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AbstractAlgorithm Developments for anUnstructured Viscous Flow SolverPierre Moinier Doctor of PhilosophySt Hugh's College Trinity Term 1999An e�cient preconditioned multigrid method is developed for both inviscid andviscous ow applications on unstructured hybrid grids. The work builds upon recentbreakthroughs in convergence acceleration on structured grids using preconditioningand multigrid. It is motivated by the results obtained with standard multigridmethods with a scalar time step which performs well for Euler calculations but isfar less e�ective for turbulent Navier-Stokes calculations due to the highly stretchedcells needed to resolve high Reynolds number boundary layers.The new scheme provides rapid and robust convergence, and yields computa-tional savings of roughly a factor of three compared to the standard method fora wide range of 2D and 3D inviscid and viscous cases (airfoils, wings, airplaneand internal ows). The good performance of the numerical method is explainedby analysis of the stability limits of a �rst order upwind discretisation of the Eu-ler equations, which is a close approximation to the viscous discretisation on thecoarser multigrid levels. In the analysis, the preconditioned system is shown tohave a �eld of values which remains inside the stability region of the Runge-Kuttascheme, thereby guaranteeing algebraic stability.For improved accuracy and convergence for low Mach number applications, thescheme is modi�ed through the additional use of a low Mach number preconditioner.The conclusions of the numerical analysis remain unchanged provided the low Machnumber preconditioner is symmetric and positive de�nite. Analysis of the precondi-tioned Euler equations also shows the very signi�cant e�ect of the preconditioningon the e�ectiveness of boundary conditions in eliminating initial transients.ii
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Chapter 1
Introduction
In the last two decades, a large variety of computational uid dynamics methods hasbeen developed to solve the compressible Euler and Navier-Stokes equations used inaeronautical applications. Progress in algorithm development (including multigridmethods) and parallel computing techniques have made the prediction of inviscidow around complex geometries a rapid and robust procedure. Numerical modellingof transonic ow over a complete aircraft using the Euler equations is now reliableand e�cient so that the need for further development does not appear overwhelming.However, for an accurate aerodynamic analysis, viscous e�ects must be considered.To capture these viscous e�ects, the Reynolds-averaged Navier-Stokes equations aresolved with some turbulence model, and transition must also be modelled. Theproblem is that at high Reynolds numbers typical of aeronautical applications suchows are physically and numerically sti�, and a dramatic degradation of the iter-ative convergence is observed. The present work focuses entirely on this aspect,and is a continuation of recent breakthroughs in that perspective. The reason whyviscous calculations are problematic is the highly stretched computational cells thatare needed to e�ciently resolve a high Reynolds number boundary layer. Thesevery high aspect ratio cells are required to accurately represent the steep gradientsacross the boundary layer but increase considerably the size of the problem to solve,in term of storage and computational cost. With the development of computers, thesize of these problems will become even larger, therefore, it is important that the1



Chapter 1 � Introduction 2convergence rate of the iterative method used should be grid-independent. To over-come these drawbacks, the solution procedure most commonly adopted is multigrid.The theory of multigrid is very well developed for the case of elliptic problems, andis based on an updating scheme acting as a smoothing operator on each grid level.Roughly speaking, a sequence of successively coarser grids that can represent thesmooth error modes of the �ner grid is required, as well as some iterative procedurewhich eliminates the high frequency error modes on each grid. Although the theoryis not well developed for hyperbolic p.d.e's, nevertheless excellent convergence ratesare achieved for the Euler equations. Therefore, multigrid is the most attractiveapproach for Navier-Stokes calculations as well.1.1 The numerical solution of the Navier-Stokes equa-tionsIn the present work, attention is focused on developing e�cient numerical methodsin the context of multigrid for steady viscous ows from nearly incompressible totransonic and supersonic speeds. The steady state is achieved by eliminating thetransient behaviour either by damping or by expulsion from the computational do-main [60]. The damping is essentially a local process, whereas the propagation isa global one. Consequently, it is the damping properties of the relaxation schemethat are the most critical for insuring insensitivity to problem size. To drive themultigrid algorithm, explicit or implicit relaxation schemes can be used. Explicitschemes, limited by a CFL condition, o�er a cheap computational cost, low stor-age requirements and good parallel capabilities. Alternatively, implicit schemes,theoretically unconditionally stable, require a high operation count, much morememory and are more di�cult to parallelise. In the current approach, an explicitscheme is retained. The semi-discrete scheme proposed by Jameson et al [72] usesmulti-stage Runge-Kutta time-stepping with coe�cients chosen to promote rapiddamping and propagation of error modes, by ensuring that the ampli�cation factoris small in the region where the eigenvalues corresponding to high frequency modes



Chapter 1 � Introduction 3are concentrated. Such an algorithm has proven to be highly successful for inviscidcalculations, and has shown good multigrid performance. However, when dealingwith the Navier-Stokes equations, the multigrid performance is not nearly so good.In his thesis, Pierce [63] has given a very complete diagnosis of Multigrid Break-down. The three fundamental causes of poor multigrid performance are (a) sti�nessin the discrete system, due to the disparity in the propagative speed of convectiveand acoustic waves, (b) decoupling of modes which happens when the ow is alignedwith the grid causing the convective error mode which is saw-tooth in the cross-owdirection but smooth in the ow direction not to be eliminated on the �ne grid,and (c) the highly stretched cells inside the boundary layer. The �rst two manifestthemselves in a identical manner by causing the corresponding eigenvalues of thediscrete residual operator to fall near the origin in the complex plane so that theycan not be damped e�ciently by the multi-stage Runge-Kutta scheme. They arethe cause of degraded multigrid performance for inviscid calculations, and persistfor Navier-Stokes calculations. The highly stretched cells are a far more seriousproblem for viscous calculations and lead to acute `numerical sti�ness' problems.This numerical sti�ness is related to the fact that the timescale for viscous di�usionacross a high Reynolds number boundary layer is much greater than the timescalefor the propagation of a pressure wave across the boundary layer. Using explicitsolvers restricted by the acoustic timescale, this leads to very slow convergence forthe convection/di�usion of streamwise momentum and temperature. There is alsonumerical sti�ness directly related to the source terms in the turbulence model;these will be treated by a point implicit method in order to achieve a satisfactorylevel of robustness.To cope with the problem of highly stretched cells, di�erent methods have beenproposed, including a semi-coarsening multigrid strategy and the use of a precon-ditioner. All these methods aim to produce the same e�ect, which is to damp ase�ciently as possible all the error modes. The idea of the semi-coarsening, suggestedby Mulder [57], is not to coarsen the mesh in every direction simultaneously, so thateach level of the sequence of grids used in the multigrid strategy involves several



Chapter 1 � Introduction 4grids which can cope separately with each mode.Alternatively, Allmaras [2] suggests the use of a preconditioner, depending on themultigrid strategy used. For example, he recommended the block-Jacobi matrixpreconditioner proposed by Morano et al. [55] with a semi-coarsened strategy. Thee�ect of the preconditioner is to move the eigenvalues away from the origin of theFourier complex plane providing, within an optimised Runge-Kutta update, a verygood damping of the high-frequency error modes.Recently, Pierce and Giles [65] have analysed di�erent combinations of precondi-tioner and multigrid method for both inviscid and viscous ow applications. Forturbulent Navier-Stokes calculations, a block-Jacobi preconditioner and a semi-coarsening multigrid method provides an e�ective damping of all modes inside theboundary layer, both in theory and in practice. The preconditioner damps all theconvective modes, while the multigrid strategy, in which the grids are coarsenedonly along the normal to the boundary layer, ensures that all acoustic modes areeliminated e�ciently. Thus, they have demonstrated that considerable speed-up canbe achieved when using stretched structured meshes.In this work the same idea is followed, but for unstructured grids. The preconditioneris implemented in a multigrid solver which has proven to be highly successful forinviscid meshes [17, 18], but is modi�ed to treat the highly stretched cells requiredfor high Reynolds number ows [20] so that the equivalent of a semi-coarseningstrategy is employed.1.2 Unstructured gridsNavier Stokes ow solvers on structured grids have been developed to a point wherecomplex ows can be accurately modeled. [83, 40]. However, the required grid foran aircraft con�guration is di�cult and time consuming to generate; multiple blocksare required to allow for both the geometrical complexity and the disparate lengthscales of the ow�eld. Thus, the use of unstructured mesh techniques has becomemore popular because of the added exibility they o�er in dealing with complex
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Figure 1.1 Re�ned grid for Onera M6 winggeometries, and enabling grid adaptation where extra grid points can simply beadded where they are needed (see �gure 1.1).However, a major drawback of such techniques remains their lower e�ciencyand increased computational cost as compared to structured mesh techniques. Thislower computational e�ciency is due to several factors; one is that it is much harderto formulate higher order discretisations, and so instead one may need to use moregrid points than for a structured grid calculation. Another is the computational cost(and memory requirements) of indirect addressing. A third factor is an increasedcost per grid point due to the use of simplex grids (triangles in two dimensions,tetrahedra in three dimension). The additional cost incurred by the use of tetrahe-dral meshes can be demonstrated by considering a structured hexahedral mesh ofN vertices. For an edge-based �nite volume scheme, there are N unknowns, and3N uxes which must be evaluated (e�ects of the boundaries are neglected). If thishexahedral mesh is now subdivided into a tetrahedral mesh, the equivalent �nite-volume scheme consists of N unknowns, as previously, but the evaluation of 7Nuxes is now required to construct the discretisation (again neglecting boundarye�ects). Thus, a tetrahedral mesh discretisation is roughly twice as expensive to



Chapter 1 � Introduction 6

Figure 1.2 Closeup views of the ap edge and the cove for a wing-ap con�gurationevaluate as a hexahedral mesh discretisation. One possible solution to reduce thecost of the discretisation is to switch to other types of elements in region of high gridstretching, where their number is very dense. The idea is then to use quadrilateralsout of a pairs of triangles in two dimensions, or prisms, pyramids and hexahedra outof groups of tetrahedra in three dimensions. The use of mixed elements, or hybridgrids, in a unstructured mesh technique o�ers to some extent the best compromisebetween mesh quality, e�ciency and exibility. Figure 1.2 show the closeup views ofthe surface grid near the cove and the ap edge for a wing-ap con�guration, wherea blend of hexahedra and tetrahedrals are used. Typically these meshes are com-posed of prismatic elements close to the surface of the geometry being modeled andtetrahedral elements in the far �elds. The prisms provide the option to use su�cientgrid-clustering in the normal direction as well as exibility in geometric modellingby using unstructured tesselation, whereas the tetrahedrals are used to �ll the outerinviscid region with a gradual transition in grid sizes at the grid interface betweenprism and tetrahedra [85, 39]. The hybrid approach has already been advocated byseveral authors[39, 5, 11], and constitutes the framework in which this work is done.



Chapter 1 � Introduction 71.3 Low Mach regime capabilityAnother aspect of this work concerns the capability to solve low Mach number ows.For small Mach number, it can be shown that the incompressible equations approx-imate the compressible equations. But there are many problems, particularly inturbomachinery, where the ow can vary from low subsonic to supersonic. Also inlow speed aerodynamics at high angle of attack most of the ow has a low Machnumber, but there are localised regions containing shocks. Consequently, it is ap-propriate to use the compressible equations even where the Mach number of theow is small. However, the observed convergence rate gets substantially slower andthe solution produced is usually of poor quality, with pressure oscillations visiblein contour plots. The slowdown is due to some analytic sti�ness arising from theinherent propagative disparities in the limit of vanishing Mach number, where theratio of the convective speed to the acoustic speed approaches zero. This type ofsti�ness is often treated using preconditioning techniques [82, 86, 77]. By alteringthe acoustic speeds of the system such that all eigenvalues become of the same or-der this di�culty is completely alleviated. In addition, the solution can also beimproved by changing the arti�cial dissipation in the spatial discretisation. Basedon the preconditioned system, the relative scaling of di�erent numerical smooth-ing terms can be improved, and the steady-state solution becomes more accurate.Unfortunately, these bene�ts are achieved with di�culty because local precondition-ers designed for low Mach number performance have poor robustness at stagnationpoints. Darmofal and Schmid have shown that this lack of robustness is due to un-limited transient ampli�cation of perturbations resulting from a degeneration of thestructure of the eigenvectors of the preconditioned equations [23]. These becomeshighly non-orthogonal asM ! 0. The most common technique to avoid this robust-ness problem is based on limiting the e�ect of preconditioning below a multiple ofthe freestream Mach number. This multiple is typically greater than one [66], anddestroys the locality of the preconditioning, since the limit becomes more global.Furthermore, there are problems where a reference Mach number is inappropriate



Chapter 1 � Introduction 8or non-existent and where this type of limiting is di�cult to realize. Examples ofthese type of ow would be a hypersonic ow around a blunt body (which wouldcontain regions of subsonic ow) or ows in pumps and turbomachinery. A possibleway to address this problem is to base this limit on the local Mach number, or onstrict local information like the pressure [24].For non-linear calculations where the local mean ow is altered by the perturba-tions, the poor eigenvector conditioning can lead to signi�cant transient growth andtherefore slow down convergence as transient e�ects are continuously stimulated byincoming waves. The van Leer and Turkel preconditioners both su�er from signi�-cant initial growth rate whereas the block Jacobi preconditioner does not. Althoughthe block Jacobi preconditioner is the best approach to avoid transient e�ects, itdoes not accelerate the long wavelength modes as M ! 0 and does not improvethe solution quality for nearly incompressible ows since the characteristic speedsare not e�ectively equalised. However, this sti�ness can be fully addressed by in-tegrating a low Mach number preconditioner in the dissipation and hence in theblock Jacobi preconditioner. This approach, which is the one followed in this work,is attractive because it does not require any change of variables in the current code.1.4 Stability analysisThe preconditioned system thus de�ned and integrated in an appropriate multigridstrategy shows good multigrid performance for any Mach number. Analytic expres-sions for the preconditioner Fourier Footprints inside an asymptotically stretchedboundary layer cell reveal why the preconditioner damps all convective modes andleads to substantial improvements [63]. But there is now a need for the supportingnumerical analysis to investigate and give local timestep stability limits. Consideringlinear di�erential equations with constant coe�cients on structured grids, the VonNeumann method for stability analysis is generally applied. The central idea is thatsuch equations have particular solutions based on a Fourier expansion and to eval-uate the conditions for which the amplitude of any error harmonic does not grow in



Chapter 1 � Introduction 9time. Using unstructured grids and variable coe�cients, this approach is not appro-priate, and consequently another method is applied. There are two well-documentedstability analysis method which can then be used. One involves consideration of theeigenvalues of the matrix representing the discretisation of the spatial di�erentialoperator. For a lot of cases, this leads to su�cient conditions for asymptotic sta-bility, but there are well-known examples such as the �rst order upwinding of theconvection equation on a �nite 1D domain (e.g., [67], [42], [80]) for which this isnot a practical stability criterion because it allows an unacceptably large transientgrowth before the eventual exponential decay. The other one, which is the one thatis used in this work, is the energy method [68] which relies on the construction ofa suitable de�ned \energy" which can be proven to monotonically decrease. In hispaper [28], Giles analyses the semi-discrete and fully discrete Navier-Stokes equa-tions arising from a Galerkin discretisation on a tetrahedral grid, and presents twobounding sets for the �eld of values arising from this discretisation. From these heobtains su�cient time-step stability limits for both time accurate and local timestepcomputations.This work also examines and evaluates the limits of the stability region of thescheme, but since the discretisation uses an edge-based data structure, which at themoment is the most common approach [3, 61, 7, 54, 51], the same stability analysiscan not be performed. Within the edge-based discretisation, the treatment of theviscous terms appears to be too di�cult, and thus, only the Euler equations areconsidered in a �rst order upwinding scheme. Although the Navier-Stokes equationsare solved, a purely �rst order numerical dissipation is used on all coarser meshesof the multigrid, and on these coarser levels the viscous terms are not signi�cant.Thus, the conclusions that are drawn from the inviscid stability analysis remainpertinent enough to explain the good behaviour of the Navier-Stokes calculations.



