ?Qj 52Qy 52yQy
AY| s A IAzI 2
+2Ay5yQJ - 2A 2 522Q] 5 Q]a (43)

with |A®| = |[L~'A®L|,|AY| = |[L7'AVL|,|A?| = |L—1AzL|, and where in one-
dimension the ds, and 62 operators are defined as
02:Q; = Qjy1—Qj—1
33Q5 = Qj1—2Q;j +Qj1.
Since A% and A? are similar matrices, they have the same eigenvalues; only the
eigenvectors are different. The same comment can be made for AY, and for A%
Thus,
|A®| = |L7YATL| = LM77 |A™|T" 'L,
|AY| = |L YAYL| = L 'TY|AY|TY 'L,
|A%| = |L7TA°L| = L7 'T%|A%|T7 'L,
where T is the matrix of the right eigenvectors of A%, and A® the corresponding

diagonal matrix of eigenvalues.
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Let us now discretise first the equation (4.1), and then transform the resulting
discretisation in order to use the symmetrising set of variables. The semi-discrete
equation on the same Cartesian grid is

dQ AT |A | A

P —K(SMQj + 52@] 52ng
AY A AZ
| | 62@7 62ng | | 62@77 (4-4)
which can also be written as
dQ A® Te|A®|T® —t , A
P TV R T P R VO A
TY|AY|TY —1 A? TZ|Az|Tz -1,
_ P — i+ i 4.
2Ay %@ 20z 0:Qj (4.5)
Transforming now to the symmetrising variables, one gets
dQ L7'AL . ~  L7'T%|A*|T* ~'L L~'AYL
— = —76 0 —— 4.6
dt oAr =it 2Az 1 - 2Ay Qi (4.6)
L='TY|AY|TY ~'L L7YA*L . - L7'T*|A*|T? ~'L , ~
02Q; — ———0, 62Q;.
2Ay v@i T, it 2Az =@

It appears clearly that both discretisations are equivalent. Consequently, the stabil-
ity analysis can be done using the symmetrising variables, knowing that it will be
also valid for the discretisation using the conservative variables. The same argument

can be generalised for discretisations on unstructured grids.

4.2 Semi-discrete equations

In this section, as in the next one, periodic b.c.’s are considered. The domain has
then only interior grid points, and consequently, the analysis does not include any
boundary treatment.

The starting point is the Euler equations, which may be expressed as

0Q 0 _
ot + 02 —F(e;, Q) = 0. (4.7)

Q(x) is the vector of conserved variables. Using the same notation and integration

rules as in section 3.1, the semi-discrete equivalent to equation (4.7) is

ng .
J dt = lEXE: Fm A Sij ]7 (48)
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where Fj; is the numerical flux in the direction n;; associated with an edge (4, ).
The evaluation of F' is achieved as explained in section 2.2.1, and with a first order

scheme, equation (4.8) becomes

dQ; 1 1

Vj% == <§(Ej(@i) +Fi5(Q)) — 51451(Qi — Qj)) A sij,
1€E;

oF

@.

Linearising locally and transforming to the symmetrising variables Q, the resulting

where A;; =

equation is

dQ; L 020 - Yo — o6
Vj% ==Y (5 ij(Qi + @Q5) — 51A44[(Qi — Qj)) A sij, (4.9)

IS

LN

where flij = flxnx—i—flyny—l—flz n, is a symmetric matrix, and the matrices /II, /Iy, A?
are related to the edge (i, j).

Considering now the whole mesh, and calling U the vector of unknowns, at a given
time level, of dimension 5N, where N is the number of nodes, the system of o.d.e.’s
may be written as

V%:—(Aﬁﬂ)ﬁ).

A and D are N x N block matrices, in which each block is a 5 x 5 matrix. Their

expressions are

0 -I-%Aij A Sij
A=Y Aj=) , (4.10)
edges edges 1
_§Aij A Si] 0
and
slAijl Asiy —5|Aij| A s

D= W= , (4.11)

edges edges 1x 1
—glAijl Asij 5l Au] A si
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where an edge connects node 5 to node 7. In these expressions the four block ele-

ments correspond to entries (j,7), (J,4), (4,7) and (i,7); all other elements are zero.

The diagonal blocks in A are zero because EieEj 1Fii(Qj) = 0 due to the
closed control volume around node j. In addition, A is anti-symmetric because A is
symmetric and hence, the (i, 7) element is the opposite of the (4,4) one.

Concerning the matrix D a first remark has to be made: if A is a symmetric
matrix, then |A| is symmetric. Indeed, since A is symmetric, it is diagonalisable by
an orthogonal similarity transformation A = TATT, TTT = I, which implies that
|A] is symmetric.

Looking now at the full matrix D, it is clear that it is also a symmetric matrix,
since the contribution of node j to node ¢ and vice versa is the same. In addition,
considering equation (4.11) for any complex vector W of length 5N and its Hermitian
W,

1

W*DW = 5 Z (wi — wj)*|Aij| A sij(wi — ’U)j).
edges

The matrices |fL]| are real positive definite symmetric, and the quantities As;; are
positive real numbers. Consequently, W*DW is a sum of non-negative real numbers.
Therefore D is positive semi-definite.

The pre-conditioned semi-discrete equation may be written as

P~ o =—(A+D)U (4.12)

where P! is a block diagonal matrix whose dimension is the same as A and I, and
with the j* block diagonal defined as 2>, B |Aij| A sij. The application of an
entropy fix [31] to the eigenvalues ensures that each block diagonal is symmetric

positive definite, and so is P1.

Defining now the “energy” as E = %U*P_lﬁ,
dE 1 {dU* ~ dUu
— — - ]P)fl *]P)fl_
dt 2 < d uv+vu dt )
1
2
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From this result, the energy is clearly non-increasing. Since P~' is symmetric and

positive definite, this in turn implies stability for the semi-discrete equation.

4.3 Fully discrete equations

Now that a sufficient stability condition has been obtained, it is necessary to in-
vestigate and give local timestep stability limits. Starting with equation (4.12) and

defining C = —(A + D), this is rearranged by setting a new variable W = P~'/20U

to become
p12W 2y
dt
— % = P'/2CP'/2w.

Using Runge-Kutta time integration, the fully discrete equations are
Wt = (kIPI/2<CIP>1/2) 1408 (4.13)

where L(z) is the Runge-Kutta polynomial with stability region S, and k the global

timestep. (4.13) can also be written
Wwn+l) — (L (kIPl/2(CIP>1/2))n WO

The necessary and sufficient condition for absolute stability as n — oo is that
there are no discrete solutions which grow exponentially with n. This requires that
|L (kIP’l/ 2cpt/ 2) | <1, or equivalently that the matrix eigenvalues lie in S. Theoreti-
cally, this is enough to get asymptotic convergence, but it is not sufficient in practice
because if the matrix is not normal (i.e. its eigenvectors are non-orthogonal), it al-
lows the possibility of a very large transient growth and can lead to arithmetic
overflow. In the analysis, it is then important to find sufficient conditions to elimi-
nate this possibility. Ideally, one would hope to prove strong stability, which using

the Lo vector norm is expressed as

W] < 4wy,
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where +y is a constant not only independent of n but is also a uniform bound applying
to all matrices in the family of spatial discretisations for different mesh spacings h
and with the timestep k being a function of h. However, in practice it is often not
possible to prove strong stability. Indeed what can be more easily proved is a weaker
form of stability called algebraic stability [67, 45, 41, 28]. This allows, at worst, a

linear growth in the transient solution of the form
WO < yn|| WO,

where « is a constant. As shown in [28], a sufficient condition for algebraic stability

is that
T (kIPl/2CP1/2) C S,

where the field of values 7 is defined as

«pl/2ml /2
T (kP1/2<CHD1/2) — {kW FrCETW :W;éo}.