Chapter 1 � Introduction 101.5 SummaryThe main body of the dissertation is divided into �ve chapters corresponding to thedevelopment of a basic Navier Stokes solver to incorporate preconditioning and alow Mach number capability, to end up with an algorithm capable of dealing witha complete range of Mach numbers for any internal and external ows.Chapter Two begins with the spatial discretisation followed by the time-steppingscheme, and the edge collapsing multigrid method. Speci�c attention is focussed onthe treatment of the highly stretched cells required for turbulent calculations, in boththe discretisation and the edge-collapsing multigrid method. Finally, the turbulencemodel is introduced, and its treatment described.To cluster the residual eigenvalues in regions where the multi-stage Runge-Kuttahas a rapid damping and propagating e�ect, the block Jacobi preconditioner is used.Chapter Three describes how to evaluate it, and how to adjust it in order to includea slip boundary condition. Components of the matrix are also given.The following chapter presents a stability analysis of the resulting method andexplains the reasons why good multigrid performance is observed. After �rst consid-ering applications with periodic boundary conditions, the inuence of a slip bound-ary condition is investigated.Chapter Five describes the new discretisation that the introduction of a lowMach number preconditioner implies and also investigates the inuence of this pre-conditioner on the boundary conditions. When the solution has almost converged tothe steady state, so that only low frequency waves remain, the analysis determineswhether an exponential decay of the amplitude of these waves can be expected.Finally, the extension of the stability analysis of the previous chapter is presented,giving a complete study of the method used throughout this work.All the results in two and three dimensions are gathered in Chapter Six. Goingfrom inviscid to viscous, a complete set of test cases exemplify the resulting methodon grids of various complexities.A concluding chapter summarises the main results of the research and provides



Chapter 1 � Introduction 11some suggestions for future work.



Chapter 2
Discretisation
The objective of this work is the prediction of steady compressible turbulent owsover complex geometries using hybrid grids. The starting point was a turbulentNavier-Stokes algorithm on tetrahedral grids developed with Dr. Paul Crumpton[20]. This used a fully automatic edge-collapsing multigrid method in a frameworkallowing parallel computation [10] and included the Spalart-Allmaras turbulencemodel [76]. Moving to hybrid grids for the reasons outlined in the Introductionrequired the development by Dr. Jens-Dominic M�uller of a modi�ed grid-collapsingstrategy [59]. For the ow discretisation there are also some changes due to the useof hybrid grids, but the key features are unchanged. In particular two importantaspects of the discretisation remain valid: �rst the introduction of an anisotropiclinear preserving Laplacian and then the addition of some edge derivative terms inthe evaluation of the gradient. Both increase the robustness of the algorithm.This chapter is organised as follows: �rstly, the spatial discretisation is describedfollowed by the time-stepping scheme, and then the element-collapsing multigridmethod. Speci�c attention is focussed on the treatment of the highly stretchedcells required for turbulent calculations, in both the discretisation and the element-collapsing multigrid method. Finally, the turbulence model is introduced, and itstreatment described.
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Chapter 2 � Discretisation 132.1 Governing equationsIn Cartesian coordinates (x; y; z), the Navier-Stokes equations are non-dimensionalisedusing the variablesx� = xLref ; y� = yLref ; z� = zLref ; t� = t UrefL ;u� = uUref ; v� = vUref ; w� = wUref ; �� = ��refUrefLref ;�� = ��ref ; p� = ppref ; T � = TTref ;where the reference length scale Lref is 1 metre and the reference density �ref ,pressure pref and temperature Tref correspond to atmospheric standard temperatureand pressure at sea level. A reference velocity Uref is then de�ned by Uref �qpref�ref .Omiting the asterisks for clarity, the three-dimensional Navier-Stokes equations thentake the form @Q@t + @Fx@x + @Fy@y + @Fz@z = 0 (2.1)where
Q = 0BBBBBBBBBB@

��u�v�w�E
1CCCCCCCCCCA Fx = 0BBBBBBBBBB@

�u�u2 + p� �xx�uv � �yx�uw � �zx(�E + p)u� u�xx � v�yx �w�zx + qx
1CCCCCCCCCCA

Fy = 0BBBBBBBBBB@
�v�uv � �xy�v2 + p� �yy�vw � �zy(�E + p)v � u�xy � v�yy � w�zy + qy

1CCCCCCCCCCA
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Fz = 0BBBBBBBBBB@

�w�uw � �xz�vw � �yz�w2 + p� �zz(�E + p)w � u�xz � v�yz � w�zz + qz
1CCCCCCCCCCA�; u; v; w; p;E denote the density, the three Cartesian velocity components, the pres-sure, and the total internal energy, respectively. To complete the system of equationsrequires an equation of state for an ideal gas,p = �RT = ( � 1)��E � 12 �u2 + v2 + w2�� ;in which R;T;  are thr gas constant, temperature and uniform speci�c heat ratio,respectively, as well as equations de�ning the heat uxes,qx = �k@T@x ; qy = �k@T@y ; qz = �k@T@z ;with the coe�cient of thermal conductivity k = �Pr and Pr the Prandtl number(Pr = 0:72 for air). The deviatoric stress are given by:�xx = 2�@u@x + ��@u@x + @v@y + @w@z ��yy = 2�@v@y + ��@u@x + @v@y + @w@z ��zz = 2�@w@z + ��@u@x + @v@y + @w@z ��xy = �yx = ��@u@y + @v@x��xz = �zx = ��@u@z + @w@x��yz = �zy = ��@v@z + @w@y �



Chapter 2 � Discretisation 15where the molecular viscosity � is modeled by Sutherland's law,� = 1:461 � 10�6T 3=2T + 110:3 ;and the bulk viscosity � is de�ned by invoking Stokes' hypothesis� = �23�:For turbulent calculations, the Reynolds averaged Navier-Stokes equations [70]are solved using a turbulence model for closure. The one chosem througout thiswork is the Spalart-Allmaras turbulence model [76]. Following from the Boussinesqhypothesis [8], the averaged equations take the same form as the Navier-Stokesequations if the de�nitions of the viscosity and thermal conductivity are modi�ed toincorporate both molecular and turbulent contributions. The total viscosities thenbecome �tot = �+ �t; �tot = �23�tot;and the thermal conductivity is given byktot = �Pr + �tPrt ;where �t is the turbulent eddy viscosity and Prt is the turbulent Prandtl number(Prt = 0:9 for air).To obtain a well-posed problem, appropriate boundary conditions must be im-posed on the domain boundary. For the Euler equations, the appropriate solid wallboundary condition is zero velocity normal to the wall. For the Navier-Stokes equa-tions, both the normal and tangential velocity components are zreo at the wall andeither the temperature or the heat ux must be speci�ed at the wall. Calculationsare generally performed on a truncated domain, so in practice it is also necessaryto introduce boundary conditions at the far �eld boundary.



Chapter 2 � Discretisation 162.2 Spatial DiscretisationFor clarity, the 3D compressible Reynolds-averaged Navier-Stokes equations are ex-pressed in the more concise way@Q@t +r:F(Q;rQ) = S(Q;rQ): (2.2)Q(x) is the vector of conserved variables, (�; �u; �v; �w; �E)T . F(Q;rQ) is the totalux and the source term S is of the form (0; 0; 0; 0; 0)T .The discretisation described here is appropriate for any hybrid grids. Using the�nite volume approach, equation (2.2) is integrated over some control volume, whichafter the application of the divergence theorem gives the expressionRj = 1Vj  I@Vj F(n;Q;rQ)ds � ZVj S(Q;rQ)dv! = 0; 8j (2.3)where Vj is the measure of the control volume associated with index j. Here theunknowns are stored at the nodes of a given grid, and the control volume is the`median-dual' [6] which is constructed around each node xj of the grid by joiningthe centroids of the cells surrounding the node with the midpoints of the edges(see �gure 2.1). For interior grid points, the ux integration in equation (2.3) isapproximated by using pre-computed weights for each edge of the grid, see [56, 38,59]. These edge weights are anti-symmetric; the contribution of the edge appears

Figure 2.1 Median dual around an internal node.



Chapter 2 � Discretisation 17with opposite signs at either end, ensuring conservation by construction.I@Vj F(n;Q;rQ)ds � Xi2Ej F(nij ;Q;rQ)jx= 12 (xi+xj) 4sij (2.4)where Ej is the set of all nodes connected to node j via an edge, nij is a unit vectorand 4sij an area associated with the edge connecting nodes i and j.For nodes on a boundary, extra terms from the boundary faces are added, sothat the approximation of the ux will be written asI@Vj F(n; ; )ds � Xi2Ej F(nij ; ; )jx= 12 (xi+xj) 4 sij + Xk2Bj F(nk; ; )jxj 4 sk (2.5)Here Bj is the set of boundary faces associated with node j (e.g. wall + inow).nk is the corresponding normal and 4sk an area. The edge weight conservation (orclosure of the control volumes) implies thatXi2Ej nij 4 sij + Xk2Bj nk 4 sk = 0 :Hence, the discrete equivalent to equation (2.3) becomesRj = 1Vj 0@Xi2Ej Fij 4 sij + Xk2Bj Fk 4 sk � SjVj1A 8j (2.6)where Fij is the numerical ux in the direction nij associated with an antisymmetricedge (i; j), and Fk is the one associated with the boundary face k with no viscouscontribution, since at the wall the boundary conditions are an adiabatic boundarywith a zero relative velocity between the uid and the solid wall.It now remains to de�ne the discrete ux functions, and then the spatial dis-cretisation is complete. Since the ux F can be split into an inviscid and viscouspart F(n;Q;rQ) = FI(n;Q) + FV (n;Q;rQ)for any unit normal n, the discrete approximation F of F will have an inviscid andviscous part. Each of these is presented in the next two sections.



Chapter 2 � Discretisation 182.2.1 Evaluation of F IBasic discretisationThe scheme described here is motivated by the well-known MUSCL [32] approach,in which a functional representation of Q is used within each control volume toarrive at a Riemann problem at the interface between control volumes. Considerthe ux Fij to be evaluated at 12(xi + xj). Let Q+ and Q� be values obtained byreconstruction within volumes i and j, respectively. Then, the ux at the interfaceis based on the ux-di�erencing ideas of Roe [69] combining central di�erencingof the nonlinear inviscid uxes with a smoothing ux based on one-dimensionalcharacteristic variables. It is expressed asF Iij = 12 �FIij(Q+) + FIij(Q�)� jAij j(Q+ �Q�)� (2.7)where Fij = F(nij ; ; ) and Aij = @FI=@Q. This approach is often seen in theliterature [46, 6, 75]. It is crucially important to note that this characteristic de-composition is performed in a one-dimensional fashion in the direction nij at theinterface between volumes i and j. With the premise that any inaccuracies associ-ated with this approach are derived from this one dimensional approach, here weendeavour to modify the above to be (a) robust, (b) cheap to evaluate and (c) agood smoother for multigrid.Since the reconstruction of Q+ and Q� is an expensive process, the �rst step isto approximate equation (2.7) byF Iij = 12 �FIij(Qi) + FIij(Qj)� jAij j(Q+ �Q�)� :The ux terms now use the nodal variables and so this expression can be more easilyinterpreted as a central di�erence (or Galerkin) method with numerical smoothing,as in [56]. The evaluation of this central di�erence term is computationally cheapsince the reconstruction of the values Q+ and Q� is not necessary. Since thisdiscretisation is to be used within a 5-stage Runga-Kutta (see section 2.3) wherethe numerical smoothing will only be evaluated on a few of the steps, and the basic



Chapter 2 � Discretisation 19ux terms will be evaluated on every step, a considerable computational saving hasbeen made.The next step is to modify the form of the numerical smoothing term. Tomotivate this, we consider the approach adopted by Lohner [46] in which the valuesQj+ and Qi� are constructed at points xj+ and xi� such that xj+ , xj , xi xi� areequi-spaced along a straight line. Consequently, many well-established four pointschemes for the evaluation for the ux can be employed, see [32]. In particular,ignoring any limiting that may be necessary, the dissipation term for one such familyof methods can be expressed asjAij j(Q+�Q�) = 12(1��)jAij j �(12Qj+ �Qj + 12Qi)� (12Qj �Qi + 12Qi�)� (2.8)where � 2 [0; 1] represents a one-parameter family of second order schemes for aone-dimensional uniform mesh, with the exception � = 1=3 being a third orderscheme. The value, � = 1=2, is used throughout this work.With this motivation, we de�ne the numerical inviscid ux F Iij to beF Iij = 12 �FIij(Qi) + FIij(Qj)� 12(1� �)jAij j(Lj(Q)� Li(Q))� (2.9)where L is an undivided pseudo-Laplacian with a negative unit central coe�cient.Here, this is generalised for unstructured grids by de�ning L asLj(Q) = 1#(Ej) Xi2Ej (Qi �Qj) (2.10)where #(Ej) represents the number of elements in set Ej . This scheme is now verysimilar to some structured grid discretisations [35], and similar algorithms have alsobeen successfully employed on unstructured grids [38].Another important comment concerns the upwinding treatment. In areas whereone of the characteristic speeds passes through zero, the de�nition of these mustbe modi�ed to avoid the formation of non-physical expansion shocks and problemswith stability. The treatment that is used is based upon the ideas of van Leer [81],and written as j�jvL = max (j�j; 2��) :



Chapter 2 � Discretisation 20In this de�nition, � is the eigenvalue, and �� the di�erence between the corre-sponding eigenvalues evaluated at each node of one edge. The e�ect of this �x isto maintain a certain minimum level of numerical smoothing which prevents nonphysical behaviour but without unnecessary corruption of the physical solution.Modi�cations to pseudo-LaplacianThe drawback of using the simple pseudo-Laplacian is outlined in [13]. Broadlyspeaking, one wants Lj(Q) � O(h2) r2Q��x=xjso that the dissipation term in equation (2.9) is O(h3). After being integratedaround the control volume in equation (2.6), and divided by the volume, this givesan error which is O(h2) consistent with the truncation error of the basic centraldi�erence Galerkin approximation.However, a simple Taylor series expansion of LQ about xj reveals thatLj = Lj(x): rQjx=xj +O(h2)where Lj(x) = (Ljx;Ljy; Ljz)T . Consequently, the local truncation error will notbe second order unless the mesh is su�ciently smooth.Another interpretation is that L will not preserve a linear solution. The basicGalerkin discretisation is exact when F(Q) is a linear function and Q varies linearlywith x. However, if Lj(x) is not identically zero, Qj = Q(xj) will not give a zeroresidual and so it is not a solution of the discrete ow equations.This has been found to give poor results on general grids [13], so the followingmodi�cation is made Llpj (Q) = Lj(Q)�rQj:Lj(x)so that Llpj (Q) will be `linear preserving' provided rQj is exact for linears. That is,if Q = a:x+ c then Lj(Q) = a:Lj(x) and rQj = a, and so Llpj (Q) = 0.The calculation of rQj is approximated using the edge weights.rQj = Xi2Ej 12(Qi+Qj)nij4sij+Xk2Bj Qj nk4sk = Xi2Ej 12(Qi�Qj)nij4sij : (2.11)
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(0,0)

(0,h)

(0,-h)
(H,   h)(-H,   h)α αFigure 2.2 Schematic of highly stretched gridIt is worth noting that this discretisation is to be used within a multigrid method(see section 2.4), which requires the damping of high frequency error modes. A localmode analysis of Lj in equation (2.10) on a structured grid reveals good dampingproperties for high frequency modes [14]. The advantage of this linear preservingoperator is the high-frequency damping properties of Llp are identical to those of Lsince the correction term involves a central di�erence type of operator, which hasminimal e�ect on high frequency modes. However, at boundary nodes the e�ect ofthe linear preserving correction can cause some of the weights of points other thanthe central one to become negative, threatening the stability. Such problems areavoided by limiting the linear preserving correction to prevent negative weights.When calculating inviscid ows on unstructured grids which are not highlystretched, the use of the linearly-preserving Laplacian operator Llpj (Q) gives a methodwhich has been shown to be both accurate and robust [73, 74, 18]. However, a criti-cal modi�cation is required for the highly stretched grids needed to e�ciently resolvea high Reynolds number boundary layer.To exemplify the problems associated with applying Llp on a highly stretchedgrid, consider the piece of two-dimensional grid in Fig. 2.2. Around the leading edgeof an airfoil, the ratio ratio H=h is very large, of the order of 103 or greater, and �can also be more than 100. The central di�erence approximation to rQ is given byQx = 266664 0� 12H 0 12H0 377775Q; Qy = 266664 12h0 0 0� 12h
377775Q:



Chapter 2 � Discretisation 22The simple pseudo Laplacian L(Q) is given byL(Q) = 14 266664 11 �4 11 377775Q :and hence L(x) = (0; 2�h), and thereforerQ:L(x) = 266664 �0 0 0�� 377775Q:Consequently, severe di�culties can be expected if j�j � 1 because the coe�cientsof the linear preserving correction will then become much larger than those of thebasic Laplacian operator L. This loss of diagonal dominance in the smoothingdiscretisation typically results in numerical instability.To avoid this problem, the following anisotropic scaling is introducedL̂i(Q) = 0@Xj2Ej 1jxj � xij1A�1 Xj2Ej (Qj �Qi)jxj � xij :In the example above one now getsL̂(Q) = Hh2(H + h) 266664 1h1H �2H+hHh 1H1h
377775Q;and hence L̂(x) = Hh2(H + h) 0@ 02�hH 1A ;and rQ:L̂(x) = Hh2(H + h) 266664 �H0 0 0��H

377775Q :Thus, numerical di�culties will occur only if j�jh > H which is a much morereasonable restriction.