W*w

The first step is to prove that when k£ = 1 the field of values is bounded by a unit

circle centred on z = —1. Writing V = P'/2W, consider
V*CV V*(A+ D)V
1/2rpl/2) _ . _Jd_ 22T .y
T (IP’ CP ) {V*PIV :V # 0} { =y # 0}.

Looking at the contributions from a single edge (i, 7), and diagonalising %Aij A 845

as %flij A sij = HTAH we obtain

Al 0
V'BS'V = (HV)* HV =3 O] (™ 4 ™),
0 1A :
Al —[A]
VD,V = (HV) HV =3 = X (o™ 4 o™ o™
Al 1A "
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and
0 +A
V*A;V = (HV)* HV = Z Am) (vgm)*v](.m) - v](.m)*vl(m)) ,
m
—-A 0
where (m) denotes the m-th characteristic (i.e. the m'* component of the vector
HV). Hence
V*(—Ay — D)V + v*p;jlv‘ -y ‘ (=X 4 A7) e
m
+ ()\(m) + |)\(m)|> vj(-m)*vgm)‘

< T2 ™ ™)

< ST (™R 4 ol 2),

— ‘V*(—Azj — D)V + V*IP’;].IV‘ < VBV .
Summing over all edges then gives the desired result.

VS (A D)V VY PV < VY RSV,

edges edges edges

V(A -D)V
——+ 1 < 1.

VPV th=
When k # 1 the field of values is bounded by a circle of radius k centred on z = —k.
Choosing the largest such circle lying inside the stability region S gives a timestep k

which is guaranteed to be algebraically stable. Numerical results will later establish

that this is close to being a necessary condition for stability as well as sufficient.

4.4 Slip boundary condition

Thus far, only periodic b.c.’s have been considered, but the analysis can be extended

to include the effect of an inviscid flow tangency condition at a solid wall.
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Taking the wall to be flat, for simplicity, the tangency requirement can be written

as
NQ =0,

where N is a symmetric projection matrix which obtains the normal component
of the momentum at the wall nodes. A general vector () can be decomposed into

components @) and @ defined by

R=QL+Q; QL=NQ, NQ;=0.

As shown in section 3.4, the modified form of the preconditioner, expressed in sym-

metric variables, is

[(I—N)P_l-I-N]%:(I—N)(CQ,

where N = T~!'ST. It is re-written in symmetrised form as

dQ

[(I-N)P'(I-N)+N]—== pr

=(I—-N)C(I-N)Q.

This form does not change the tangency condition and consequently is equivalent to

the previous one; dg—tL = 0 and the flow tangency Q 1 = 0 is undisturbed. Applying

the stability analysis we obtain

V*(I-N)C(I-N)V + V*[I-N)P'(I-N)+N|V|

= ‘V\F‘CVH + V\F‘P*IVH + ViV |

IN

-1

V*[(I-N)P"(I-N)+N|V
and hence

+1/ <1

V(I — N)C(I — N)V
V*[I-N)P-' (I - N)+ NV

and the field of values lies within the unit circle centred on z = —1, as before.
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4.5 Some Runge-Kutta stability curves

If one was solving the system of linearised equations using a first order upwinding,
as analysed above, a simple Kuler forward time integration with a global time step
equal to 1 would be enough, since the stability regions would perfectly coincide.
Unfortunately, the equations which are actually solved are non-linear, and as men-
tioned in section 2.2.1 a second order numerical dissipation is used, which has the
consequence of “flattening out” the boundary of the field of values along the imag-
inary axis (the “flattened” boundary is compared with the unit circle in Fig. 4.1).
To cope with this new shape, a Runge-Kutta time integration has to be used, giving

a wider stability region.

Let us consider a system of o.d.e.’s of the form

iQ
%_CQa

where C'is a real square matrix. Using a Runge-Kutta time integration with timestep

k,
Q") = L(kC)Q™,

where L(z) = Y7

0 0m2™ (ap = a1 =1, a, # 0) is the Runge-Kutta polynomial
function with stability region S. The following figures show, for four popular mul-
tistage integration schemes, the stability region S within which |L| < 1. They also
show the largest circle which lies inside S and which corresponds to the sufficient

stability limits of the scheme being analysed. Its radius r. equals the maximum

timestep for which the analysis gives a sufficient condition for algebraic stability.
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Imaginary
o
T

Figure 4.1 Effect of a second order dissipation on the field of values for the one dimensional linear

convection equation with a Courant number set to 1.

15F q
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Figure 4.2 Predictor-corrector. r. = 0.5.
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Figure 4.3 Three-stage scheme. r. = 1.25.

-2+

Figure 4.4 Four-stage scheme. r. = 1.39.



Chapter 4

Stability Analysis

68

Figure 4.5 Five-stage scheme. r. = 2.7.



Chapter 5

Preconditioner for low Mach

number Hows

Now that an efficient preconditioned multigrid method for both inviscid and viscous
flows has been introduced, the aim is to solve problems for a range of flow conditions
from nearly incompressible to transonic and supersonic. However, at low Mach
number the disparity between the acoustic and convective wave speeds cannot be
adequately handled by the current approach, and a slowdown of the convergence
is observed. Furthermore, the numerical solution produced is often of poor quality
with significant errors in the pressure distribution due to the relative scaling of
the different numerical smoothing terms. To address these difficulties, a low Mach
number preconditioner can be incorporated into the numerical dissipation and hence
into the block-Jacobi preconditioner.

The first part of this chapter describes the new discretisation that the introduc-
tion of a low Mach number preconditioner implies. A second part will investigate the
influence of this preconditioner on the boundary conditions: when the solution has
almost converged to the steady state, and hence only low frequency waves remain,
the analysis will determine whether an exponential decay of the amplitude of these
waves can be expected. Finally, the extension of the stability analysis presented
in the previous chapter is presented, giving a complete study of the method used

throughout this work.

69
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5.1 Preconditioned numerical dissipation

5.1.1 1D preliminary

The part of the equation concerned by the preconditioning is the inviscid part.
Consequently, only the Euler equations are here considered and preconditioned for
low Mach number applications by an invertible matrix I', which is expressed in

symmetrised variables, to become

3Q 0Q
FTA=—= =0
ot e T
which in a semi discrete form is written as
d
dcg + FA(S%Q — —|FA|52 (5.1)
and re-written as
1d L 71524
r— p + A52:,;Q — —I‘ ITA|0:Q =0 . (5.2)

Using M and N the transformation matrices from primitive variable to conservative
variables, and from symmetrized variables to primitive variables, respectively, (5.2)
becomes then the conservative semi discrete equations for low Mach number flow

and read as

1dQ

MNT ' N~'M~ —

+ Aéng——MNI‘ NTAINT'M~162Q = (5.3)

5.1.2 3D generalisation

Following the 1D approach, the flux function defined in equation (2.12) is modified

to incorporate the low Mach number preconditioner, becoming

1
By = 5 (F5@Q)+FfQ)

A

- MG DA e (50— ER@) - Q) + 1@i- @) )

In this formulation, only the dissipation has changed, which makes the implemen-

tation attractive because it does not require any change of variables in the current



Chapter 5 - Preconditioner for low Mach number flows 71

code.

In [?] Lee gives a broad overview of the current state of preconditioning. As
demonstrated in [86], and because of their highly non-normal feature for low Mach
number, many local preconditioners can transiently amplify perturbations by a fac-
tor of 1/M as M — 0. Taking this fact into account, the preconditioner used here
is the same as that used by Darmofal and Siu [24], for which the transient-growth

can be limited by a careful treatment of the parameter e. This preconditioner is

[« 000 0]
01000
r=oo010o0
00010
0000 1]

It is identical to the preconditioner of Weiss and Smith [86], and is expressed in the
symmetrised variables [dp/ pc, du, dv, dw, dp — CQd,O]T. € is a free parameter whose
role is to equilibrate the eigenvalues. As it can be seen further down, this precondi-
tioner alters only the eigenvalues relative to the acoustic waves. At a Mach number
of unity, the sign of one of these two eigenvalues must change to give a identical
sign to all eigenvalues for supersonic flows, since information cannot flow upstream.
The stiffness at a sonic point is not removed with this preconditioner: a singularity
shows up and the eigenvalues cannot be isotropic. This preconditioner is only for
use at low Mach number, and consequently, switched off when not appropriate: it
reduces to the identity matrix, and the original system of equations is recovered.
Choosing € = O(M?) ensures that the convective and acoustic wave speeds are
of a similar magnitude, proportional to the flow speed. Very often, it is required
that € be greater than some multiple of the square of the freestream Mach number
[78, 79, 66]. Although this approach has proved to work well, it cannot be used for
internal flows where the freestream Mach number is usually unknown. Consequently,

a different approach is followed here. Looping over the edges, the biggest Mach

number between two nodes connected by an edge is evaluated and kept for both
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nodes. Repeating the procedure four times defines small regions with a common
maximum value. This evaluation stays local, and provides a smoother behaviour of
the limiter than if this was only based on the nodal Mach number. In the end, the

determination of € is implemented as follows:
€ = Mmin [1,nM§mI] ,

where 7 is a free parameter set to 3.0 [66]. With this preconditioner, the following

eigenvalues are obtained:

1 1

)\1 = 5(1+€)Q—§T
Moo= S(14)Q+

2 T QuTe 27

with

T:\/(1—6)2Q2+4662.

In the expression of MNT ' TAN~! = MNT'LIAIL-'N-!, MNT'L is

given by
1 T
MNT 'L = (Ry|Ra|Rs|Ra| R5)
where
st ust—2c%nz e
2ce 2ce
5 us”—4+2c%nze
2ce 2ce
Ri=1| n, Ry = UNg
Ny Ny + Ny
N, Uun, + cny
vst—2c%nye wst—2c%nze
2ce 2ce
vs™+2c%nye ws™+2c%nze
2ce 2ce
R3 = VNg +Cn Ry = WNg — CN
T z T y
VNy WNy — CNg

VN, — CNy, WN,
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Hst—2¢2Qe¢
2ce

Hs™4+2c2Q¢
2ce

Rs = 1Qn, + c(vn, — wny)

2Q%ny, + c(wny — unz)

2Q%n, + c(uny — vnz)
with

and, L='N~! by

LT'N™' = (C1|C,|C5|C4|C5)

where
—ps ng
0 2cT
+
pPS T ng
0 2cT
Cl = Ny 02 = 0
—pn.
Ny
Py
Ny c
—ps Ny —psTn, 1
2cT 2cT cT
pstny pstns 1
2cT 2cT cT
C = pnz C = —pPny C = __Ng
3 c 4 c 5 c?
Pz _ny
0 c c2
—PNg _ Nz
- 0

Modification of the artificial dissipation implies automatically modification of the
block-Jacobi preconditioner. The adjustment is straitforward, and only concerns the

inviscid part. Thus equation (3.5) becomes

1 1 -1 it —1as—1
P = 5= > MyNy T i AN M A sy
J 1€EE;
+ > MN;TT D AN M Asy (5.4)

k€ B;
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5.2 Boundary condition

When the solution has almost converged to the steady state, the residual is due to
low frequency waves which propagate up and down the domain and are not affected
by the numerical viscosity. These can only be dissipated through the interaction
with the inflow and outflow boundary conditions. In general, when they arrive at
one boundary, these waves are reflected and propagated in the other direction until
they reach the other boundary, and so on. Ideally, one would like to have perfectly
non-reflecting boundary conditions, absorbing these low frequency waves and result-
ing in a much faster convergence rate, but in two or three dimensions, these do not
exist and consequently one only can expect an exponential decay of the amplitude of
these waves. In [27] Giles has examined this process for the subsonic one-dimensional
Euler equations by deriving the exact eigenmodes and eigenfrequencies of the initial
boundary value problem and by determining the exponential decay rates for per-
turbations under different sets of boundary conditions. In a similar way the same
analysis is done here, but this time, looking at the one-dimensional preconditioned
Euler equations for low Mach number flows. Although it is not obvious to what
extent the conclusions of the following model are valid for more general flows, it
provides insight concerning the effect of a low Mach number preconditioner on the

boundary conditions.

5.3 Analysis

When expressed in the symmetrised variables, the preconditioner reduces itself into
a diagonal matrix. Consequently the analysis starts with the one-dimensional un-
steady linearised Euler equations using symmetrised variables which are written
as ) )
0Q |, 79Q _

E—i— %—0 (5.5)
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where
u ¢ 0
A={:z a o,
0 0 u
and dQ = pc W !, dp' — chp] p',u',p’ are the perturbation density, velocity and

pressure, and p, u,p are the steady uniform values.
To reduce propagation speed stiffness and to improve low Mach number accuracy,

they are preconditioned and become

a;f +TA af 0, (5.6)
where
e 00
'=1010
0 01

I' is the one dimensional version of the preconditioner due to Weiss and Smith [86].

Defining the transformation matrix M, as M, = if’ where Q, = [p,u, pt, (5.6)
becomes
a(;?” M, 'TAM, aan =0. (5.7)

The analysis is greatly simplified by defining the following non-dimensional variables
pt=p/p, u=uje, p*=p/pé*, z*=z/L, t*=te/L,

where ¢ = [yp/ ,[)]1/ 2 is the speed of sound. L is the physical length of the domain
considered, so in the non-dimensional domain, the subsonic inflow is at x = 0 and the
outflow is at x = 1. Omitting the asterisks for clarity, the resulting non-dimensional

equation of (5.7) is
0Qp LA BQp

5 9 0, (5.8)

with
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Notice that when € = 1, T" reduces itself into the identity matrix, and equation (5.8)
is the non-dimensional version of the unpreconditioned equations.

The boundary conditions for subsonic flow require two inflow quantities and one
outflow quantity to be specified. The inflow boundary conditions can be expressed
as

CinQp(07 t) =0, (59)

where Cj, is a 2 x 3 matrix depending on the specific choice of inflow conditions.

Similarly, the single outflow boundary condition can be expressed as
CoutQp(1,t) =0, (5.10)

where C,,; is a 1 X 3 matrix depending on the specific choice of outflow condition.
Equations (5.8), (5.9), and (5.10) represent the initial boundary value problem, and

an eigenmode of the initial boundary value problem is given by

Q, = o iwt [alez(w/xl)x P14 e @AT o 4 i@/ Aa) r3] : (5.11)

where the constants a; are the strengths of each eigenmode, and the r; and A;
(i = 1,2,3) are the right eigenvectors and eigenvalues, respectively, of A. Symbol-

ically, these are

1
)\1=—[(€+1)M—i—7’], Ay =

> [(e+1)M —71], A3=M,

N =

with 7 = /(1 — €)2M?2 + 4e, and

=|1,-= 1,—= 1 =[1,0,0]" .
A ]-7 2 B ' 9 B ) y T'3 [7070]

1 M(e—1)—7 ]T [ I M(e—-1)+7 17
e | I P R

The eigenfrequency w and the constants a; are determined by the boundary

conditions. For the inflow boundary, substitution of equation (5.11) into equation

(5.9) leads to

bir bia bis

bo1  bao  bog
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where
bin bz bis
= Cin (11,72,73) -
ba1 b2 b3
As described by Giles [27], a necessary condition for the well-posedness of the initial
boundary value problem is that the incoming characteristics, a; and a9, can be

determined as functions of the outgoing characteristic, a3. This requires that the

2 X 2 matrix
b1 b2

bor  ba
is non-singular and therefore invertible.