Chapter 2 � Discretisation 23Figure 2.3 demonstrates the e�ect of the linear preserving modi�cation for anRAE2822 2D airfoil; wiggles in the Mach contours are evident when using L̂, butdo not appear when L̂lp is used. This extra smoothness in the solution only dueto the linear preserving dissipation (the numerical dissipation has not been tunedor modi�ed in any other respect) is thought to be especially important for theturbulence model, which uses highly non-linear functions in the de�nition of thesource and destruction terms in di�erent regions of the boundary layer.The one disadvantage of this approach is the numerical smoothing operator L̂lpis anisotropic on highly stretched grids, and so will only damp error modes which arehigh-frequency in the direction of highest grid resolution (i.e. across the boundarylayer). This will become crucial to the multigrid strategy that is employed.Treatment of shocksA major challenge is the monotonic resolution of discontinuous or very steep inte-rior layers such as shocks and shear layers, whilst maintaining accuracy where thesolution is smooth, for instance in boundary layers or in the far �eld. For thatreason, the arti�cial dissipation consists of a nonlinear blend of second and fourth-di�erences, and a limiter is introduced so that the smoothing reverts to �rst ordercharacteristic upwinding at shocks well known to be monotone and non-oscillatory.This formulation is designed to ape the one used in [35, 19], and is written asF Iij = 12 �FIij(Qi) +FIij(Qj)� jAijj��13(1�	)(L̂lpi (Q)� L̂lpj (Q)) + 	(Qi �Qj)��(2.12)where 	 = min �(2) ����pj � pipi + pj ����2 ; 1! (2.13)Here �(2) is a global user de�ned constant (taken as �(2) = 8) and p the pressureat the corresponding node. As already mentioned in the previous section, the errorintroduced by the arti�cial dissipation terms is O(h3) and consequently, when thesolution is smooth and the computation performed on a smoothly varying grid,second-order accuracy of the basic discretisation scheme is therefore observed. The
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grid

Mach contours using L̂

Mach contours using L̂lpFigure 2.3 E�ect of L̂lp on the solution of an RAE2822 airfoil.



Chapter 2 � Discretisation 25role of fourth-di�erence smoothing is to damp high frequency solution componentwhich is essential for the successful application of a multigrid method to improveconvergence to a steady state.2.2.2 Evaluation of F VThe viscous uxes can be evaluated in a number of ways. One possibility is to usethe Galerkin �nite element approximation (see [38]). This has some di�culties asso-ciated with the treatment of the non-linearity within the edge-based data structure,and requires the storage of numerous viscous edge-weights. Another possibility,adopted here, is to approximate the viscous ux half-way along each edge (ie. FVij )and then use the usual integration rule around each volume, equation (2.3), thusgiving a consistent �nite volume treatment of the inviscid and viscous terms. Thisrequires an approximation of rQ at the midpoint of each edge. The gradients ofthe ow variables can be approximated at the nodes using the existing edge-weights,equation (2.11). An approximation at the midpoint of the edge can then be obtainedby a straightforward average,rQij = 12 (rQi +rQj) :However, as this is the average of two central di�erences, it will not damp highfrequency modes. Although the inviscid ux includes numerical dissipation termsthat will damp these modes, this is insu�cient inside the boundary layer where theviscous terms dominate. To remedy this, the component of rQ in the directionalong the edge is replaced by a simple di�erence along the edge, givingrQij = rQij ��rQij � �sij � (Qi �Qj)jxi � xjj � �sij (2.14)where �sij = xi � xjjxi � xj j :In the boundary layer, it is the simple di�erences along the shortest edges whichcontribute to the dominant viscous ux terms, and so this formulation damps thehigh-frequency error modes. Fig. 2.4 illustrates what the stencil of the Laplacian



Chapter 2 � Discretisation 26will be in a 1D representation, when rQ is discretised using a central di�erencescheme or a simple di�erence along the edge. When applied to a high frequencymode (Fig. 2.5) it appears that in the �rst case the Laplacian will not have anyinuence on it, and no damping will occur, which will be di�erent in the othercase. In other words, without the modi�cation, a sawtooth mode in the boundarylayer will not be damped because the stencil, spread over 5 points, will not see it,whereas with the correction, the 3 adjacent point stencil will. Without the additionof the `edge-derivative' terms the algorithm failed to converge. Furthermore, thisdiscretisation is still linear preserving, in the sense that a solution Q with linearspatial variation would give identically zero residuals if the function F(Q;rQ) werelinear.
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−11−11Figure 2.4 Stencils in 1D of �Q using a central di�erence scheme and a simple di�erence alongthe edge.
1

−1Figure 2.5 Representation of a high frequency mode.
2.2.3 Boundary ConditionsBecause a multigrid method is being used, it is important that the residual Rj is wellde�ned for all nodes, including boundary nodes. It is often the case with single-gridpseudo timestepping methods, that boundary conditions are imposed on the update



Chapter 2 � Discretisation 27vector, or even on the solution after the update has taken place. Here a residualwith the boundary conditions included is de�ned, which is appropriate since theFAS multigrid scheme transfers residuals between grids. The di�ering boundaryconditions are summarised below.slip This condition is imposed on inviscid walls, where boundary layer e�ects areignored. The mass ux in the boundary ux Fk in equation 2.6 is set to zero.In addition, to enforce the slip condition the normal momentum componentsof the residual at all slip boundary nodes are explicitly removed. Thus theresulting update will not change the normal velocity components which areinitialised to zero. To ensure that spurious normal velocity components arenot introduced by the multigrid process, all nodal normal components areremoved during the multigrid transfer operations.The normals at the boundary nodes are calculated by averaging the face nor-mals arising from all the surrounding faces of each boundary node. If a bound-ary node lies on the junction between some surface and a symmetry plane, thenodal boundary normal of the surface is projected onto the symmetry planefor consistency.no-slip This condition is imposed on viscous walls, where the boundary layer is be-ing modelled. All components of the momentum and the turbulence equationof the residual are explicitly set to zero.free-stream This condition is imposed through the inviscid boundary ux term inequation (2.6), which is evaluated by solving the Riemann problem, that isFk = 12 �FIk (Qk) + FIk (Q1)� jAkj(Qk �Q1)�where Q1 is a pre-described free-stream state.periodic Periodic boundaries are gridded such that nodes are matched across peri-odic boundaries. For example, if the top and bottom of a grid is periodic, thengrid nodes on the top and bottom are matched. By summing contributionsfrom the �nite volume integrals at matching nodes, a consistent residual can



Chapter 2 � Discretisation 28be constructed. By ensuring the residual is identical at matching nodes, alongwith �t, Q and rQ the periodic condition is consistently imposed. The multi-grid transfer operations are also modi�ed to ensure that periodic conditionsremain consistent.other The basic methodology employed to specify a particular inlet/outlet con-dition, such as static pressure, enthalpy, etc.. is to modify the free-streamcondition, so instead of using Q1 in the Riemann solver on the boundary,another state is used with the particular boundary condition imposed.2.3 Smoothing iterationThe iterative scheme used to converge the discrete residuals to zero is pseudo time-stepping using the 5-stage Runge-Kutta method developed by Martinelli [48]. Thiscan be expressed asQ(0)j = QnjQ(k)j = Qnj � �k�tjR(k�1)j ; k = 1; 2; 3; 4; 5 (2.15)Qn+1j = Q(5)jwhere R(k�1)j = Cj(Q(k�1)) � B(k�1)jB(k�1)j = �kDj(Q(k�1)) + (1��k)B(k�2)jwhere Cj(Q(k�1)) is the convective contribution to Rj arising from the Galerkin ap-proximation of the inviscid terms in equation (2.2), and Dj(Q(k�1)) are the remain-ing parts due to the source term and the dissipation, both physical and numerical.The coe�cients �k and �k are�1 =14 �2 = 16 �3 = 38 �4 = 12 �5 = 1 ,�1 =1 �2 = 0 �3 = 1425 �4 = 0 �5 = 1125 .



Chapter 2 � Discretisation 29This Runge-Kutta scheme is designed to have a large stability region with a lowcomputational cost, since �2 and �4 are zero and so Dj(Q(2)) and Dj(Q(4)) need notbe computed.Preconditioning will be described later, but if one does not use it, then thestandard approach is to use local timesteps. For the Navier-Stokes equations, thelocal timestep �tj is based on a combination of inviscid and viscous timesteps,1�tj = 1CFL max 1�tIj ; �V�tVj !where CFL is the inviscid CFL number and �V = 0:5. The reason for this isthat for the 5-stage Runge-Kutta scheme used in the present work, the maximumextent along the negative real axis is roughly twice the extent in either directionalong the imaginary axis, suggesting that the parabolic Courant number is twice thehyperbolic one, since these two numbers reects the extent of the stability region ofthe Runge-Kutta time-stepping scheme along the negative real and imaginary axes,respectively.The inviscid time step is based on a spectral radius upper bound on the Jacobiansof the discrete inviscid operator.1�tIj = 1Vj 0@Xi2Ej �(Aij)4 sij + Xk2Bj �(Ak)4 sk1A :Here �(A) is the spectral radius of the matrix @FI=@Q.The viscous timestep is obtained from the quasi-linear form in term of primitivevariables of the viscous terms and based again on the maximum spectral radius ofthe Jacobian matrices [19]. If jxi � xjj is chosen as representative of the geometricquantities for each edge (i; j), the viscous timestep is de�ned by1�tVj = 1Vj Xi2Ej �(Bij) 1jxi � xjj 4 sij:where �(B) denotes the spectral radius of the matrix @FV =@Q.



Chapter 2 � Discretisation 302.4 Multigrid method2.4.1 Basic approachMultigrid has had a major impact on CFD and has become an essential part ofany successful steady-state ow algorithm. The fundamental concept behind anymultigrid method is to have a sequence of successively coarser grids that can rep-resent the smooth error modes of the �ner grid, and some iterative `smoothing'procedure which eliminates the high frequency error modes on each grid. Thus, allerror modes are eliminated. This, along with the transfer operations of restriction(�ne to coarse) and prolongation (coarse to �ne) de�nes a multigrid method [87].On structured grids, a sequence of grids can be constructed trivially by retainingalternate grid points in each direction. On unstructured grids, however, the gener-ation of a sequence of grids becomes a non-trivial task. The four main approachesin the literature are briey outlined below.Non{nested Here an independent sequence of grids is produced by some `black-box' grid generator, and then linked together through the use of e�cientsearching algorithms. This has been successfully adopted by several authors[62, 49, 15]. This approach allows the exibility of using any grid-based solver,independent of the data structure used by the solver. However, the generationof the sequence of grids is not automatic, and requires a robust mesh genera-tor which has good control of both the surface and interior point distribution.Often, this involves extensive user interaction. There are also severe problemsin viscous applications with curved boundaries in which the boundary layernodes at one location on one grid can lie wholly outside the other grid.Agglomeration An increasingly popular approach is agglomeration, which hasbeen successfully applied to very complex problems [84, 50, 51, 53, 52]. Here,coarse grid `edge-weights' are constructed by fusion of �ne grid control vol-umes. This is completely automatic and very powerful but is totally reliant onhaving a discretisation dependending only on `edge-weights', not requiring anunderlying grid. It also has the problem that the sum of accuracy of multigrid



Chapter 2 � Discretisation 31restriction and prolongation violates the condition established by Hackbush[30] as being necessary for grid-independent convergence for the Navier-Stokesequations (see section 2.4.3). An ad hoc �x has then to be used to overcomeit.Re�nement Another strategy is to produce a sequence of �ne grids from a coarsegrid, preferably in some sort of adaptive re�nement procedure [4]. This seemsan attractive proposition, however, this requires a strong coupling between thegrid re�nement and the surface spline de�nition. There are also di�cultieswith complex geometries (e.g. aircraft) when certain features (e.g. fairing)may not appear on the coarsest grid.Grid Collapse The philosophy adopted in this work, as in [17, 18], is to use anautomatic point removal algorithm to generate a sequence of coarse grids froman initial �ne grid. This is completely automatic, needing no interaction withany grid generation process. The resulting grid sequence can be used by anygrid based algorithm, including those which use an edge-based data structure.
choose edge see if validFigure 2.6 An example of a collapsed edge with retriangulation2.4.2 Point-removalInitially, the strategy was to replace two nodes connected by an edge, by a singlenode at the mid-point of the original edge, removing all the elements that wereformed with that edge. The cavity created had then to be retriangulated (seeFigure 2.6) subject to two constraints; all elements had to have positive volume
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d c

A

d c

A
a

b

cdFigure 2.7 Collapsing the edge a-b. In the simplex algorithm, the resulting cavity is retriangulated(center). In the hybrid algorithm the type of all neighboring elements is maintained, except forthose that are formed with the edge, element A-c-d (right).and not more than a speci�ed number of �ne grid vertices could collapse into onecoarse grid point. This algorithm developed by Crumpton [20] works well for simplexmeshes of triangles in two dimensions or tetrahedra in three dimensions, but is notsuitable for hybrid grids. The reason is that given a mesh composed of quadrilateralsand triangles, the removal of one edge will create a mesh with only triangles (seeFigure 2.7). To be able to coarsen hybrid meshes, maintaining a large number of non-simplex element, M�uller [59] has developed a similar algorithm which prevents theneighboring elements that are not formed with the collapsed edge to be triangulated(see Figure 2.7).Figure 2.8 shows two possible collapsing sequences for a hexahedron when usingthis edge collapsing strategy. In the �rst sequence the hexahedron nicely degeneratesinto a tetrahedron via a prism and a pyramid. All of these elements are nicelyshaped. In the second sequence an odd element is formed with three triangular facesand two highly twisted quadrilateral ones. Most likely a higher order discretisationon this element will be unstable and the formation of elements of this quality has tobe prohibited. Due to the incremental nature of the collapsing process, prohibitingthese elements stalls the edge collapsing algorithm rapidly.The alternative that produces better shaped elements with an appropriate sizeon the coarser meshes is the element-collapsing algorithm, presented by M�uller in[58]. The basic ingredients are maintained: a collapse is only permissible if (a) theedges are not overly lengthened, (b) the resulting geometry is of good quality and(c) the number of vertices collapsed into a particular one must not exceed a speci�c
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Figure 2.8 Collapsing edges on a hexahedron.
Figure 2.9 Parallel edges on primitive elements (shown in dashed lines). Parallel edges share novertices, but connect the same faces. If a set of parallel edges is collapsed, the element disappears.number. The major di�erence is that instead of collapsing the shortest edge of themesh, the smallest element of the mesh is collapsed. In order to make an elementdisappear several edges have to be collapsed . In the current implementation theshortest edge of an element and all of the parallel ones are chosen to be collapsed.These are edges that connect between the same faces (see �gure 2.9). An elementcollapse then happens by two faces of an element falling onto each other.For isotropic meshes, the implementation of this algorithm is straightforward.Given a �ne mesh, each edge is tagged with its length times a growth factor, say2, as maximum length. The elements are sorted in a heap list for smallest volumeand the algorithm tries to collapse the shortest edge and its parallel siblings. Fixinga certain maximum angle for the elements in the collapsed geometry, in the 2D



Chapter 2 � Discretisation 34examples 135�, guarantees a minimum quality of the coarser mesh as well as positivevolumes. This test is done by looping over all elements that are formed with any ofthe collapsed vertices and considering what remains on each element. Other edges onthese elements may have been collapsed in earlier steps. E.g. a quadrilateral with onecollapsed edge becomes a triangle, a doubly collapsed quadrilateral vanishes. Thealgorithm terminates once there are no edges left to be collapsed. All remainingelements and nodes are then identi�ed and a coarsened grid is created.The algorithm has to be modi�ed once more to achieve directional coarseningin stretched layers. All long edges in stretched regions have to be prevented fromcollapsing. For this we need to identify short edges in stretched regions. A �rstcriterion is that these edges are shorter by a given factor, say 3, compared to thelargest neighbouring edge. Additionally it is required that there is at least one otherneighbouring edge that is short and points into the same direction. This criterionensures that single short edges in very irregular unstructured grids do not de�ne astretched region.If an element is in a stretched region, all neighbouring long edges of the onesto be collapsed are prevented from any collapse. Once the stretched regions havebeen directionally coarsened in this way, the isotropic process collapses the rest ofthe domain. Figures 2.10 show the two �rst collapses for a hybrid grid around aRAE 2822 airfoil. It can be seen that the stretched part of the grid close to theairfoil remains regular and is coarsened exactly 1:2. The outer part of the structuredregion which is not stretched loses some regularity and the quadrilaterals collapseinto larger quadrilaterals and triangles.Figures 2.11 shows the �nest grid and the two �rst levels of coarsening of astandard Onera M6 wing. The �nest level has 147000 elements, and the sequenceof coarser grids contains 60400 and 3900 elements respectively, corresponding to acoarsening ratio of 2:4 and 15:5. The low coarsening ratio between the two �rst levelis due to the poor quality of the initial mesh where the strongest inuence at thislevel is the angular tolerance. By looking at the grids, it is worth noting that placeslike trailing edge, leading edge or junction between wing and symmetry plan can be
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Figure 2.10 Coarsening a hybrid grid around a RAE2822 airfoil. Finest and two successive coarserlevels.more or less severely distorted. However, this is not of paramount importance toconvergence to a steady state as it will be shown later.2.4.3 Transfer operatorsThe multigrid method used here is the well-known Full Approximation Scheme [9].Having established the smoother to be used (section 2.3), it remains to de�ne thetransfer operators used. With this point removal strategy, every point j on thecoarse grid has associated with it the set Kj of points on the �ne grid from whichit has been derived through repeated application of the element-collapse procedure.Conversely, for each �ne grid point, the index of the coarse grid point to which it hasbeen collapsed is easily determined. This latter information is the only grid-to-gridconnectivity needed for the transfer operations used here, and thus requires littleaddition storage.
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Figure 2.11 Coarsening a tetrahedral grid around an Onera M6 wing. Finest and two successivecoarser levels.



Chapter 2 � Discretisation 37To guarantee good convergence rate, multigrid theory [30] requires thatOP +OR > OE (2.16)where OP and OR are de�ned as the highest degree plus one of the polynomials thatare interpolated exactly by the prolongation and restriction operator and OE is theorder of the di�erential equation, which equals 2 for the Navier-Stokes equations.The transfer operators which are used are described below.Prolongation: transfers corrections �Q from the coarse grid to the �ne grid. Alinear interpolation is used by the reconstruction of the gradients of corrections,8i 2 Kj �Qhi = �QHj + (xhi � xHj ):r(�QH)jwhere �QH and �Qh are the coarse and �ne grid corrections respectively. Thegradients of the corrections, r(�QH) are evaluated using equation (2.11).Restriction: transfers residuals from �ne to coarse grids. The most obvious choice,analogous to full weighting for the elliptic case, is volume weightingRHj = Pi2Kj V hi RhiPi2Kj V hi :This assumes that V Hj �Pi2Kj V hi , which is true for the majority of the grid,however, near boundaries where the surface is constrained, V Hj can be con-siderably larger than Pi2Kj V hi . Consequently the following limited volumeweighting is used. RHj = Pi2Kj V hi Rhjmax(V Hj ;Pi2Kj V hi ) :Throughout this work V-cycles have been employed, along with �rst order up-winding for the inviscid discretisation (that is 	 = 1 in equation (2.13)) on thecoarse grids.2.4.4 The Full Approximation Scheme (FAS)The multigrid algorithm follows the Full Approximation Storage (FAS) scheme. IfN(Q) = f is a nonlinear system whose solution Q approximates a partial di�erential



Chapter 2 � Discretisation 38equation, the iterative solver is expressed asQn+1 = Qn + U(f �N(Qn)) n = 1; 2; ::: (2.17)where U denotes the Runge-Kutta procedure and the quantity f�N(Qn) the residualoperator identically equals to �R in the previous text. R = 0 leads to a zero update,and the FAS procedure is then the following [16]:� Pre-smooth errors on the �ne grid by doing �1 relaxations:Qh := Qh + Uh(fh �Nh(Qh)):� Form a coarse grid right hand side:N(Q) = f is a nonlinear system, where Q is the solution vector, and f is a forc-ing function, the discrete approximation of the system on a grid characterizedby spacing h is written as Nh �Q̂h� = fhwhere Q̂h is the exact solution to the discrete system. Let Qh be the currentapproximation and now de�ne the error Eh asEh = Q̂h �Qh ;so one can write Nh �Qh +Eh� = fh:Subtract Nh(Qh) from both sides to obtainNh �Qh +Eh��Nh(Qh) = fh �Nh(Qh) = Rh:Written for the coarse grid, characterised by spacing H, this equation becomesNH �IHh Qh +EH��NH �IHh Qh� = IHh �fh �Nh(Qh)� :By rearranging terms the coarse grid forcing function is de�ned asfH = IHh �fh �Nh(Qh)�+NH �IHh Qh� :Solve NH(QH) = fH using multigrid unless it is the coarsest mesh, in whichcase ncr iterations of smoother are applied.



Chapter 2 � Discretisation 39� Prolong the coarse grid correction:Qh := Qh + IhH(QH � IHh Qh):� Post-smooth errors on the �ne grid by doing �2 relaxations:Qh := Qh + Uh(fh �Nh(Qh)):The multigrid cycling parameters �1 and �2 for the smoothing are usually set to 1.ncr, the number of iteration on the coarser grid, is always chosen to be 5.Usually, three to �ve grids are used. Multigrid can be applied in di�erent cy-cling strategies, depending on the number of recursive calls of a coarser level (see�gure 2.12). In this work, the multigrid cycle is traversed in a V cycle, which hasproven to be the most e�cient strategy.
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Figure 2.12 Multigrid cycle descriptions: (�) Apply M-stage Runge-Kutta scheme and transfer.2.4.5 Inuence of higher order discretisation on coarse gridsUsually, the switched higher order formulation of the numerical dissipation is usedon the �ne mesh and the �rst order treatment is used on all coarser meshes. Tables2.1 and 2.2 show the inuence on the convergence of a high order discretisation oncoarse grids.In a few cases, increasing the order of the numerical dissipation on coarser levelsdoes accelerate the convergence to the steady state. However, this can not begeneralised and is (a) grid dependent and (b) ow dependent. Note that by swappingthe current pressure switch to a switch based on the velocity, improvements are



Chapter 2 � Discretisation 40Naca0012 airfoilType of grid MG parameters CPU Time (sec)5 2 5 1 1 5 833Triangular grid 5 3 5 1 1 5 7995 4 5 1 1 5 7335 2 5 1 1 5 2560Quadrilateral grid 5 3 5 1 1 5 DNC5 4 5 1 1 5 DNCTable 2.1 Inviscid transonic ow calculation. Type of grid, multigrid parameters (# grids, levelon/above which �rst order smoothing is used, level for full multigrid startup, # pre and postsmoothing iterations, # iterations on coarsest level), CPU time in seconds. DNC: did not convergeRAE2822 airfoilType of grid MG parameters CPU Time (sec)5 2 5 1 1 5 1052Triangular grid 5 3 5 1 1 5 11265 2 5 1 1 5 1137Hybrid grid 5 3 5 1 1 5 DNC5 4 5 1 1 5 DNCTable 2.2 Standard RAE test Case 9. Types of grid, multigrid parameters (# grids, level on/abovewhich �rst order smoothing is used, level for full multigrid startup, # pre and post smoothingiterations, # iterations on coarsest level), CPU time in seconds. DNC: did not convergeachieved for viscous calculations on hybrid grids, since convergence is obtained witha speed up of roughly 30% using second order on the two �rst level instead ofon the �nest one only. Although convergence is achieved, the solution appearsless accurate, particularly in terms of shock location. Consequently, the standardtechnique remains the most robust and is retained throughout this work.



Chapter 2 � Discretisation 412.5 Turbulence Model2.5.1 DescriptionThe turbulence model used throughout this work is the Spalart-Allmaras turbulencemodel [76]. It is a one-equation model that takes the form of a scalar convection-di�usion equation with source terms,@~�@t + u@~�@x + v@~�@y + w@~�@z = 1� �r: [(� + ~�)r~�] + cb2 (r~�)2�+ S; (2.18)where � is the molecular kinetic viscosity and ~� is the turbulent working variable.The source terms have the formS = cb1 ~S~� � �cw1fw � cb1�2 ft2�� ~�d�2 + ft14u2; (2.19)which may be divided into production, destruction and trip contributionsS � P (~�)�D(~�) + Tusing the de�nition P (~�) = cb1 ~S~�;D(~�) = �cw1fw � cb1�2 ft2�� ~�d�2 ;T = ft1(4u)2:The trip term provides a mechanism for triggering transition at a speci�ed locationon the geometry.The equation is put into a non dimensional form by introducingu� = upp1=�1 ; v� = vpp1=�1 ; w� = wpp1=�1 ;x� = xL; y� = yL; z� = zL; ~�� = ~�pp1=�1 :The turbulent eddy viscosity is de�ned by�t = ~�fv1;



Chapter 2 � Discretisation 42and the auxiliary relations used to construct the production and destruction termsare fv1 = �3�3 + c3v1 ; � = ~�� ; fv2 = 1� �1 + �fv1 ;fw = g� 1 + c6w3g6 + c6w3� 16 ; g = r + cw2(r6 � r); r = ~�~S�2d2 ;~S = S + ~��2d2 fv2; S =s�@w@y � @v@z�2 +�@u@z � @w@x�2 +�@u@y � @v@x�2:Here, d is the distance to the nearest wall and the closure constants arecb1 = 0:1355; cb2 = 0:622; � = 23 ; cv1 = 7:1;cw1 = cb1�2 + 1+cb2� ; cw2 = 0:3; cw3 = 2; � = 0:41:The auxiliary relations for the trip terms areft1 = ct1 gt exp��ct2 S2t(4u)2 �d2 + g2t d2t �� ;ft2 = ct3 exp ��ct4�2� ;gt = min(0:1; 4uSt4xt );with the additional closure constants given byct1 = 1; ct2 = 2; ct3 = 1:2; ct4 = 0:5:Here, dt is the distance to the trip point on the wall, St is the wall vorticity at thetrip, 4u is the di�erence in velocity between the �eld cell and the trip and 4xt isthe grid spacing along the wall at the trip. At a solid wall, the appropriate boundarycondition is ~� = 0.2.5.2 ImplementationA �rst important point to notice is that the trip terms are omitted. These arepresent to simulate the transition, but for many turbomachinery applications, likethe bypass duct of a turbofan engine, the ow is supposed to be fully turbulent.Modelling of the transition is then not necessary and not considered in this work.However it is possible to obtain transition, and the strategy would then consist of



Chapter 2 � Discretisation 43considering a small domain where the transition is expected in which the sourceterms are multiplied by a factor which increases linearly from 0 to 1. The advectionand di�usion terms are not touched by this procedure, so that the transport of theturbulent front is still realized. This approach is much more suitable for 3D prob-lems for which the de�nition of the transition point becomes tricky and di�cult toimplement.The turbulence model requires the normal distance to the nearest viscous wallat each node, which is pre-computed for each grid. It is important that only viscouswalls are considered when calculating this distance, in order to avoid the productionand destruction of turbulence viscosity at slip walls, where all boundary layer ef-fects are ignored. At slip walls the turbulence model essentially reduces to a simpleadvection operator, as required.The di�usion term includes the non-conservative termr~�:r~�which is di�cult to discretise in a manner that ensures positivity. Thus, the dif-fusion operator is reformulated in a conservative form [76] by assuming that themolecular viscosity � is constant, which is a good approximation, since it does notvary signi�cantly. The di�usion operator is then written as1� �r: ((� + ~�)r~�) + cb2 (r~�)2� = 1 + cb2� r: [(� + ~�)r~�]� cb2� (� + ~�)r2~�= 1�r [(� + (1 + cb2)~�)r~�]� cb2� ~�r2~�:As far as possible, the turbulence model is discretised in the same way asthe Navier-Stokes equations, thereby simplifying the programming implementation.However, because the advective part is not in conservative form, the formulationchanges slightly through the approximationZVj u:r~�jxj dV � Xi2Ej 12 ((uj :nij)(~�i + ~�j)�juj :nij j((1�  )(L̂lpj (~�i)� L̂lpj (~�j)) +  (~�i � ~�j))�4 sij



Chapter 2 � Discretisation 44where  is the scalar equivalent of 	 in equation (2.13). Again the numericaldissipation is a blend of second and fourth di�erences, but for robustness purposes, is set to 1, enforcing a �rst order treatment of the turbulence model.The source terms are sensitive to the method used to compute the distance tothe wall, and in particularly in regions which fall below the logarithmic region ofthe boundary layer, the exact distance is required, consequently, for each vertex ofthe mesh, the minimum distance from the vertex to the closest viscous solid wall,which implies �nding the perpendicular projection onto the wall, is precomputedand stored.To preserve the positivity of ~�, several modi�cations are made to the Runge-Kutta time integration procedure. The contribution of the turbulent source operatoris treated implicitly to limit the rate of exponential decay in the solution. This isequivalent to employing the standard explicit integration procedure with a reducedlocal time step �timp = �t1� ��@S@� ���twhere �t is the explicit time step given, at node j by1�tj = 12Vj 0@Xi2Ej juj :nij j 4 sij + 2(� + ~�)� 4sijjxi � xjj1A :For robustness, the timestep is prevented from becoming too small by using theHarten entropy �x [31] with a minimum cut o� value set to c8 , where c denotes thelocal speed of sound.While the implicit treatment described above provides a useful mechanism forlimiting the evolution of the turbulence equation in regions of the ow where rapiddecay might otherwise result in negative values of ~�, this treatment does not guar-antee positivity throughout the Runge-Kutta time-stepping procedure. Therefore,it is important to limit the update to the scheme, whenever a negative value of ~�would result. De�ning the standard update by�~� = �k�timpRk�1;



Chapter 2 � Discretisation 45positivity is guaranteed by the following limited update�~�lim = 8<: �~�; �~� � 0;(~�n�~�min)�~�(~�n�~�min)+�~� ; �~� > 0 :A minimum value �min is maintained throughout the domain, and in practice, thisone is set to the freestream value ~�min = ~�1 = 10� �1.Solved within the same multigrid algorithm, the source terms of the turbulencemodel are poorly resolved on the coarse levels, and consequently, as in [63], the �nemesh contribution to the forcing function that drives the coarse mesh correctionsis deated in regions of the ow where the source terms are strongly active. Thisis accomplished using the denominator from the implicit time step, which is equalto unity in inviscid regions and dominated by the Jacobian @S@� inside the boundarylayer.The current implementation of the turbulence model has only be tested on aseries of airfoil calculations and compared with experimental data. Although itperforms reasonably well and seems to be in good agreement with the literature[63, 71, 76], no further investigation and checking concerning the viscous sublayerand log-law region have been made, so that the accuracy of the implementation canbe questioned. Nevertheless, it should be emphasised that the main focus of thiswork concerns convergence acceleration rather than getting accurate prediction ofthe computed ows.