For the outflow boundary, substitution of equation (5.11) into equation (5.10)

leads to
o
(b31 b32 bs3) | ap | =0,
as
where

(b31 b3z b33) = Cout (ei(w/)‘l) 7y, el@/A2) g i@/23) 7"3) :

In this case, well-posedness of the initial boundary value problem requires that
the incoming characteristic, a3, can be determined as a function of the outgoing
characteristics a; and as. Thus, b3z must be non-zero. Combining the inflow and

outflow boundary conditions leads to

a1
Bw) | ay | =0. (5.12)

as
In order for a non-trivial solution of the initial boundary value problem to exist,
a non-zero vector, (ay,as,a3)”, must exist which satisfies equation (5.12). This is

possible for values of w for which,

det B(w) = 0. (5.13)
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Separating the eigenfrequency into its real and imaginary parts, w = w, + w;, the
amplitude of the eigenmodes grows as exp(—w;t). Thus, in order for the eigenmodes

to decay, w; > 0 for all possible values of w.

5.4 Examples

5.4.1 Stagnation enthalpy and total pressure at inflow; pressure at

outflow

The non linear boundary conditions are:

<
|
5
L
N
no
+

—1
1= u? +

/ - 2

hsY

z=0

12

/ y=1pu — 5 y=1 pu”
p(]."‘ y p/> - p(].+ v ﬁ)

z=1 p'=p

where the prime quantities are the unsteady physical variables which are the sum
of the steady state and unsteady perturbation variables.

The corresponding linearised non-dimensionalised equations are

: P
o= M =)
z =0 K u =0
-1 (y-1)M ~v
p
F (5.14)
p
z =1 o0 1]|u] =0
—p—
giving
M2 ol
Oin = M o=1) )

-1 (y-1)M ~o
Cout = [ 0 0 1 j| .
At z = 0 substitution of the eigenvector definitions into the eigenmode definition

yields
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with 7 = /(1 — €)2M2 + 4e. Substitution of this equation into equation (5.14)

(z = 0) produces the characteristic inflow boundary condition

1 1 1 oy
M2 M il
—iwt 2 (v—1) 1 M(e—1)—7 1 M(e—=1)+7 =0
€ -2 € T2 € 0 @2
-1 (y=DM v
1 1 0 3
(5.15)
Similarly, at z =1
p 1 1 1 ay exp(iw/A1)
u | =e ™! —%M(E;U_T —%M(e_el)” 0 ay exp(iw/A2) |
D 1 1 0 ag exp(iw/Az)

and substitution into equation (5.14) (z = 1) produces the characteristic outflow

boundary condition

1 1 1 ay exp(iw/A1)
e Wt [ 0 0 1 ] —%M(Efel)q —%M(ilHT 0 as exp(iw/Ag) | =0.
1 1 0| | as exp(iw/A3)

(5.16)

Together equations (5.15) and (5.16) define the matrix B

%(M2_M)+%l l(MQ_M(M(E—U'i'T))_l_%l 102

€ 2 €

v v
LO-UMOM(e)or) 4 ) 1 GeOMOMe i) |

€

B = —_1—

exp(iw/ A1) exp(iw/Aa) 0
The eigenfrequencies are given by

detB = (2+ M?y — M?) (exp(iw/\)(eM? — M? + M — 2¢)
—exp(iw/X2)(eM? — M? — M — 2¢)) /(4e) = 0.

The eigenfrequencies which result in a zero determinant are

—_ A
Wy = )\27/\127171' n
= M eM2—M2—TM—2¢
Wi = TR 10g<EM2—M2+TM—2€
where
Ao 1

SV Wil ((6+1)2M2 —72).
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Defining the decay rate oy,

on = —Im(w) ,

for this example

On

M o eM? — M? — M — 2¢
_)\2—)\1 6M2—M2+TM—26 ’

The amplitude of the eigenmode grows, or decays, as exp(—ot), so the requirement
for all eigenmodes to decay is o, > 0 for every n. However, the quantity of interest is

actually the decay per timestep o, At. Taking the CFL restriction into consideration,

On

max

CFL = )‘%”;At, one then is concerned about
The definition which is retained for € is € = nM?, where 7 is a free parameter.

Consequently, as M — 0, 7 — /(1 + 4n) M,
)\1)\2 7’]M

— > 0,
A2 — A1 (14 4n)
and
EMZ—M2—TM—2€_> 4n?
M? NP+ M =2 (<1 —2n) + /(1 1 4n))?
)\/;1_/\/‘{1 is O(M), as Apaz, and consequently the decay per timestep remains finite.

on > 0 is satisfied (Vn) so any initial disturbance at ¢ = 0 will decay exponentially.

5.4.2 Euler Riemann boundary conditions: Entropy and the ap-
propriate Riemann invariant at inflow; the other Riemann

invariant at outflow

N - b
z=0 o o
w42 = a4 Ee
r=1 4 — 2 d=u-— 2 c
v—1 v—1

Linearisation and non-dimensionalisation of these boundary conditions give

2
S
I

and
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The resultant matrix B is then
0 0 -1
— —D(M(e=1)—7 —1)(M(e— T
B= L1 EDMMEnon C1 - GO0 1

(1 _ =DMe=or) 7) exp(iw /A1) (1 _ =DMlembir) 7) exp(iw/X2)  exp(iw/As)

€ €

The determinant of B is

detB = —(74;;)2 [(_26 —M+eM —71)(2¢ — M + eM + 7) exp (M) -

(—2e =M +eM +7)(2¢ — M + eM — 1) exp (%)} ,

and the eigenfrequencies obtained by solving detB = 0 are

wy = )\/\21:\2 2nt  Vn
R — /\1>\2 lo (2e4+M —eM—7)(2e—M~+eM—T)
Wi = T30 108\ Qer M _eMT)(2¢ MteMtr)
- _ )\1/\2 e+1+47
= p log <€+1 T) .

In contrast to the unpreconditioned Euler equations the Riemann invariant bound-
ary conditions are reflective, since w; is not —oo. Again, looking at the decay per
timestep, one finds that this one tends to zero when M — 0, indicating that distur-

bances will not decay and that convergence to a steady state will never be reached.

5.4.3 Entropy, stagnation enthalpy at inflow; pressure at outflow

Another common set of boundary conditions for subsonic, internal flows is the speci-
fication of entropy and stagnation enthalpy at the inflow and pressure at the outflow:

/

y — v
z=0 . p
7 L.,2 'rp — ay=1-2 , P
+ = TU + 7
xTr = 1 p, == ﬁ
For these boundary conditions, Cj;, and C,,; are,
-1 0 1

Cin
-1 (y-1)M ~

Cout[o 0 1i|
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From Cj, and C,,;, the matrix B becomes

0 0 -1
B=| _1— %(771)M(1\;[(571)77') TIDVE %(V*I)M(A:f(ffl)JrT) Ty -1
exp(iw/A1) exp(iw/A2) 0

and hence, the eigenfrequencies which result in a zero determinant of B are

—_ A
Wy = )\27/\127171' n

. VR, eM?—M?—7M—2¢
Wi = T XN 10g<EM2—M2+TM—2€

These are the same as for the example 5.4.1, where stagnation enthalpy and total
pressure were imposed at the inflow. This is an expected result, because in both
cases, the same boundary conditions are enforced: setting stagnation enthalpy and
total pressure automatically set the entropy, since the three quantities are related

to each other.

5.4.4 Velocity, temperature at inflow; pressure at outflow

The final set of boundary conditions considered here is setting velocity and temper-
ature at the inflow and pressure at the outflow. These conditions are fairly common

in low speed viscous flow applications. Specifically,

P _ P
z=0 o P
v o= a
z=1 p'=p
For these boundary conditions, Cj;, and C,,; are,
-1 0 v
in )
0 1 0
Cout [ 0 0 1 i|
From Cj, and C,,;, the matrix B becomes
v—1 v—1 —1
_ 1 M(e—1)— 1 M(e—1)+
B=| =F— 53— 0 |;

exp(iw/A1) exp(iw/A2) 0
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and hence, the eigenfrequencies which result in a zero determinant of B are

Wy = )\);1)‘2 2(n+1)m Vn

- AL (e=)M—7

wi = _)\21—/<1 (e—1)M+T
(e—1)M—7 4n

When M — 0,

(DM As in 5.4.1, the decay per timestep

(vitan-1)*
remains finite, and for all i, any disturbance at ¢ = 0 will decay exponentially.