Chapter 3
Preconditioner
Convergence rates obtained with the standard method described previously happento be rather poor, particularly for viscous calculations. A way to overcome discretesti�ness in the Euler and Navier-Stokes equations is to use a matrix timestep orpreconditioner which seek to improve the convergence rate without a�ecting thesteady-state solution.Preconditioning techniques belong to two classes. The �rst class, physical pre-conditioners, is very successful for the Euler equations on structured meshes [82, 44]but these preconditioners are di�cult to extend to unstructured meshes due to thelack of directionality in the unstructured case. The fundamental idea is to equalisethe characteristic wave speeds through a computational control volume in order toeliminate analytic sti�ness due to the disparity of the propagative speeds.The other class of preconditioners look at the discretised system rather than theanalytical equations. They construct a matrix which has the e�ect of clustering theeigenvalues of the residual spatial operator in a region of the complex plane wherethe iterative method has good damping properties. The present work follows thisapproach and uses the block Jacobi preconditioner which has been successfully ap-plied to the turbulent Navier-Stokes equations on structured grids by Pierce [63] andto the 2D inviscid and laminar viscous ows on unstructured grids by Ollivier-Gooch46



Chapter 3 � Preconditioner 47[61]. The extension to the 3D turbulent Navier-Stokes equations on unstructuredgrids is straightforward and it has been incorporated within the multigrid solverdescribed in the previous chapter. In this chapter, the details of the construction ofthe block Jacobi preconditioner, including crucial modi�cations at boundaries arepresented.3.1 ApproachScheme DescriptionThe pre-conditioned semi-discrete equation appears asP�1dQdt +R(Q) = 0; (3.1)where Q denotes the set of conservative variables, R(Q) the residual vector of thespatial discretisation and P�1 the local preconditioner. The solution is updated viathe same multistage scheme described in section 2.3 with the local preconditionerwhich may be interpreted as a matrix timestep as it will be demonstrated later.The block-Jacobi preconditioner is based on a local linearisation of the 3DNavier-Stokes equations, and constructed by extracting the terms correspondingto the central node thereby giving a block-diagonal matrix. As the ux can be splitinto an inviscid and viscous part, the matrix preconditioner will have contributionscoming from both.3.2 The Inviscid ContributionUsing a �nite volume approach, the integration of the inviscid terms over somecontrol volume 
 gives, after the application of the divergence theorem,RIj = 1Vj I@
 FI(n;Q)dS; (3.2)where Vj is the measure of the control volume associated with index j, and FI(n;Q)is the inviscid ux in the direction of the unit vector n. As explained in section 2.2



Chapter 3 � Preconditioner 48the discrete approximation to equation (3.2) isRIj = 1Vj 0@Xi2Ej F Iij 4 sij + Xk2Bj F Ik 4 sk1A ; 8j; (3.3)and the numerical ux takes the formF Iij = 12 �FIij(Qi) +FIij(Qj)� jAij j(�13(1�	)(Li(Q)� Lj(Q)) + 	(Qi �Qj))�(3.4)where Aij = @F@Q , and its absolute value jAij j is de�ned to be T j�jT�1, with j�jbeing the diagonal matrix of absolute eigenvalues, and T the corresponding matrixof right eigenvectors. Linearising locally, the resulting equation becomesF Iij = 12 �AijQi +AijQj � jAij j(�13(1�	)(Li(Q)� Lj(Q)) + 	(Qi �Qj))� :For convenience, the same name is used to denote the ux Jacobian, but it is un-derstood that it is di�erent from the one in equation (3.4), since it results from thelinearising procedure. It is listed in detail in Appendix A.Turning now to the computation of the matrix preconditioner for the Eulerpart, Pi2Ej (AijQj) is identically zero, because it corresponds to the integration ofa constant over a closed domain, and consequently, considering only the terms whichhave a dependence on the central node, one gets�P Ij ��1 = 12Vj 0@Xi2Ej jAij j1 + 2	3 4 sij + Xk2Bj jAkj1 + 2	3 4 sk1A :It appears that the preconditioner is not identical for a 2nd (	 = 1) or for a 4thorder di�erence scheme (	 = 0), but it shows that it is acceptable to base it on a �rstorder discretisation even when using higher order schemes; the resulting timestepwill only be underestimated. This is a slight di�erence from the structured approachwhere the block-Jacobi preconditioner remains the same for both schemes [64].Finally, the inviscid contribution is�P Ij ��1 = 12Vj 0@Xi2Ej jAij j 4 sij + Xk2Bj jAkj 4 sk1A : (3.5)



Chapter 3 � Preconditioner 493.3 The Viscous ContributionThe integration of the viscous terms follows the usual rule over each volume, equation(3.2), giving a consistent �nite volume treatment of the inviscid and viscous uxes.Consequently, the viscous residual may be writtenRVj = 1Vj I@
 FV (n;Q;rQ)dS : (3.6)The viscous ux FV contains expressions of the form �u@u@x that can be linearisedabout a constant state (�u; ��) to become ���u@u@x . Following this procedure, equa-tion (3.6) is approximated using the same pre-computed edge weights as mentionedpreviously, but without any viscous contribution from the boundary faces for thereasons explained in section 2.2. Thus,RVj = 1Vj Xi2Ej F Vij 4 sij 8j ; (3.7)where F Vij is the numerical viscous ux in the direction nij associated with theedge (i; j). The data structure which is used in representing the unstructured gridsis the edge structure. The evaluation of the gradients has to be done over thecontrol volume and consequently it makes direct use of quantities like @u@x or @u@ydi�cult. To write the viscous contribution of the matrix preconditioner the followingapproximations are made:� All cross derivatives are neglected.� rQ is approximated by l: @Q@l , where l is a unit vector for the edge pointingfrom node i to node j and @Q@l = Qj�Qijxj�xij .After having rearranged the terms, (3.7) can then be writtenRVj = 1Vj Xi2Ej BM�1 Qj �Qijxj � xij 4 sij ;where B is a 5�5 matrix calculated with respect to the set of primitive variablesQp = (�; u; v; w; p)T , and transformed to the conservative variables using the trans-formation matrix M = @Q@Qp . Thus, the viscous preconditioner takes the form�P Vj ��1 = 1Vj Xi2Ej BM�1 1jxj � xij 4 sij : (3.8)



Chapter 3 � Preconditioner 50The full matrix preconditioner isP�1j = �P Ij ��1 + �P Vj ��1 : (3.9)In the Runge-Kutta integration (see equation 2.15), the local timestep �j is replacedby CFL Pj , where CFL is set to the maximum value that guaranties the �eld ofvalues to lie inside the stability region. P may then be interpreted as a matrix timestep.3.4 Slip Boundary Condition Adjustment to Precondi-tionerTo form the block-Jacobi preconditioner, the inviscid and viscous Jacobians needto be calculated at each node of the grid. However, at the wall, the conditions re-quire an adiabatic boundary with zero normal pressure gradient and a zero relativevelocity between the uid and the solid wall. Hence, no viscous contribution mustbe evaluated since this one reduces itself to zero. In fact, only a no-slip conditionhas to be satis�ed which is achieved by setting all momentum components in theresidual to zero.For Euler calculations, the procedure is slightly di�erent. In addition to thecorrections made on the residual, the preconditioner is modi�ed at the wall in orderthat the condition u:n = 0 is satis�ed; u and n denote respectively the velocityvector and the unit normal vector to the wall. This is accomplished by re-evaluatingthe matrix in the coordinate system (xn; xt1 ; xt2), by using a rotation matrix T fromthe original (x; y; z) coordinate system to the new one. xn is the coordinate in thedirection normal to the surface and the other two are mutually orthogonal tangentialcoordinates. Once done, it is transformed back to the original coordinate system[26]. Generally speaking, the theory is the following:Let us consider an iterative scheme expressed byP�1 dQdt = �R; (3.10)



Chapter 3 � Preconditioner 51where P�1, Q, and R denote respectively the preconditioning matrix, the ow vari-ables, and the residual. Calling by T the transformation matrix, whose expressionis T = 266666666664
1 0 0 0 00 nx ny nz 00 tx1 ty1 tz1 00 tx2 ty2 tz2 00 0 0 0 1

377777777775 ;the change in Q over a unit timestep can be written asP�1T�1T�Q = P�1T�1� �Q = �R;and by multiplying by T ,TP�1T�1� �Q = �TR = � �Rwhere �Q denotes the ow variables, and �R = [ �R1; �R2; �R3; �R4; �R5]T the residual,both of them in the transformed coordinate system. In this system, the normalmomentum equation must be discarded, including the residual �R2, and replaced bythe condition that un = 0 and hence �un = 0, where un is the normal componentof the velocity vector. The �rst step is achieved by writingMTP�1T�1� �Q = �M �R (3.11)where M = 266666666664
1 0 0 0 00 0 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

377777777775 ;and the second step by adding the conditionS� �Q = 0 (3.12)



Chapter 3 � Preconditioner 52where S = 266666666664
0 0 0 0 00 1 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

377777777775 :The modi�ed slip boundary matrix in the transformed coordinate system is obtainedby summing (3.12) and (3.11), and in the original system of coordinate, its expressionwill then be T�1(MTP�1T�1 + S)T�Q = �T�1MTR: (3.13)Noting that M = I � S, equation (3.13) can be re-written as�P�1 � T�1ST (P�1 � I)��Q = �(I � T�1ST )R; (3.14)where T�1ST only involves the unit normal vector, and is written
T�1ST = 266666666664

0 0 0 0 00 n2x nxny nxnz 00 nxny n2y nzny 00 nxnz nynz n2z 00 0 0 0 0
377777777775 :This correction to the preconditioner is important. Without it, the algorithm failsto converge because zeroing out the normal momentum residual does not produce azero change to the normal velocity.3.5 Components and implementation of the Matrix Pre-conditioner3.5.1 ComponentsInviscidThe absolute value of the conservative Jacobian is [37]jAj = T j�jT�1;



Chapter 3 � Preconditioner 53and the absolute value of the eigenvalue matrix appears as
j�j = 266666666664

jqnj 0 0 0 00 jqnj 0 0 00 0 jqnj 0 00 0 0 jqn + cj 00 0 0 0 jqn � cj
377777777775 ;where (nx; ny; nz) is unit normal of the surface through which the ux is evaluated,and qn = unx + vny + wnz.The right eigenvectors are the columns ofT = (R1jR2jR3jR4jR5)where

R1 = 0BBBBBBBBBB@
nxunxvnx + cnzwnx � cnyq22 nx + c(vnz � wny)

1CCCCCCCCCCA ; R2 = 0BBBBBBBBBB@
nyuny � cnzvnywny + cnxq22 ny + c(wnx � unz)

1CCCCCCCCCCA ;
R3 = 0BBBBBBBBBB@

nzunz + cnyvnz � cnxwnzq22 nz + c(uny � vnx)
1CCCCCCCCCCA ; R4 = 0BBBBBBBBBB@

1u+ cnxv + cnyw + cnzH + cqn
1CCCCCCCCCCA ; R5 = 0BBBBBBBBBB@

1u� cnxv � cnyw � cnzH � cqn
1CCCCCCCCCCA :

and the left eigenvectors are the rows ofT�1 = 1c2 (L1jL2jL3jL4jL5)T



Chapter 3 � Preconditioner 54given by
L1 = 0BBBBBBBBBB@

�c2 � ( � 1) q22 �nx + c(wny � vnz)( � 1)unx( � 1)vnx + cnz( � 1)wnx � cny�( � 1)nx
1CCCCCCCCCCA ;

L2 = 0BBBBBBBBBB@
�c2 � ( � 1) q22 �ny + c(unz � wnx)( � 1)uny � cnz( � 1)vny( � 1)wny + cnx�( � 1)ny

1CCCCCCCCCCA ;
L3 = 0BBBBBBBBBB@

�c2 � ( � 1) q22 �nz + c(vnx � uny)( � 1)unz + cny( � 1)vnz � cnx( � 1)wnz�( � 1)nz
1CCCCCCCCCCA ;

L4 = 0BBBBBBBBBB@
12 �( � 1) q22 � cqn��12 (( � 1)u� cnx)�12 (( � 1)v � cny)�12 (( � 1)w � cnz)12 ( � 1)

1CCCCCCCCCCA ; L5 = 0BBBBBBBBBB@
12 �( � 1) q22 + cqn��12 (( � 1)u+ cnx)�12 (( � 1)v + cny)�12 (( � 1)w + cnz)12( � 1)

1CCCCCCCCCCA :
q2 = u2 + v2 + w2 and H is the stagnation enthalpy.ViscousWriting each quantity as the sum of a steady uniform value and some pertur-bation, the matrix B is obtained from the linearisation of perturbations about theuniform ow with the assumptions mentioned in section 3.3 and is given byB = (C1jC2jC3jC4jC5)
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C1 = 0BBBBBBBBBB@

0000��p��2 �Prl+ �tPrt(�1) n�
1CCCCCCCCCCA ; C2 = 0BBBBBBBBBB@

0(�+ �t) �43nxlx + nyly + nzlz�00�u(�+ �t) �43nxlx + nyly + nzlz�
1CCCCCCCCCCA ;

C3 = 0BBBBBBBBBB@
00(�+ �t) � 43nyly + nxlx + nzlz�0�v(�+ �t) �43nyly + nxlx + nzlz�

1CCCCCCCCCCA ;
C4 = 0BBBBBBBBBB@

000�w(�+ �t) �43nzlz + nxlx + nyly��w(�+ �t) �43nzlz + nxlx + nyly�
1CCCCCCCCCCA ; C5 = 0BBBBBBBBBB@

0000�� �Prl+ �tPrt(�1) n�
1CCCCCCCCCCA ;

with n� = nxlx + nyly + nzlz.3.5.2 ImplementationThe 5�5 block-Jacobi preconditioner is computed and inverted for each node beforethe �rst stage of each time step. The residual vector R is then multiplied by P ateach stage of the multistage Runge-Kutta scheme.To prevent singularities at stagnation points, the matrix preconditioner incor-porates an entropy �x which is di�erent from the van Leer entropy �x [81] used inthe numerical dissipation, as it does not su�ciently limit the time step. The moresevere Harten entropy �x [31] is used with the minimum of the bounding parabolaequal to one eighth the speed of the sound.



Chapter 4
Stability Analysis
The purpose of this chapter is to examine and evaluate the limits of the stabilityregion of the scheme. De�ning a suitable quantity, the \energy", the way to proceedconsists of showing that, considering the semi-discrete equations, this \energy" ismonotonically decreasing, giving a su�cient stability condition, and considering thefully discrete equations, to evaluate the limits of the stability region.The stability analysis is achieved using the set of symmetrising variables ofGustafsson and Sundstrom [29] and Abarbanel and Gottlieb [1], which yields anequation in which the sub-matrices are all symmetric. Consequently, a �rst stepis to prove that the resulting analysis remains valid for the conservative variables.Starting by considering periodic b.c.'s, the inuence of a slip boundary condition isthen investigated.4.1 The equivalent symmetrised problemLinearising with respect to perturbations to a uniform ow, the 3D Euler equationsin Cartesian coordinates are@Q@t +Ax@Q@x +Ay @Q@y +Az @Q@z = 0; (4.1)where Ax; Ay; Az; are the uniform inviscid ux Jacobian listed in detail in Ap-pendix A. The transformation between the conservative variables and the sym-56



Chapter 4 � Stability Analysis 57metrising variables is accomplished by the matrix [29, 1]
L = 266666666664

p �c 0 0 0 0p �uc � 0 0 0p �vc 0 � 0 0p �wc 0 0 � 0p �Ec �u �v �w q �1 pc
377777777775 :Thus, if ~Q is the new set of variables, Q = L ~Q and ~Q = L�1Q, then equation (4.1)becomes @ ~Q@t + ~Ax@ ~Q@x + ~Ay @ ~Q@y + ~Az @ ~Q@z = 0; (4.2)where ~Ax = L�1AxL, ~Ay = L�1AyL, ~Az = L�1AzL.Using a �rst order upwinding scheme on a Cartesian grid, the semi discrete equationcan then be writtend ~Qdt = � ~Ax2�x�2x ~Qj + j ~Axj2�x�2x ~Qj � ~Ay2�y �2y ~Qj+ j ~Ayj2�y �2y ~Qj � ~Az2�z �2z ~Qj + j ~Azj2�z �2z ~Qj ; (4.3)with j ~Axj = jL�1 ~AxLj; j ~Ay j = jL�1 ~AyLj; j ~Az j = jL�1 ~AzLj, and where in one-dimension the �2x and �2x operators are de�ned as�2xQj = Qj+1 �Qj�1�2xQj = Qj+1 � 2Qj +Qj�1:Since ~Ax and Ax are similar matrices, they have the same eigenvalues; only theeigenvectors are di�erent. The same comment can be made for ~Ay, and for ~Az.Thus, j ~Axj = jL�1AxLj = L�1T xj�xjT x �1L;j ~Ayj = jL�1AyLj = L�1T yj�yjT y �1L;j ~Azj = jL�1AzLj = L�1T zj�zjT z �1L;where T� is the matrix of the right eigenvectors of A�, and �� the correspondingdiagonal matrix of eigenvalues.



Chapter 4 � Stability Analysis 58Let us now discretise �rst the equation (4.1), and then transform the resultingdiscretisation in order to use the symmetrising set of variables. The semi-discreteequation on the same Cartesian grid isdQdt = � Ax2�x�2xQj + jAxj2�x�2xQj � Ay2�y �2yQj+ jAyj2�y �2yQj � Az2�z �2zQj + jAzj2�z �2zQj ; (4.4)which can also be written asdQdt = � Ax2�x�2xQj + T xj�xjT x �12�x �2xQj � Ay2�y �2yQj+T yj�yjT y �12�y �2yQj � Az2�z �2zQj + T zj�z jT z �12�z �2zQj : (4.5)Transforming now to the symmetrising variables, one getsd ~Qdt = �L�1AxL2�x �2x ~Qj + L�1T xj�xjT x �1L2�x �2x ~Qj � L�1AyL2�y �2y ~Qj (4.6)+L�1T yj�yjT y �1L2�y �2y ~Qj � L�1AzL2�z �2z ~Qj + L�1T zj�zjT z �1L2�z �2z ~Qj:It appears clearly that both discretisations are equivalent. Consequently, the stabil-ity analysis can be done using the symmetrising variables, knowing that it will bealso valid for the discretisation using the conservative variables. The same argumentcan be generalised for discretisations on unstructured grids.
4.2 Semi-discrete equationsIn this section, as in the next one, periodic b.c.'s are considered. The domain hasthen only interior grid points, and consequently, the analysis does not include anyboundary treatment.The starting point is the Euler equations, which may be expressed as@Q@t + @@xiF(ei;Q) = 0: (4.7)Q(x) is the vector of conserved variables. Using the same notation and integrationrules as in section 3.1, the semi-discrete equivalent to equation (4.7) isVj dQjdt = �Xi2Ej Fij 4 sij 8j; (4.8)



Chapter 4 � Stability Analysis 59where Fij is the numerical ux in the direction nij associated with an edge (i; j).The evaluation of F is achieved as explained in section 2.2.1, and with a �rst orderscheme, equation (4.8) becomesVj dQjdt = �Xi2Ej �12(Fij(Qi) + Fij(Qj))� 12 jAij j(Qi �Qj)�4 sij;where Aij = @F@Q .Linearising locally and transforming to the symmetrising variables ~Q, the resultingequation is Vj d ~Qjdt = �Xi2Ej �12 ~Aij( ~Qi + ~Qj)� 12 j ~Aij j( ~Qi � ~Qj)�4 sij; (4.9)where ~Aij = ~Axnx+ ~Ayny+ ~Aznz is a symmetric matrix, and the matrices ~Ax; ~Ay; ~Azare related to the edge (i, j).Considering now the whole mesh, and calling ~U the vector of unknowns, at a giventime level, of dimension 5N , where N is the number of nodes, the system of o.d.e.'smay be written as V d ~Udt = ��A ~U + D ~U� :A and D are N � N block matrices, in which each block is a 5 � 5 matrix. Theirexpressions are
A = Xedges A ij = Xedges

266666666664 0 +12 ~Aij 4 sij�12 ~Aij 4 sij 0
377777777775 ; (4.10)

and
D = Xedges D ij = Xedges

266666666664 12 j ~Aij j 4 sij �12 j ~Aij j 4 sij�12 j ~Aij j 4 sij 12 j ~Aij j 4 sij
377777777775 ; (4.11)



Chapter 4 � Stability Analysis 60where an edge connects node j to node i. In these expressions the four block ele-ments correspond to entries (j; j), (j; i), (i; j) and (i; i); all other elements are zero.The diagonal blocks in A are zero because Pi2Ej 12Fij(Qj) = 0 due to theclosed control volume around node j. In addition, A is anti-symmetric because ~A issymmetric and hence, the (i; j) element is the opposite of the (j; i) one.Concerning the matrix D a �rst remark has to be made: if ~A is a symmetricmatrix, then j ~Aj is symmetric. Indeed, since ~A is symmetric, it is diagonalisable byan orthogonal similarity transformation ~A = T�T T , T TT = I, which implies thatj ~Aj is symmetric.Looking now at the full matrix D , it is clear that it is also a symmetric matrix,since the contribution of node j to node i and vice versa is the same. In addition,considering equation (4.11) for any complex vectorW of length 5N and its HermitianW �, W �DW = 12 Xedges(wi � wj)�j ~Aij j 4 sij(wi � wj):The matrices j ~Aij j are real positive de�nite symmetric, and the quantities 4sij arepositive real numbers. Consequently,W �DW is a sum of non-negative real numbers.Therefore D is positive semi-de�nite.The pre-conditioned semi-discrete equation may be written asP�1 d ~Udt = �(A + D ) ~U (4.12)where P�1 is a block diagonal matrix whose dimension is the same as A and D , andwith the jth block diagonal de�ned as 12Pi2Ej j ~Aij j 4 sij. The application of anentropy �x [31] to the eigenvalues ensures that each block diagonal is symmetricpositive de�nite, and so is P�1.De�ning now the \energy" as E = 12 ~U�P�1 ~U ,dEdt = 12  d ~U�dt P�1 ~U + ~U�P�1 d ~Udt != 12 �� ~U�(A + D )� ~U � ~U�(A + D ) ~U�= � ~U�D ~U � 0:



Chapter 4 � Stability Analysis 61From this result, the energy is clearly non-increasing. Since P�1 is symmetric andpositive de�nite, this in turn implies stability for the semi-discrete equation.
4.3 Fully discrete equationsNow that a su�cient stability condition has been obtained, it is necessary to in-vestigate and give local timestep stability limits. Starting with equation (4.12) andde�ning C = �(A + D ), this is rearranged by setting a new variable W = P�1=2 ~Uto become P�1=2 dWdt = C P1=2W() dWdt = P1=2C P1=2W:Using Runge-Kutta time integration, the fully discrete equations areW (n+1) = L�kP1=2C P1=2�W (n); (4.13)where L(z) is the Runge-Kutta polynomial with stability region S, and k the globaltimestep. (4.13) can also be writtenW (n+1) = �L�kP1=2C P1=2��nW (0):The necessary and su�cient condition for absolute stability as n ! 1 is thatthere are no discrete solutions which grow exponentially with n. This requires thatjL �kP1=2C P1=2� j � 1, or equivalently that the matrix eigenvalues lie in S. Theoreti-cally, this is enough to get asymptotic convergence, but it is not su�cient in practicebecause if the matrix is not normal (i.e. its eigenvectors are non-orthogonal), it al-lows the possibility of a very large transient growth and can lead to arithmeticoverow. In the analysis, it is then important to �nd su�cient conditions to elimi-nate this possibility. Ideally, one would hope to prove strong stability, which usingthe L2 vector norm is expressed asjjW (n)jj � jjW (0)jj;



Chapter 4 � Stability Analysis 62where  is a constant not only independent of n but is also a uniform bound applyingto all matrices in the family of spatial discretisations for di�erent mesh spacings hand with the timestep k being a function of h. However, in practice it is often notpossible to prove strong stability. Indeed what can be more easily proved is a weakerform of stability called algebraic stability [67, 45, 41, 28]. This allows, at worst, alinear growth in the transient solution of the formjjW (n)jj � njjW (0)jj;where  is a constant. As shown in [28], a su�cient condition for algebraic stabilityis that � �kP1=2C P1=2� � S;where the �eld of values � is de�ned as� �kP1=2C P1=2� = (kW �P1=2C P1=2WW �W : W 6= 0) :The �rst step is to prove that when k = 1 the �eld of values is bounded by a unitcircle centred on z = �1. Writing V = P1=2W , consider� �P1=2C P1=2� = � V �C VV �P�1V : V 6= 0� = ��V �(A + D )VV �P�1V : V 6= 0� :Looking at the contributions from a single edge (i; j), and diagonalising 12 ~Aij 4 sijas 12 ~Aij 4 sij = HT�H we obtainV �P�1ij V = (HV )� 266664 j�j 00 j�j 377775HV =Xm ����(m)��� �jv(m)i j2 + jv(m)j j2� ;
V �D ijV = (HV )� 266664 j�j �j�j�j�j j�j 377775HV =Xm � ����(m)��� �v(m)�i v(m)j + v(m)�j v(m)i �+ ����(m)��� �jv(m)i j2 + jv(m)j j2� ;



Chapter 4 � Stability Analysis 63andV �A ijV = (HV )� 266664 0 +��� 0 377775HV =Xm �(m) �v(m)�i v(m)j � v(m)�j v(m)i � ;where (m) denotes the m-th characteristic (i.e. the mth component of the vectorHV ). Hence���V �(�A ij � D ij )V + V �P�1ij V ��� = Xm ������(m) + j�(m)j� v(m)�i v(m)j+��(m) + j�(m)j� v(m)�j v(m)i ���� Xm 2j�(m)j jv(m)i j jv(m)j j� Xm j�(m)j(jv(m)i j2 + jv(m)j j2);=) ���V �(�A ij � D ij )V + V �P�1ij V ��� � V �P�1ij V :Summing over all edges then gives the desired result.������V � Xedges(�A ij � D ij )V + V � XedgesP�1ij V ������ � V � XedgesP�1ij V ;=) ����V �(�A � D )VV �P�1V + 1���� � 1:When k 6= 1 the �eld of values is bounded by a circle of radius k centred on z = �k.Choosing the largest such circle lying inside the stability region S gives a timestep kwhich is guaranteed to be algebraically stable. Numerical results will later establishthat this is close to being a necessary condition for stability as well as su�cient.4.4 Slip boundary conditionThus far, only periodic b.c.'s have been considered, but the analysis can be extendedto include the e�ect of an inviscid ow tangency condition at a solid wall.



Chapter 4 � Stability Analysis 64Taking the wall to be at, for simplicity, the tangency requirement can be writtenas NQ = 0;where N is a symmetric projection matrix which obtains the normal componentof the momentum at the wall nodes. A general vector Q can be decomposed intocomponents Qk and Q? de�ned byQ = Q? +Qk; Q? = NQ; NQk = 0:As shown in section 3.4, the modi�ed form of the preconditioner, expressed in sym-metric variables, is �(I �N)P�1 +N� d ~Qdt = (I �N) C ~Q;where N = T�1ST . It is re-written in symmetrised form as�(I �N)P�1 (I �N) +N� d ~Qdt = (I �N) C (I �N) ~Q:This form does not change the tangency condition and consequently is equivalent tothe previous one; d ~Q?dt = 0 and the ow tangency ~Q? = 0 is undisturbed. Applyingthe stability analysis we obtainjV �(I �N)C (I �N)V + V � �(I �N)P�1 (I �N) +N�V ��= ���V �k C Vk + V �k P�1Vk + V �?V?���� V �k P�1Vk + V �?V?= V � �(I �N)P�1 (I �N) +N�Vand hence ���� V �(I �N)C (I �N)VV � [(I �N)P�1 (I �N) +N ]V + 1���� � 1and the �eld of values lies within the unit circle centred on z = �1, as before.



Chapter 4 � Stability Analysis 654.5 Some Runge-Kutta stability curvesIf one was solving the system of linearised equations using a �rst order upwinding,as analysed above, a simple Euler forward time integration with a global time stepequal to 1 would be enough, since the stability regions would perfectly coincide.Unfortunately, the equations which are actually solved are non-linear, and as men-tioned in section 2.2.1 a second order numerical dissipation is used, which has theconsequence of \attening out" the boundary of the �eld of values along the imag-inary axis (the \attened" boundary is compared with the unit circle in Fig. 4.1).To cope with this new shape, a Runge-Kutta time integration has to be used, givinga wider stability region.Let us consider a system of o.d.e.'s of the formdQdt = CQ;where C is a real square matrix. Using a Runge-Kutta time integration with timestepk, Q(n+1) = L(kC)Q(n);where L(z) = Ppm=0 amzm (a0 = a1 = 1, ap 6= 0) is the Runge-Kutta polynomialfunction with stability region S. The following �gures show, for four popular mul-tistage integration schemes, the stability region S within which jLj � 1. They alsoshow the largest circle which lies inside S and which corresponds to the su�cientstability limits of the scheme being analysed. Its radius rc equals the maximumtimestep for which the analysis gives a su�cient condition for algebraic stability.
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Figure 4.1 E�ect of a second order dissipation on the �eld of values for the one dimensional linearconvection equation with a Courant number set to 1.
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Figure 4.2 Predictor-corrector. rc = 0:5.
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Figure 4.3 Three-stage scheme. rc = 1:25.
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Figure 4.4 Four-stage scheme. rc = 1:39.
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Figure 4.5 Five-stage scheme. rc = 2:7.



Chapter 5
Preconditioner for low Machnumber ows
Now that an e�cient preconditioned multigrid method for both inviscid and viscousows has been introduced, the aim is to solve problems for a range of ow conditionsfrom nearly incompressible to transonic and supersonic. However, at low Machnumber the disparity between the acoustic and convective wave speeds cannot beadequately handled by the current approach, and a slowdown of the convergenceis observed. Furthermore, the numerical solution produced is often of poor qualitywith signi�cant errors in the pressure distribution due to the relative scaling ofthe di�erent numerical smoothing terms. To address these di�culties, a low Machnumber preconditioner can be incorporated into the numerical dissipation and henceinto the block-Jacobi preconditioner.The �rst part of this chapter describes the new discretisation that the introduc-tion of a low Mach number preconditioner implies. A second part will investigate theinuence of this preconditioner on the boundary conditions: when the solution hasalmost converged to the steady state, and hence only low frequency waves remain,the analysis will determine whether an exponential decay of the amplitude of thesewaves can be expected. Finally, the extension of the stability analysis presentedin the previous chapter is presented, giving a complete study of the method usedthroughout this work. 69



Chapter 5 � Preconditioner for low Mach number ows 705.1 Preconditioned numerical dissipation5.1.1 1D preliminaryThe part of the equation concerned by the preconditioning is the inviscid part.Consequently, only the Euler equations are here considered and preconditioned forlow Mach number applications by an invertible matrix �, which is expressed insymmetrised variables, to become@ ~Q@t + � ~A@ ~Q@x = 0 ;which in a semi discrete form is written asd ~Qdt + 12� ~A�2x ~Q� 12 j� ~Aj�2x ~Q = 0 ; (5.1)and re-written as ��1d ~Qdt + 12 ~A�2x ~Q� 12��1j� ~Aj�2x ~Q = 0 : (5.2)Using M and N the transformation matrices from primitive variable to conservativevariables, and from symmetrized variables to primitive variables, respectively, (5.2)becomes then the conservative semi discrete equations for low Mach number owand read asMN ��1 N�1M�1dQdt + 12A�2xQ� 12MN��1j� ~AjN�1M�1�2xQ = 0 : (5.3)5.1.2 3D generalisationFollowing the 1D approach, the ux function de�ned in equation (2.12) is modi�edto incorporate the low Mach number preconditioner, becomingF Iij = 12 �FIij(Qi) + FIij(Qj)� MijNij��1ij j�ij ~Aij jN�1ij M�1ij ��13(1�	)(L̂lpi (Q)� L̂lpj (Q)) + 	(Qi �Qj)�� :In this formulation, only the dissipation has changed, which makes the implemen-tation attractive because it does not require any change of variables in the current



Chapter 5 � Preconditioner for low Mach number ows 71code.In [?] Lee gives a broad overview of the current state of preconditioning. Asdemonstrated in [86], and because of their highly non-normal feature for low Machnumber, many local preconditioners can transiently amplify perturbations by a fac-tor of 1=M as M ! 0. Taking this fact into account, the preconditioner used hereis the same as that used by Darmofal and Siu [24], for which the transient-growthcan be limited by a careful treatment of the parameter �. This preconditioner is
� = 266666666664