5.4.5 Remarks

The analysis of the effect of local preconditioning on boundary conditions for the
subsonic, one dimensional Euler equations shows that care must be taken concern-
ing the physical boundary condition which must be applied for a specific problem:
Riemann invariant boundary conditions are reflective with preconditioning, and, at
low Mach numbers, disturbances do not decay, whereas for the unpreconditioned
Euler equations, these are non-reflective, with the unsteady perturbations becom-
ing zero after the finite time it takes for all three characteristic waves to cross the
domain once [27]. A similar conclusion has been reached by Darmofal [21] consid-
ering the one-dimensional van Leer-Lee-Roe preconditioner [?], and can probably
be generalised to more preconditioners. As mentioned in [22] an interesting possi-
bility implied by this analysis would be to design a preconditioner to address these

problems, so that the boundary conditions are less reflective.

5.5 Stability analysis for Low Mach Number Precondi-
tioning.

For low Mach number applications, the numerical dissipation and hence the block
Jacobi preconditioner need to be modified, and a question of interest concerns the
implications of the modification on the timestep stability limits presented in the

previous chapter. Writing the Euler equations in symmetrised variables as

0Q | 209, 1,09, ;.00

1
Bt 8 oy 0z =90, (5.17)
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where A%, AY, A* are the same as in section 4.1, the preconditioned form is

BQ 0Q 0Q 0Q
r! Ar—= 4 Av—= + A==~ = 0. 5.18
e Ty T e (5.18)
Performing a change of variables to V = Fféé gives
U N RAM Y 1 L A S LA (5.19)
ot ox Ay 0z

which is very similar to the original symmetrised Euler equations in that the three

coefficient matrices are symmetric.

The numerical discretisation including the characteristic smoothing and block-
Jacobi preconditioning proceeds from this point in exactly the same way as with the

Euler equations. Therefore the entire stability analysis remains the same.

In general the requirement for the analysis to remain valid is that the low Mach
number preconditioner I' must be symmetric and positive definite; T'% is then well-
defined. The van Leer-Lee-Roe matrix satisfies this condition [82], but those due to
Turkel [77] and Lee [?] do not. It is the lack of symmetry in the matrix which is
responsible for the very large transient growth analysed by Darmofal and Schmidt
[23]. The analysis in this chapter shows that such a large growth will not occur for

symmetric preconditioners.



Chapter 6

Numerical Results

This chapter gathers numerical results for a complete set of applications. 2D and
3D inviscid/viscous test cases have been run on grids of various complexities for a
complete range of flow conditions. For viscous calculations, the main focus is on
convergence acceleration rather than accuracy of the solution, since the implemen-
tation of the turbulence model has not been fully checked for the case of a flat plate.
Nevertheless, compared to results coming from the literature [63, 71, 76], the Spalart

and Allmaras turbulence model seems to perform reasonably well.

6.1 Inviscid

This section will demonstrate the performance of the scalar and block-Jacobi pre-
conditioners when used in conjunction with full coarsened multigrid for transonic

airfoil calculations.

The code is constructed on a conservative edge based semi-discrete finite vol-
ume approach where the flux discretization is based on the flux-differencing ideas
of Roe, combining central differencing of the nonlinear fluxes with a smoothing flux
based on one-dimensional characteristic variables. The solution is computed on a
sequence of 5 grids using full coarsened V-cycles in which one time step with 5-stage

Runge-Kutta scheme is performed when moving up and down the multigrid cycle.

85
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Test | Geometry | My | « Mesh Nnode

TE1l | NACA0012 | 0.8 | 1.25 | Triangular | 5766

QE2 | NACA0012 | 0.8 | 1.25 | Quadrilateral | 20800

Table 6.1 Euler test case definitions: airfoil, free stream Mach number, angle of attack, type of

grid, number of vertices.

The switched scheme is used only on the fine meshes and a purely first order nu-
merical dissipation is used on all coarser meshes. The preconditioner is assembled
and inverted before the first stage of each time step and an entropy fix prevents the
time step from becoming too large near the stagnation point, at shocks and at the
sonic line. Whereas the van Leer entropy fix [81] is used in the numerical dissipation
the more severe Harten fix [31] is employed in the matrix preconditioner, providing

better robustness.

6.1.1 2D Naca0012 airfoil

The test cases used to demonstrate the performance of the preconditioned multi-
grid method (Jacobi) in comparison to the standard approach (scalar) are defined
in Table 6.1. For the convergence comparisons that follow, the Lo norm of the
residual vector (normalised by the initial residual) during one application of the
time-stepping scheme on the finest mesh in the multigrid cycle is plotted. Conver-
gence information is also provided in Tables 6.2 and 6.3 for the initial convergence
rate between residual levels of 10° and 10~* and the asymptotic convergence rate
between residual levels of 10° and 1010,

The test case is a standard transonic NACAQ0012 case with a strong shock on
the upper surface and a weak shock on the lower surface. Calculations are first
performed on a sequence of triangular grids, and then using a sequence generated
from a 320 x 64 O-mesh. The grid sequences used can be seen in figures 6.1 and

6.2, respectively; the sizes of the grids are tabulated below, with the number in
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Test MG Cycle CPU Time(sec) MG Parameters
scalar | Jacobi | scalar | Jacobi scalar Jacobi
TE1 | 267 112 | 269 114 525115525115
QE2 | 180 108 | 1072 382 525225525115

Table 6.2 Euler results: Initial (10° — 10~*) convergence comparisons for scalar preconditioning
vs. block-Jacobi preconditioning, both with full coarsened multigrid. Multigrid cycles, CPU time,
multigrid parameters (# grids, level on/above first order smoothing is used, level for full multigrid

startup, # pre and post smoothing iterations, # iterations on coarsest level).

Test MG Cycle CPU Time(sec) MG Parameters
scalar | Jacobi | scalar | Jacobi scalar Jacobi

TE1l | 876 347 | 833 336 5251151525115

QE2 | 485 338 | 2560 1038 | 525225525115

Table 6.3 Euler results: Asymptotic (10° — 107'%) convergence comparisons for scalar precon-
ditioning vs. block-Jacobi preconditioning, both with full coarsened multigrid. Multigrid cycles,
CPU time, multigrid parameters (# grids, level on/above first order smoothing is used, level for

full multigrid startup, # pre and post smoothing iterations, # iterations on coarsest level).

parentheses being the ratio of fine to coarse nodes.

number of nodes
base grid || 1st collapse | 2nd collapse | 3rd collapse | 4th collapse
5766 2180 (2.6) 893 (2.4) 403 (2.2) 214 (1.8)
20800 9496 (2.2) 3767 (2.5) 1825 (2.1) 603 (3.0)

For the triangular grid, the far field boundary is located at 50 chords away from
the airfoil, and 30 chords away for the 320 x 64 mesh. It is worth noting that the
leading edge of the airfoil can become severely distorted on the coarsest grid, while
the trailing edge remains well defined (Fig. 6.1), and also that the coarsening proce-
dure maintains the general topology of the domain. This is particularly obvious in

the Fig. 6.2, where the coarse grids remain mainly composed of quadrilaterals. The
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convergence histories are shown in Fig. 6.3. On each grid, both methods converge
to machine accuracy with little degradation in asymptotic convergence requiring,
on the triangular grid, 347 iterations with the Jacobi preconditioner and 876 iter-
ations with the standard approach and 339 and 485 iterations, respectively on the
quadrilateral mesh. In term of CPU time, the matrix preconditioner yields com-
putational savings of a factor of 2.36 and 2.88, respectively, in initial convergence
rate, and a factor of 2.48 and 2.44, respectively, in term of asymptotic convergence.
The computed pressure distribution is shown in Fig. 6.4. The two plots are exactly

the same, except across the strong shock where triangles generate a bigger overshoot.

Overall, the acceleration is achieved without any compromise in the robustness
or accuracy of the flow solver. The accelerations are comparable to those obtained
by Ollivier-Gooch [61] on unstructured grids, and Pierce [63] on structured meshes.
The latest is underlined in Fig. 6.5 where the performance of the collapsing multigrid
with the hybrid approach is compared with the results obtained by Pierce.

The scheme using block-Jacobi matrix preconditioning and full coarsened multi-
grid yields computational savings of roughly a factor of 2.5 for convergence to engi-

neering accuracy.

6.1.2 Onera M6 Wing

The next example is a 3D tetrahedral grid around the standard Onera M6 wing
located in the middle of half a cylinder whose length is 20 times the length of the
longest chord and of a radius of roughly 13 chords. The grid has 147000 elements
at the finest level, and three coarser levels are used in the multigrid, containing
respectively, 68800, 12000 and 1365 elements. The collapsing algorithm is based on
several criterion driving the collapsing procedure. In this case, the low coarsening
ratio between the finest and the first coarser mesh (1.8) is due to the poor quality of
the initial mesh which has elements with a dihedral angle of more than 180°. The
four grids are presented in Fig. 6.6, and the test case considered is My, = 0.84,

a = 3.06. Figures 6.7 and 6.8 show the convergence history and the Mach contour
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plot. Convergence to machine accuracy is achieved in 142 iterations using Jacobi
preconditioning with a total CPU time of 1674 seconds and 237 iterations with the
standard approach in 2784 seconds. In term of CPU time, the computational saving

is roughly of a factor of 1.7.

6.1.3 Falcon Business Jet

The last example presented is over a geometry of increased complexity. It involves
the solution of inviscid transonic flow over a Falcon jet (Avions Marcel Dassault,
France). The geometry consists of a half complete aircraft configuration bounded
by a symmetry plane. The airplane is located in the middle of half a cylinder whose
length is roughly 5 times the length of its body and whose radius is roughly twice the
same length. The fine grid has 156000 vertices and 847000 tetrahedra. Two coarser
grids are derived by the element collapsing algorithm and contain respectively, 58500
and 9800 grid points. Again, the low coarsening ratio between the finest and the
first coarser mesh is due to the same reason as in the previous section. The three
grids used for the multigrid are presented in Fig. 6.9. The freestream conditions
are My, = 0.85 and o = 2°. Figures 6.10 and 6.11 show the convergence history
and the Mach contour plot where the shock patterns are evident. Convergence to
machine accuracy is achieved in 249 iterations using Jacobi preconditioning with
a total CPU time of 18670 seconds and 813 iterations with the standard approach
in 60298 seconds. In term of CPU time, the computational saving is roughly of a

factor of 3.2.

6.2 Viscous

This section will demonstrate the performance of the scalar and block-Jacobi pre-
conditioners when used in conjunction with semi coarsening multigrid for two and
three dimensional turbulent Navier-Stokes calculations on various meshes, all highly

stretched.
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The discretization of the inviscid fluxes is identical to that described for the
Euler solver. Special attention is paid to the treatment of the highly stretched grids
in both the discretization and the element collapse multigrid method. The viscous
flux is approximated half-way along each edge by a straightforward average of two
central differences, which will not damp high frequency modes. Although the in-
viscid flux includes numerical dissipation terms that will damp these modes, this is
insufficient inside the boundary layer where the viscous terms dominate. To remedy
this, the component of the gradient in the direction along the edge is replaced by
a simple difference along the edge. The element collapsing procedure removes ele-
ments to coarsen a given fine grid, essentially following a semi-coarsening strategy

in the stretched regions [59]. An isotropic process collapses the rest of the domain.

For turbulent Navier-Stokes calculations, solutions are computed on a sequence
of meshes using semi coarsened V-cycles on each mesh. The first point nearest to
the wall is fixed for each grid so that y* < 3, where y* = yU, /v with y, U, and v
the normal distance from the wall, the wall shear velocity and the kinematic viscos-
ity. The iterative scheme used to converge the discrete residual to zero is pseudo
time-stepping using the 5-stage Runge-Kutta method developed by Martinelli [48]
with a CFL number of 2.5 on each mesh, except for the hybrid grids on which com-
putations have been performed with a CFL of 2.3. The switched formulation of the
numerical dissipation is used on the fine meshes and a first order version is used on
all coarser meshes. Again, the entropy fix in the matrix preconditioner prevents the

timestep from becoming too big near the wall.

The turbulence model implemented is the one equation Spalart-Allmaras turbu-
lence model [76]. It is solved using a first order spatial discretization and 5-stage
Runge-Kutta time integration with implicit treatment of the source terms within the
same multigrid algorithm as used for the flow equations. Precautions are taken to
ensure that at any moment negative turbulent viscosity is introduced. It has never

been necessary to freeze the turbulent viscosity after a certain level of convergence
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Test | Geometry | My «a Re Mesh Nnode

TNS1 | RAE2822 | 0.725 | 2.4 | 6.5 x 10° | Triangular | 11298

TNS2 | RAE2822 | 0.73 | 2.8 | 6.5 x 10° | Triangular | 11298

HNS1 | RAE2822 | 0.725 | 2.4 | 6.5 x 105 | Hybrid 19126

HNS2 | RAE2822 | 0.73 | 2.8 | 6.5 x 105 | Hybrid 19126

Table 6.4 Two-dimensional turbulent Navier-Stokes test case definitions: airfoil, free stream Mach

number, angle of attack, Reynolds number, type of grid, number of vertices.

to get convergence of the flow equations. For the convergence comparisons that
follow, the Ly norm of the Navier-Stokes residual vector (normalised by the initial
residual) during one application of the time-stepping scheme on the finest mesh in

the multigrid cycle is plotted.

6.2.1 2D RAE2822 airfoil

The two-dimensional turbulent Navier-Stokes test cases used for comparisons are
defined in Table 6.4 and correspond to RAE2822 AGARD Cases 6 and 9 [12]. So-
lutions are computed on two different grids, one composed of triangles, the other
one, hybrid. The two multigrid sequences used are depicted in Fig. 6.12 and 6.13.
Convergence information is also provided in Tables 6.5 and 6.6 for the initial conver-
gence rate between residual levels of 10° and 10~* and the asymptotic convergence

rate between residual levels of 10° and 10~8.

Results are shown in Figs. 6.14, 6.15, 6.16, and 6.17. The computed pressure
distributions compare well with the experimental data [12], although the turbulence
model produces a shock location forward of the experimental location, behaviour
which has been previously observed [76, 63]. The turbulence model predicts a shock
in better agreement with the measurements for Case 9. The shock induces a small

region of separation bubble measuring about 5% of chord.
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Test MG Cycle CPU Time(sec) MG Parameters
scalar | Jacobi | scalar | Jacobi scalar | Jacobi
TNS1 | 311 122 | 839 341 52511552511
TNS2 | 565 171 | 1510 472 52511552511
HNS1 | 234 78 | 1563 534 52522555225
HNS2 | 297 170 | 1982 1149 | 52522555225

Table 6.5 Two-dimensional turbulent Navier-Stokes results: Initial (10° — 10~*) convergence
comparisons for scalar preconditioning vs. block-Jacobi preconditioning, both with semi-coarsened
multigrid. Multigrid cycles, CPU time, multigrid parameters (# grids, level on/above first order
smoothing is used, level for full multigrid startup, # pre and post smoothing iterations, # iterations

on coarsest level).