� 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1
377777777775 :It is identical to the preconditioner of Weiss and Smith [86], and is expressed in thesymmetrised variables �dp=�c; du; dv; dw; dp � c2d��T . � is a free parameter whoserole is to equilibrate the eigenvalues. As it can be seen further down, this precondi-tioner alters only the eigenvalues relative to the acoustic waves. At a Mach numberof unity, the sign of one of these two eigenvalues must change to give a identicalsign to all eigenvalues for supersonic ows, since information cannot ow upstream.The sti�ness at a sonic point is not removed with this preconditioner: a singularityshows up and the eigenvalues cannot be isotropic. This preconditioner is only foruse at low Mach number, and consequently, switched o� when not appropriate: itreduces to the identity matrix, and the original system of equations is recovered.Choosing � = O(M2) ensures that the convective and acoustic wave speeds areof a similar magnitude, proportional to the ow speed. Very often, it is requiredthat � be greater than some multiple of the square of the freestream Mach number[78, 79, 66]. Although this approach has proved to work well, it cannot be used forinternal ows where the freestream Mach number is usually unknown. Consequently,a di�erent approach is followed here. Looping over the edges, the biggest Machnumber between two nodes connected by an edge is evaluated and kept for both



Chapter 5 � Preconditioner for low Mach number ows 72nodes. Repeating the procedure four times de�nes small regions with a commonmaximum value. This evaluation stays local, and provides a smoother behaviour ofthe limiter than if this was only based on the nodal Mach number. In the end, thedetermination of � is implemented as follows:� = min �1; �M2max� ;where � is a free parameter set to 3:0 [66]. With this preconditioner, the followingeigenvalues are obtained: �1 = 12 (1 + �)Q� 12��2 = 12 (1 + �)Q+ 12��3 = �4 = �5 = Qwith � =q(1� �)2Q2 + 4�c2 :In the expression of MN��1j� ~AjN�1 = MN��1Lj�jL�1N�1, MN��1L isgiven by MN��1L = (R1jR2jR3jR4jR5)Twhere
R1 = 0BBBBBBBBBB@

s+2c�s�2c�nxnynz
1CCCCCCCCCCA R2 = 0BBBBBBBBBB@

us+�2 c2nx �2c�us�+2 c2nx �2c�unxvny + cnzunz + cny
1CCCCCCCCCCA

R3 = 0BBBBBBBBBB@
vs+�2 c2ny �2c�vs�+2 c2ny �2c�vnx + cnzvnyvnz � cnx

1CCCCCCCCCCA R4 = 0BBBBBBBBBB@
ws+�2 c2nz �2c�ws�+2 c2nz �2c�wnx � cnywny � cnxwnz

1CCCCCCCCCCA
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R5 = 0BBBBBBBBBB@

Hs+�2 c2Q �2c�Hs�+2 c2Q �2c�12Q2nx + c(vnz � wny)12Q2ny + c(wnx � unz)12Q2nz + c(uny � vnx)
1CCCCCCCCCCAwith s+ = � + (1� �)Qs� = � � (1� �)Qand, L�1N�1 by L�1N�1 = (C1jC2jC3jC4jC5)where

C1 = 0BBBBBBBBBB@
00nxnynz
1CCCCCCCCCCA C2 = 0BBBBBBBBBB@

��s�nx2c��s+nx2c�0��nzc�nyc
1CCCCCCCCCCA

C3 = 0BBBBBBBBBB@
��s�ny2c��s+ny2c��nzc0��nxc

1CCCCCCCCCCA C4 = 0BBBBBBBBBB@
��s�nz2c��s+nz2c���nyc�nxc0

1CCCCCCCCCCA C5 = 0BBBBBBBBBB@
1c�1c��nxc2�nyc2�nzc2

1CCCCCCCCCCA :
Modi�cation of the arti�cial dissipation implies automatically modi�cation of theblock-Jacobi preconditioner. The adjustment is straitforward, and only concerns theinviscid part. Thus equation (3.5) becomes�P Ij ��1 = 12Vj 0@Xi2EjMijNij��1ij j�ij ~Aij jN�1ij M�1ij 4 sij+ Xk2Bj MjNj��1j j�j ~AjjN�1j M�1j 4 sk 1A : (5.4)



Chapter 5 � Preconditioner for low Mach number ows 745.2 Boundary conditionWhen the solution has almost converged to the steady state, the residual is due tolow frequency waves which propagate up and down the domain and are not a�ectedby the numerical viscosity. These can only be dissipated through the interactionwith the inow and outow boundary conditions. In general, when they arrive atone boundary, these waves are reected and propagated in the other direction untilthey reach the other boundary, and so on. Ideally, one would like to have perfectlynon-reecting boundary conditions, absorbing these low frequency waves and result-ing in a much faster convergence rate, but in two or three dimensions, these do notexist and consequently one only can expect an exponential decay of the amplitude ofthese waves. In [27] Giles has examined this process for the subsonic one-dimensionalEuler equations by deriving the exact eigenmodes and eigenfrequencies of the initialboundary value problem and by determining the exponential decay rates for per-turbations under di�erent sets of boundary conditions. In a similar way the sameanalysis is done here, but this time, looking at the one-dimensional preconditionedEuler equations for low Mach number ows. Although it is not obvious to whatextent the conclusions of the following model are valid for more general ows, itprovides insight concerning the e�ect of a low Mach number preconditioner on theboundary conditions.5.3 AnalysisWhen expressed in the symmetrised variables, the preconditioner reduces itself intoa diagonal matrix. Consequently the analysis starts with the one-dimensional un-steady linearised Euler equations using symmetrised variables which are writtenas @ ~Q@t + ~A@ ~Q@x = 0 (5.5)



Chapter 5 � Preconditioner for low Mach number ows 75where ~A = 266664 �u �c 0�c �u 00 0 �u 377775 ;and d ~Q = hdp0���c ; du0; dp0 � �c2d�0iT . �0; u0; p0 are the perturbation density, velocity andpressure, and ��; �u; �p are the steady uniform values.To reduce propagation speed sti�ness and to improve low Mach number accuracy,they are preconditioned and become@ ~Q@t + � ~A@ ~Q@x = 0; (5.6)where � = 266664 � 0 00 1 00 0 1 377775 :� is the one dimensional version of the preconditioner due to Weiss and Smith [86].De�ning the transformation matrix Mp as Mp = @Qp@ ~Q where Qp = [�; u; p]T , (5.6)becomes @Qp@t +M�1p � ~AMp@Qp@x = 0: (5.7)The analysis is greatly simpli�ed by de�ning the following non-dimensional variables�� = �=��; u� = u=�c; p� = p=���c2; x� = x=L; t� = t�c=L;where �c = [�p=��]1=2 is the speed of sound. L is the physical length of the domainconsidered, so in the non-dimensional domain, the subsonic inow is at x = 0 and theoutow is at x = 1. Omitting the asterisks for clarity, the resulting non-dimensionalequation of (5.7) is @Qp@t +A@Qp@x = 0; (5.8)with A = 266664 M � M(�� 1)0 M 10 � M� 377775 :



Chapter 5 � Preconditioner for low Mach number ows 76Notice that when � = 1, � reduces itself into the identity matrix, and equation (5.8)is the non-dimensional version of the unpreconditioned equations.The boundary conditions for subsonic ow require two inow quantities and oneoutow quantity to be speci�ed. The inow boundary conditions can be expressedas CinQp(0; t) = 0; (5.9)where Cin is a 2 � 3 matrix depending on the speci�c choice of inow conditions.Similarly, the single outow boundary condition can be expressed asCoutQp(1; t) = 0; (5.10)where Cout is a 1� 3 matrix depending on the speci�c choice of outow condition.Equations (5.8), (5.9), and (5.10) represent the initial boundary value problem, andan eigenmode of the initial boundary value problem is given byQp = e�i!t h�1ei(!=�1)x r1 + �2ei(!=�2)x r2 + �3ei(!=�3)x r3i ; (5.11)where the constants �i are the strengths of each eigenmode, and the ri and �i(i = 1; 2; 3) are the right eigenvectors and eigenvalues, respectively, of A. Symbol-ically, these are�1 = 12 [(�+ 1)M + � ] ; �2 = 12 [(�+ 1)M � � ] ; �3 =M;with � =p(1� �)2M2 + 4�, andr1 = �1;�12M(�� 1)� �� ; 1�T ; r2 = �1;�12M(�� 1) + �� ; 1�T ; r3 = [1; 0; 0]T :The eigenfrequency ! and the constants �i are determined by the boundaryconditions. For the inow boundary, substitution of equation (5.11) into equation(5.9) leads to 24 b11 b12 b13b21 b22 b23 35266664 �1�2�3 377775 = 0;



Chapter 5 � Preconditioner for low Mach number ows 77where 24 b11 b12 b13b21 b22 b23 35 = Cin (r1; r2; r3) :As described by Giles [27], a necessary condition for the well-posedness of the initialboundary value problem is that the incoming characteristics, �1 and �2, can bedetermined as functions of the outgoing characteristic, �3. This requires that the2� 2 matrix 24 b11 b12b21 b22 35is non-singular and therefore invertible.For the outow boundary, substitution of equation (5.11) into equation (5.10)leads to (b31 b32 b33)266664 �1�2�3 377775 = 0;where (b31 b32 b33) = Cout �ei(!=�1) r1; ei(!=�2) r2; ei(!=�3) r3� :In this case, well-posedness of the initial boundary value problem requires thatthe incoming characteristic, �3, can be determined as a function of the outgoingcharacteristics �1 and �2. Thus, b33 must be non-zero. Combining the inow andoutow boundary conditions leads toB(!)266664 �1�2�3 377775 = 0: (5.12)In order for a non-trivial solution of the initial boundary value problem to exist,a non-zero vector, (�1; �2; �3)T , must exist which satis�es equation (5.12). This ispossible for values of ! for which, detB(!) = 0: (5.13)



Chapter 5 � Preconditioner for low Mach number ows 78Separating the eigenfrequency into its real and imaginary parts, ! = !r + !i, theamplitude of the eigenmodes grows as exp(�!it). Thus, in order for the eigenmodesto decay, !i > 0 for all possible values of !.5.4 Examples5.4.1 Stagnation enthalpy and total pressure at inow; pressure atoutowThe non linear boundary conditions are:x = 0 8><>: �12 u02 + p0�0 = �12 �u2 + �p��p0 �1 + �12 �0u02p0 � = �p�1 + �12 ���u2�p �x = 1 p0 = �pwhere the prime quantities are the unsteady physical variables which are the sumof the steady state and unsteady perturbation variables.The corresponding linearised non-dimensionalised equations arex = 0 24 M22 M (�1)�1 ( � 1)M  35266664 �up 377775 = 0
x = 1 h 0 0 1 i266664 �up 377775 = 0 (5.14)

giving Cin = 24 M22 M (�1)�1 ( � 1)M  35 ;Cout = h 0 0 1 i :At x = 0 substitution of the eigenvector de�nitions into the eigenmode de�nitionyields 266664 �up 377775 = e�i!t 266664 1 1 1�12 M(��1)��� �12 M(��1)+�� 01 1 0 377775266664 �1�2�3 377775 ;



Chapter 5 � Preconditioner for low Mach number ows 79with � = p(1� �)2M2 + 4�. Substitution of this equation into equation (5.14)(x = 0) produces the characteristic inow boundary conditione�i!t 24 M22 M (�1)�1 ( � 1)M  35266664 1 1 1�12M(��1)��� �12 M(��1)+�� 01 1 0 377775266664 �1�2�3 377775 = 0:(5.15)Similarly, at x = 1266664 �up 377775 = e�i!t 266664 1 1 1�12 M(��1)��� �12 M(��1)+�� 01 1 0 377775266664 �1 exp(i!=�1)�2 exp(i!=�2)�3 exp(i!=�3) 377775 ;and substitution into equation (5.14) (x = 1) produces the characteristic outowboundary conditione�i!t h 0 0 1 i266664 1 1 1�12 M(��1)��� �12 M(��1)+�� 01 1 0 377775266664 �1 exp(i!=�1)�2 exp(i!=�2)�3 exp(i!=�3) 377775 = 0:(5.16)Together equations (5.15) and (5.16) de�ne the matrix BB = 266664 12 �M2 � M(M(��1)��)� �+ �1 12 �M2 � M(M(��1)+�)� �+ �1 12M2�1� 12 (�1)M(M(��1)��)� +  �1� 12 (�1)M(M(��1)+�)� +  �1exp(i!=�1) exp(i!=�2) 0 377775 :The eigenfrequencies are given bydetB = (2 +M2 �M2) �exp(i!=�1)(�M2 �M2 + �M � 2�)� exp(i!=�2)(�M2 �M2 � �M � 2�)� =(4�) = 0:The eigenfrequencies which result in a zero determinant are!r = �1�2�2��1 2n� 8n!i = � �1�2�2��1 log� �M2�M2��M�2��M2�M2+�M�2��where �1�2�2 � �1 = � 14� �(�+ 1)2M2 � �2� :



Chapter 5 � Preconditioner for low Mach number ows 80De�ning the decay rate �n �n = �Im(!) ;for this example �n = �1�2�2 � �1 log��M2 �M2 � �M � 2��M2 �M2 + �M � 2�� ;The amplitude of the eigenmode grows, or decays, as exp(��t), so the requirementfor all eigenmodes to decay is �n > 0 for every n. However, the quantity of interest isactually the decay per timestep �n�t. Taking the CFL restriction into consideration,CFL = �max�t�x , one then is concerned about �n�max .The de�nition which is retained for � is � = �M2, where � is a free parameter.Consequently, as M ! 0, � !p(1 + 4�)M ,�1�2�2 � �1 ! �Mp(1 + 4�) > 0;and �M2 �M2 � �M � 2��M2 �M2 + �M � 2� ! 4�2((�1� 2�) +p(1 + 4�))2 > 1:�1�2�2��1 is O(M), as �max, and consequently the decay per timestep remains �nite.�n > 0 is satis�ed (8�) so any initial disturbance at t = 0 will decay exponentially.5.4.2 Euler Riemann boundary conditions: Entropy and the ap-propriate Riemann invariant at inow; the other Riemanninvariant at outowx = 0 8<: p0�0 = �p��u0 + 2�1c0 = �u+ 2�1�cx = 1 u0 � 2 � 1c0 = �u� 2 � 1�cLinearisation and non-dimensionalisation of these boundary conditions giveCin = 24 �1 0 1�1 ( � 1)  35 ;and Cout = h 1 ( � 1) � i :



Chapter 5 � Preconditioner for low Mach number ows 81The resultant matrix B is thenB = 2664 0 0 �1�1� (�1)(M(��1)��)2� +  �1� (�1)(M(��1)+�)2� +  �1�1� (�1)(M(��1)��)2� � � exp(i!=�1) �1� (�1)(M(��1)+�)2� � � exp(i!=�2) exp(i!=�3) 3775 :The determinant of B isdetB = � (�1)24�2 h(�2��M + �M � �)(2��M + �M + �) exp� i!�2��(�2��M + �M + �)(2� �M + �M � �) exp� i!�1�i ;and the eigenfrequencies obtained by solving detB = 0 are!r = �1�2�2��1 2n� 8n!i = � �1�2�2��1 log� (2�+M��M��)(2��M+�M��)(2�+M��M+�)(2��M+�M+�)�= � �1�2�2��1 log� �+1+��+1�� � :In contrast to the unpreconditioned Euler equations the Riemann invariant bound-ary conditions are reective, since !i is not �1. Again, looking at the decay pertimestep, one �nds that this one tends to zero when M ! 0, indicating that distur-bances will not decay and that convergence to a steady state will never be reached.5.4.3 Entropy, stagnation enthalpy at inow; pressure at outowAnother common set of boundary conditions for subsonic, internal ows is the speci-�cation of entropy and stagnation enthalpy at the inow and pressure at the outow:x = 0 8<: p0�0 = �p���12 u02 + p0�0 = �12 �u2 + �p��x = 1 p0 = �pFor these boundary conditions, Cin and Cout are,Cin 24 �1 0 1�1 ( � 1)M  35Cout h 0 0 1 i



Chapter 5 � Preconditioner for low Mach number ows 82From Cin and Cout, the matrix B becomesB = 266664 0 0 �1�1� 12 (�1)M(M(��1)��)� +  �1� 12 (�1)M(M(��1)+�)� +  �1exp(i!=�1) exp(i!=�2) 0 377775 :and hence, the eigenfrequencies which result in a zero determinant of B are!r = �1�2�2��1 2n� 8n!i = � �1�2�2��1 log� �M2�M2��M�2��M2�M2+�M�2��These are the same as for the example 5.4.1, where stagnation enthalpy and totalpressure were imposed at the inow. This is an expected result, because in bothcases, the same boundary conditions are enforced: setting stagnation enthalpy andtotal pressure automatically set the entropy, since the three quantities are relatedto each other.5.4.4 Velocity, temperature at inow; pressure at outowThe �nal set of boundary conditions considered here is setting velocity and temper-ature at the inow and pressure at the outow. These conditions are fairly commonin low speed viscous ow applications. Speci�cally,x = 0 8<: p0�0 = �p��u0 = �ux = 1 p0 = �pFor these boundary conditions, Cin and Cout are,Cin 24 �1 0 0 1 0 35 ;Cout h 0 0 1 iFrom Cin and Cout, the matrix B becomesB = 266664  � 1  � 1 �1�12 M(��1)��� �12 M(��1)+�� 0exp(i!=�1) exp(i!=�2) 0 377775 ;