Test MG Cycle CPU Time(sec) MG Parameters
scalar | Jacobi | scalar | Jacobi scalar Jacobi
TNS1 | 947 240 | 2522 649 5251151525115
TNS2 | 1233 361 | 3293 1052 | 525115525115
HNSI1 | 1788 918 | 11956 | 6152 | 525225525225
HNS2 | 2655 1697 | 17645 | 11377 | 525225525225

Table 6.6 Two-dimensional turbulent Navier-Stokes results: Asymptotic (10° — 10~®) convergence
comparisons for scalar preconditioning vs. block-Jacobi preconditioning, both with semi-coarsened
multigrid. Multigrid cycles, CPU time, multigrid parameters (# grids, level on/above first order
smoothing is used, level for full multigrid startup, # pre and post smoothing iterations, # iterations

on coarsest level).
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Figure 6.12 Edge-collapse grids for the triangular RAE2822 airfoil. 5 levels.
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Convergence histories are shown for each grid, in Figs. 6.14, 6.15, 6.16, and
6.17, for the block-Jacobi preconditioning and the standard approach of the scalar
preconditioning, both with semi-coarsened multigrid. In all cases, both methods
converge to machine accuracy, along with the turbulence model. The Jacobi ap-
proach converges quite smoothly and rapidly to engineering accuracy on triangular
and hybrid grids. This remains true on triangles for asymptotic convergence, but
not on the hybrid mesh. After 4 orders of magnitude, a severe degradation in con-
vergence occurs, making this method only as efficient as the standard one. It is
difficult to explain this dramatic loss, but one factor, based on Pierce work, could

be related to the semi coarsening strategy. He observed that [63]:

[...], the dominant effect of semi-coarsening [...] is to change the shape
of the convergence history by dramatically improving the asymptotic
convergence rate using either preconditioner so that the “elbow” at three

orders of magnitude is eliminated.

The matrix preconditioner damps the convective modes very effectively, and these
are dominant in the initial stages of convergence. Then, acoustic modes become
significant, and semi coarsening yields improvements throughout the convergence
process. It looks as if the semi-coarsening strategy in the edge collapsing procedure
has not given meshes with a perfect regularity, where only the mesh interval in the
normal direction is allowed to double. In the unstructured approach, this is not
guaranteed.

In any case, the matrix preconditioner yields computational savings of a factor
of 2.46 and 2.92, in initial convergence rate, for Case 6 on triangular grid and hybrid
grid, respectively (factor of 3.2 and 1.73, for Case 9), and of a factor 3.88 and 3.13
in asymptotic convergence on the triangular grid for Cases 6 and 9, respectively

(comparisons on the hybrid grid are here irrelevant).

In general, the convergence rate is significantly enhanced, and the improvement

ranges from a factor 3 for engineering accuracy to 3-4 for asymptotic convergence.
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6.2.2 3D bypass duct

The final example is the flow through the 3D bypass duct of a turbofan engine.

The geometry is composed of ten struts and a pylon. The fine grid has 274000 grid
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Figure 6.18 3D bypass duct; convergence history.

points and is constructed by stacking a sequence of 2D grids. Convergence history
and Mach contours can be seen in Figures 6.18 and 6.19. From the fine grid, 2
coarser grids are produced containing respectively 138000 and 79300 vertices. The
coarsening ratio is low because the multigrid semi-coarsening strategy is essentially
only removing points in one-dimension in the areas of high stretching, which is both
through the boundary layer and radially. The radial stretching is a consequence of
the grid being composed of stacked 2D grids with a fixed radial step. This leaves
a high aspect ratio in the radial direction in all regions of the 2D grid that have
a much smaller mesh spacing than the radial step. For an inflow Mach number of
0.55, with zero incidence and a Reynolds number of 6 million around the struts,
convergence to 6 orders of magnitude is reached in 250 multigrid cycles (the pylon
is here treated as inviscid, because the purpose of studying this geometry did not

require the pylon boundary layer to be resolved).
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Figure 6.19 3D bypass duct; Mach number contours.
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6.3 Low Mach number flow

6.3.1 Inviscid 2D Naca0012 airfoil

Based on the same sequence of grid as shown in Fig. 6.1, four cases are investigated,
as listed in Table 6.7. Convergence histories are plotted together in Fig. 6.21, and
additional information is also provided in Table 6.8. The results presented have been
obtained with the matrix timestep, and it appears as expected that convergence is
Mach independent. In Fig. 6.20, plots of the coefficient of pressure contours for
each case are depicted. For Mach numbers smaller than 0.1, an unpreconditioned
code is much slower (see Fig. 6.21) and produces, when it converges, solutions of
poor quality with oscillations in the pressure and density contour plot (Fig. 6.22).
These problems are fully addressed with a low Mach number preconditioner which

preserves accuracy in the incompressible limit.

Test Geometry | My «a Mesh Nnode

TELM1 | NACA0012 | 0.1 0.0 | Triangular | 5766

TELM2 | NACA0012 | 0.01 0.0 | Triangular | 5766

TELM3 | NACA0012 | 0.001 | 0.0 | Triangular | 5766

TELM4 | NACA0012 | 0.0001 | 0.0 | Triangular | 5766

Table 6.7 Euler test case definitions for low Mach number: airfoil, free stream Mach number, angle

of attack, type of grid, number of vertices.

6.3.2 Accuracy preservation by preconditioning

For an incompressible, non-viscous fluid, the velocity field and hence the pressure
coefficient can be obtained by solving the potential flow via the Schwartz-Christoffel
conformal mapping [47]. To demonstrate the accuracy discussed in the previous
section, the computed pressure coefficient is here compared with that obtained with
the Schwartz-Christoffel tool-box written by Toby Driscoll [25]. In Fig. 6.23 the
comparison is presented for each case, proving an undeniable accuracy of the low

Mach number preconditioner in the incompressible limit.
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Figure 6.23 Computed pressure coefficient contours around a Naca0012 airfoil. Comparison with

the potential flow solution. M., = 0.1,0.01,0.001, 0.0001. o = 0.
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Test | MG Cycle | CPU Time(sec) | MG Parameters
TELM1 109 156 525115
TELM?2 91 133 525115
TELM3 86 124 525115
TELM4 o7 81 525115

Table 6.8 Convergence history using block-Jacobi preconditioning with full-coarsened multigrid.
Multigrid cycle, CPU time, multigrid parameters. (# grids, level on/above first order smoothing is
used, level for full multigrid startup, # pre and post smoothing iterations, # iterations on coarsest

level)

6.3.3 A 3D example: the U-bend duct

The next example is the numerical computation of a flow inside a sharp U-bend
used as an internal cooling passage inside the turbine rotor blades to maintain the
operating temperature of the blades down to safe levels. The geometry is shown
in Fig. 6.24 and the mesh containing only hexahedrals has 200000 vertices. The
calculation is performed on a single grid since no sequence of coarser meshes was
available at the moment of the writing of this document, and the convergence his-
tory is presented in Fig. 6.27. The purpose of this example is to check the 3D
capabilities of the implementation of the low Mach number preconditioner. The
Reynolds number defined by ULVD, where U, is the bulk mean velocity and D the
duct width is set to 100000. Figure 6.25 and 6.26 provide a picture of the overall
flow development through the U-bend for a stationary condition. The boundary
conditions are such that at the inflow, the total pressure and the total temperature
are both set to 1 with an outflow static pressure equal to 0.986. The results indicate
that there is a reasonably symmetric developing flow approaching the bend entry
with a strong flow acceleration along the inner wall and deceleration along the outer
wall which becomes stronger near the corner between the top and outer walls. As
the flow progresses through the bend, the fluid begins to move faster over the outer

wall. Along the inner wall, by the 90° location the flow has separated near the
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Figure 6.24 Geometry of a U-bend.

symmetry plane while, close to the top wall, the flow is still attached. By the bend
exit, the separation region accros the pipe has grown to approximately 20% of the
duct diameter, while near the top wall the reverse motion is weaker and confined
to a narrower region. Over the downstream region, even though the reverse motion
is stronger near the symmetry plane than near the top wall, reattachment occurs
earlier along the symmetry plane. All these observations seem to be in a relative
good agreement with the experiments [33, 34], but more investigations need to be

done to fully validate the accuracy of the solution.
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Figure 6.25 U-bend; Velocity field along the symmetry plane. Overview and zoom around the

bend.

Figure 6.26 U-bend; Velocity field along the near-wall plane. Overview and zoom around the

bend.
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Chapter 7

Conclusions and future work

7.1 Conclusion

In a continuation of recent breakthroughs in convergence acceleration, an efficient
preconditioner working for a wide range of Mach numbers has been developed and
implemented in a new multigrid algorithm for hybrid meshes. The standard scheme
in common use employs local time step based on the largest eigenvalues of the
system. When used in conjunction with multigrid, this approach works relatively
well for Euler calculations, but appears to be much less effective for turbulent Navier-
Stokes calculations due to the highly stretched cells needed to efficiently resolve a
high Reynolds number boundary layer.

For Euler calculations, the block-Jacobi matrix preconditioner improves the
damping of the convective modes of Runge-Kutta schemes when used with full coars-
ened multigrid. In comparison to the standard approach, the computational savings
using this approach is between a factor of two and three, for both convergence to
engineering accuracy and asymptotic convergence.

For turbulent Navier-Stokes flows, the same matrix preconditioner with a semi-
coarsened multigrid strategy in which coarsening is performed only in the direction
normal to the wall yields a computational saving, relative to the standard approach,
of a factor of three. The new scheme provides rapid and robust convergence for

two and three dimensions and for all kinds of geometric configuration. The good
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behaviour of the numerical computations is explained by examining and evaluating
the limits of the stability region of the scheme considering the Euler equations in a
first order upwinding scheme. This is a close approximation of what is solved on the
coarse levels of the multigrid, since a purely first order numerical dissipation is used
and the viscous terms are not significant on these coarse levels. The preconditioned
system has a field of values which remains bounded by the largest circle lying inside
the stability region of the Runge-Kutta scheme guaranteeing algebraic stability. A
slip boundary condition does not effect the analysis which is extended to include it.

For low Mach number applications, a low Mach number preconditioner is in-
corporated into the numerical dissipation and hence into the block-Jacobi precon-
ditioner to improve the damping of error modes. Convergence to the steady state
is enhanced, and the quality of the numerical solution improved for inviscid and
turbulent Navier-Stokes calculations. Extension of the stability analysis draws the
same conclusion, i.e. an algebraic stability of the scheme as long as the low Mach
number preconditioner is symmetric and positive definite. The analysis of the pre-
conditioned Fuler equations shows the quite significant effect of the preconditioning
on the effectiveness of boundary conditions in eliminating initial transients. For
example, boundary conditions based on the Riemann invariants of the Euler equa-
tions are found to be reflective in conjunction with preconditioning, whereas they
are non-reflecting at the inflow without it.

To take advantage of multi-processor computers, the three dimensional code is
fully parallelised and all of the theory is backed up by an extensive selection of two

and three dimensional test cases simulating internal and external turbulent flows.

7.2 Further work

Substantial further work will be necessary to validate in more detail the implemen-
tation of the turbulence model. Calculations over a flat plate and comparison of
the structure of the flow in the inner layer of the boundary layer with experimental

data should be done. Also it will be necessary to go through more validations on
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three dimensional hybrid grids involving other types of element than those used in
this work, - e.g. prisms, pyramids. This will require the generation of meshes using
academic or industrial grid generation software. Although there has been excellent
progress in the development of such software in the last few years, it nevertheless
still requires expert use to produce good grids, especially for viscous flows around
complex geometries.

On the stability analysis side, some additional work could also be done to in-
vestigate the eventual possibility of integrating in the analysis the second order
treatment of the scheme.

The work described in this thesis is a description of the nonlinear code called
HYDRA, which is also the basis for additional codes modelling linear unsteady flows
and solving adjoint equations for design: the nonlinear flow code is used to obtain
the approximate sensitivity of the flow field to small perturbations to the geometry,
or used in the analysis of the numerical error in integral functionals such as lift
and drag which are two quantities of primary concern on an aircraft for example.
The adjoint solution defines the relationship between the error in the functional
of interest and the finite volume residual error, which is the extent to which the
finite volume solution is not the solution of the original analytic problem. In that
context, and since the use of hybrid grids is well suited to the inclusion of adaption,
an estimate of the adjoint solution together with the local finite volume residual error
could lead to an optimal grid adaptation to obtain the most accurate prediction of
a particular functional.

Also another interesting capability would be the modelling of the unsteady aeroe-
lastic behaviour of complex configurations, such as a complete aircraft. Following
the approach of Jameson [36] this could be achieved by using an implicit time dis-
cretisation, with the resulting equations being solved using the multigrid method.

Finally, since the methodology and numerical analysis is now well established,
the extension to other application areas - e.g. acoustics, electromagnetics could also

be done.
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Appendix A

Matrices for stability analysis

The conservative form of the Euler equations in three dimensions is given by

0Q OF  0G  OH _

ot "o oy + 5 = 0 (A.1)
where
p pu
U pu? +p
Q= pv F= pUuv
pw puw
pE (PE + p)u
P pw
pUv puw
G = pvQ +p H = pow
pow ,ow2 +p
(PE +p)v (PE + p)w

P, u, v, w, p, E. denote the density, the three cartesian components of velocity, the

pressure, and the total specific energy. Also we have,

2
pz(”y—l)p(E—%), with ¢ = u? + 0% + v’

The system (A.1) may be written in the quasi-linear non-conservative form

00 | 429, w09, 4200 _

ot Ox oy 0z 0 (A.2)
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by defining the flux Jacobians in the z, y, and z directions A% = 2E£ Av = g—g, and

= 50
A% = g—g. The structure of the Jacobian matrices is quite complicated. Calculation
and decomposition are most easily accomplished by transforming to an intermediate

set of primitive variables, which are defined for three dimensions by

p

By defining the Jacobian matrix of the transformation from conservative to non-

conservative variables, as

M = - | = ® *r % 7%
ov Op’ Ou’ v’ Ow’ Op

1 0 0 0 0
v p 0 0

N
e
<
e
4
s
S
)
g
L

we can rewrite (A.2) as

oV oV av oV
M— 4+ AM — + AYM— + A*M — = 0.
ar " oz T oy 5, 0

If now we multiply by M !, we then obtain

o
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The primitive Jacobians are related to the conserved variable Jacobians by the

similarity transformation A = MA*M~', AY = MAYM~", A* = MA*M~"', with

1 0O 0 O 0
U p 0 0 0
M = v 0 p 0 0 )
w 0 0 p 0
2 2 2
I u+v2+w pu pv pw ('yil) |
and
u p 0 0 0
1
0O o 0 O 5
A=10 0 w 0 0|,
0O 0 O = O
| 0 pc? 0 0 u |
v 0 p 00
0 v 0 O
AY = 1
A 00 v 0 51,
00 0 w O
1 00 pc 0 v
w 0 0 p O
0O w 0 0 O
A=10 0 w 0 0
1
| 0 0 0 pc? w |

In a non-conservative form, the system of the Euler equation may be written ,

with the primitive variable V as
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with

s
Il

Q  pSe
0 @

0 0

0 0

0 pSyc?

pSy  pS:
0 0
Q 0
0 Q
pSy02 pS,c

)

2

QO = =& =

where ¢ denotes the speed of the sound, and Q = uS; +vS, +wS,. The eigenvalues

of A are obtained as solution of det(A — A\I) = 0, and thus, we get the diagonal

matrix

Q
0
0
0
0

0
Q
0
0
0

0
0
Q
0
0

0

0

0
Q+cS

0

Q

where S$? = S2 + S; + S2. Also, the right eigenvectors of A are the columns of
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where n,, n,, and n, are the components of the unit normal

Ty

S

The left eigenvectors of A are the rows of
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Finally, A can be decomposed as

A=TLAL 1.