Chapter 5 � Preconditioner for low Mach number ows 83and hence, the eigenfrequencies which result in a zero determinant of B are!r = �1�2�2��1 2 (n+ 1)� 8n!i = � �1�2�2��1 log ��� (��1)M��(��1)M+� ��� :When M ! 0, ��� (��1)M��(��1)M+� ��� ! 4�(p1+4��1)2 . As in 5.4.1, the decay per timestepremains �nite, and for all �, any disturbance at t = 0 will decay exponentially.5.4.5 RemarksThe analysis of the e�ect of local preconditioning on boundary conditions for thesubsonic, one dimensional Euler equations shows that care must be taken concern-ing the physical boundary condition which must be applied for a speci�c problem:Riemann invariant boundary conditions are reective with preconditioning, and, atlow Mach numbers, disturbances do not decay, whereas for the unpreconditionedEuler equations, these are non-reective, with the unsteady perturbations becom-ing zero after the �nite time it takes for all three characteristic waves to cross thedomain once [27]. A similar conclusion has been reached by Darmofal [21] consid-ering the one-dimensional van Leer-Lee-Roe preconditioner [?], and can probablybe generalised to more preconditioners. As mentioned in [22] an interesting possi-bility implied by this analysis would be to design a preconditioner to address theseproblems, so that the boundary conditions are less reective.5.5 Stability analysis for Low Mach Number Precondi-tioning.For low Mach number applications, the numerical dissipation and hence the blockJacobi preconditioner need to be modi�ed, and a question of interest concerns theimplications of the modi�cation on the timestep stability limits presented in theprevious chapter. Writing the Euler equations in symmetrised variables as@ ~Q@t + ~Ax@ ~Q@x + ~Ay @ ~Q@y + ~Az @ ~Q@z = 0; (5.17)



Chapter 5 � Preconditioner for low Mach number ows 84where ~Ax; ~Ay; ~Az are the same as in section 4.1, the preconditioned form is��1@ ~Q@t + ~Ax@ ~Q@x + ~Ay @ ~Q@y + ~Az @ ~Q@z = 0: (5.18)Performing a change of variables to V = �� 12 ~Q gives@V@t + � 12 ~Ax� 12 @V@x + � 12 ~Ay� 12 @V@y + � 12 ~Az� 12 @V@z = 0; (5.19)which is very similar to the original symmetrised Euler equations in that the threecoe�cient matrices are symmetric.The numerical discretisation including the characteristic smoothing and block-Jacobi preconditioning proceeds from this point in exactly the same way as with theEuler equations. Therefore the entire stability analysis remains the same.In general the requirement for the analysis to remain valid is that the low Machnumber preconditioner � must be symmetric and positive de�nite; � 12 is then well-de�ned. The van Leer-Lee-Roe matrix satis�es this condition [82], but those due toTurkel [77] and Lee [?] do not. It is the lack of symmetry in the matrix which isresponsible for the very large transient growth analysed by Darmofal and Schmidt[23]. The analysis in this chapter shows that such a large growth will not occur forsymmetric preconditioners.



Chapter 6
Numerical Results
This chapter gathers numerical results for a complete set of applications. 2D and3D inviscid/viscous test cases have been run on grids of various complexities for acomplete range of ow conditions. For viscous calculations, the main focus is onconvergence acceleration rather than accuracy of the solution, since the implemen-tation of the turbulence model has not been fully checked for the case of a at plate.Nevertheless, compared to results coming from the literature [63, 71, 76], the Spalartand Allmaras turbulence model seems to perform reasonably well.6.1 InviscidThis section will demonstrate the performance of the scalar and block-Jacobi pre-conditioners when used in conjunction with full coarsened multigrid for transonicairfoil calculations.The code is constructed on a conservative edge based semi-discrete �nite vol-ume approach where the ux discretization is based on the ux-di�erencing ideasof Roe, combining central di�erencing of the nonlinear uxes with a smoothing uxbased on one-dimensional characteristic variables. The solution is computed on asequence of 5 grids using full coarsened V-cycles in which one time step with 5-stageRunge-Kutta scheme is performed when moving up and down the multigrid cycle.85



Chapter 6 � Numerical Results 86Test Geometry M1 � Mesh NnodeTE1 NACA0012 0.8 1.25 Triangular 5766QE2 NACA0012 0.8 1.25 Quadrilateral 20800Table 6.1 Euler test case de�nitions: airfoil, free stream Mach number, angle of attack, type ofgrid, number of vertices.The switched scheme is used only on the �ne meshes and a purely �rst order nu-merical dissipation is used on all coarser meshes. The preconditioner is assembledand inverted before the �rst stage of each time step and an entropy �x prevents thetime step from becoming too large near the stagnation point, at shocks and at thesonic line. Whereas the van Leer entropy �x [81] is used in the numerical dissipationthe more severe Harten �x [31] is employed in the matrix preconditioner, providingbetter robustness.6.1.1 2D Naca0012 airfoilThe test cases used to demonstrate the performance of the preconditioned multi-grid method (Jacobi) in comparison to the standard approach (scalar) are de�nedin Table 6.1. For the convergence comparisons that follow, the L2 norm of theresidual vector (normalised by the initial residual) during one application of thetime-stepping scheme on the �nest mesh in the multigrid cycle is plotted. Conver-gence information is also provided in Tables 6.2 and 6.3 for the initial convergencerate between residual levels of 100 and 10�4 and the asymptotic convergence ratebetween residual levels of 100 and 10�10.The test case is a standard transonic NACA0012 case with a strong shock onthe upper surface and a weak shock on the lower surface. Calculations are �rstperformed on a sequence of triangular grids, and then using a sequence generatedfrom a 320 � 64 O-mesh. The grid sequences used can be seen in �gures 6.1 and6.2, respectively; the sizes of the grids are tabulated below, with the number in



Chapter 6 � Numerical Results 87Test MG Cycle CPU Time(sec) MG Parametersscalar Jacobi scalar Jacobi scalar JacobiTE1 267 112 269 114 5 2 5 1 1 5 5 2 5 1 1 5QE2 180 108 1072 382 5 2 5 2 2 5 5 2 5 1 1 5Table 6.2 Euler results: Initial (100 ! 10�4) convergence comparisons for scalar preconditioningvs. block-Jacobi preconditioning, both with full coarsened multigrid. Multigrid cycles, CPU time,multigrid parameters (# grids, level on/above �rst order smoothing is used, level for full multigridstartup, # pre and post smoothing iterations, # iterations on coarsest level).Test MG Cycle CPU Time(sec) MG Parametersscalar Jacobi scalar Jacobi scalar JacobiTE1 876 347 833 336 5 2 5 1 1 5 5 2 5 1 1 5QE2 485 338 2560 1038 5 2 5 2 2 5 5 2 5 1 1 5Table 6.3 Euler results: Asymptotic (100 ! 10�10) convergence comparisons for scalar precon-ditioning vs. block-Jacobi preconditioning, both with full coarsened multigrid. Multigrid cycles,CPU time, multigrid parameters (# grids, level on/above �rst order smoothing is used, level forfull multigrid startup, # pre and post smoothing iterations, # iterations on coarsest level).parentheses being the ratio of �ne to coarse nodes.number of nodesbase grid 1st collapse 2nd collapse 3rd collapse 4th collapse5766 2180 (2.6) 893 (2.4) 403 (2.2) 214 (1.8)20800 9496 (2.2) 3767 (2.5) 1825 (2.1) 603 (3.0)For the triangular grid, the far �eld boundary is located at 50 chords away fromthe airfoil, and 30 chords away for the 320 � 64 mesh. It is worth noting that theleading edge of the airfoil can become severely distorted on the coarsest grid, whilethe trailing edge remains well de�ned (Fig. 6.1), and also that the coarsening proce-dure maintains the general topology of the domain. This is particularly obvious inthe Fig. 6.2, where the coarse grids remain mainly composed of quadrilaterals. The
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Figure 6.1 Element-collapse grids for the triangular NACA0012 airfoil. 5 levels.
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                                                                                                                                                                Figure 6.2 Element-collapse grids for the quadrilateral NACA0012 airfoil. 5 levels.
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Figure 6.3 Tests TE1 and QE2: Convergence comparisons. NACA0012. M1 = 0:8, � = 1:25triangular mesh, quadrilateral mesh.
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Chapter 6 � Numerical Results 91convergence histories are shown in Fig. 6.3. On each grid, both methods convergeto machine accuracy with little degradation in asymptotic convergence requiring,on the triangular grid, 347 iterations with the Jacobi preconditioner and 876 iter-ations with the standard approach and 339 and 485 iterations, respectively on thequadrilateral mesh. In term of CPU time, the matrix preconditioner yields com-putational savings of a factor of 2.36 and 2.88, respectively, in initial convergencerate, and a factor of 2.48 and 2.44, respectively, in term of asymptotic convergence.The computed pressure distribution is shown in Fig. 6.4. The two plots are exactlythe same, except across the strong shock where triangles generate a bigger overshoot.Overall, the acceleration is achieved without any compromise in the robustnessor accuracy of the ow solver. The accelerations are comparable to those obtainedby Ollivier-Gooch [61] on unstructured grids, and Pierce [63] on structured meshes.The latest is underlined in Fig. 6.5 where the performance of the collapsing multigridwith the hybrid approach is compared with the results obtained by Pierce.The scheme using block-Jacobi matrix preconditioning and full coarsened multi-grid yields computational savings of roughly a factor of 2.5 for convergence to engi-neering accuracy.6.1.2 Onera M6 WingThe next example is a 3D tetrahedral grid around the standard Onera M6 winglocated in the middle of half a cylinder whose length is 20 times the length of thelongest chord and of a radius of roughly 13 chords. The grid has 147000 elementsat the �nest level, and three coarser levels are used in the multigrid, containingrespectively, 68800, 12000 and 1365 elements. The collapsing algorithm is based onseveral criterion driving the collapsing procedure. In this case, the low coarseningratio between the �nest and the �rst coarser mesh (1.8) is due to the poor quality ofthe initial mesh which has elements with a dihedral angle of more than 180o. Thefour grids are presented in Fig. 6.6, and the test case considered is M1 = 0:84,� = 3:06. Figures 6.7 and 6.8 show the convergence history and the Mach contour



Chapter 6 � Numerical Results 92plot. Convergence to machine accuracy is achieved in 142 iterations using Jacobipreconditioning with a total CPU time of 1674 seconds and 237 iterations with thestandard approach in 2784 seconds. In term of CPU time, the computational savingis roughly of a factor of 1:7.6.1.3 Falcon Business JetThe last example presented is over a geometry of increased complexity. It involvesthe solution of inviscid transonic ow over a Falcon jet (Avions Marcel Dassault,France). The geometry consists of a half complete aircraft con�guration boundedby a symmetry plane. The airplane is located in the middle of half a cylinder whoselength is roughly 5 times the length of its body and whose radius is roughly twice thesame length. The �ne grid has 156000 vertices and 847000 tetrahedra. Two coarsergrids are derived by the element collapsing algorithm and contain respectively, 58500and 9800 grid points. Again, the low coarsening ratio between the �nest and the�rst coarser mesh is due to the same reason as in the previous section. The threegrids used for the multigrid are presented in Fig. 6.9. The freestream conditionsare M1 = 0:85 and � = 2o. Figures 6.10 and 6.11 show the convergence historyand the Mach contour plot where the shock patterns are evident. Convergence tomachine accuracy is achieved in 249 iterations using Jacobi preconditioning witha total CPU time of 18670 seconds and 813 iterations with the standard approachin 60298 seconds. In term of CPU time, the computational saving is roughly of afactor of 3:2.6.2 ViscousThis section will demonstrate the performance of the scalar and block-Jacobi pre-conditioners when used in conjunction with semi coarsening multigrid for two andthree dimensional turbulent Navier-Stokes calculations on various meshes, all highlystretched.
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                                                                                                                                                                Figure 6.6 Element-collapse grids for the Onera M6 wing. 4 levels.
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Figure 6.7 Onera M6 wing, convergence history

                                                                                Figure 6.8 Onera M6 wing, Mach number contours
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                                                                                                                                                                Figure 6.9 Element-collapse grids for the business jet. 3 levels.
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Figure 6.10 Business jet, convergence history

                                                                                Figure 6.11 Business jet, Mach number contours



Chapter 6 � Numerical Results 97The discretization of the inviscid uxes is identical to that described for theEuler solver. Special attention is paid to the treatment of the highly stretched gridsin both the discretization and the element collapse multigrid method. The viscousux is approximated half-way along each edge by a straightforward average of twocentral di�erences, which will not damp high frequency modes. Although the in-viscid ux includes numerical dissipation terms that will damp these modes, this isinsu�cient inside the boundary layer where the viscous terms dominate. To remedythis, the component of the gradient in the direction along the edge is replaced bya simple di�erence along the edge. The element collapsing procedure removes ele-ments to coarsen a given �ne grid, essentially following a semi-coarsening strategyin the stretched regions [59]. An isotropic process collapses the rest of the domain.For turbulent Navier-Stokes calculations, solutions are computed on a sequenceof meshes using semi coarsened V-cycles on each mesh. The �rst point nearest tothe wall is �xed for each grid so that y+ < 3, where y+ = yU�=� with y; U� and �the normal distance from the wall, the wall shear velocity and the kinematic viscos-ity. The iterative scheme used to converge the discrete residual to zero is pseudotime-stepping using the 5-stage Runge-Kutta method developed by Martinelli [48]with a CFL number of 2.5 on each mesh, except for the hybrid grids on which com-putations have been performed with a CFL of 2.3. The switched formulation of thenumerical dissipation is used on the �ne meshes and a �rst order version is used onall coarser meshes. Again, the entropy �x in the matrix preconditioner prevents thetimestep from becoming too big near the wall.The turbulence model implemented is the one equation Spalart-Allmaras turbu-lence model [76]. It is solved using a �rst order spatial discretization and 5-stageRunge-Kutta time integration with implicit treatment of the source terms within thesame multigrid algorithm as used for the ow equations. Precautions are taken toensure that at any moment negative turbulent viscosity is introduced. It has neverbeen necessary to freeze the turbulent viscosity after a certain level of convergence



Chapter 6 � Numerical Results 98Test Geometry M1 � Re Mesh NnodeTNS1 RAE2822 0.725 2.4 6:5� 106 Triangular 11298TNS2 RAE2822 0.73 2.8 6:5� 106 Triangular 11298HNS1 RAE2822 0.725 2.4 6:5� 106 Hybrid 19126HNS2 RAE2822 0.73 2.8 6:5� 106 Hybrid 19126Table 6.4 Two-dimensional turbulent Navier-Stokes test case de�nitions: airfoil, free stream Machnumber, angle of attack, Reynolds number, type of grid, number of vertices.to get convergence of the ow equations. For the convergence comparisons thatfollow, the L2 norm of the Navier-Stokes residual vector (normalised by the initialresidual) during one application of the time-stepping scheme on the �nest mesh inthe multigrid cycle is plotted.6.2.1 2D RAE2822 airfoilThe two-dimensional turbulent Navier-Stokes test cases used for comparisons arede�ned in Table 6.4 and correspond to RAE2822 AGARD Cases 6 and 9 [12]. So-lutions are computed on two di�erent grids, one composed of triangles, the otherone, hybrid. The two multigrid sequences used are depicted in Fig. 6.12 and 6.13.Convergence information is also provided in Tables 6.5 and 6.6 for the initial conver-gence rate between residual levels of 100 and 10�4 and the asymptotic convergencerate between residual levels of 100 and 10�8.Results are shown in Figs. 6.14, 6.15, 6.16, and 6.17. The computed pressuredistributions compare well with the experimental data [12], although the turbulencemodel produces a shock location forward of the experimental location, behaviourwhich has been previously observed [76, 63]. The turbulence model predicts a shockin better agreement with the measurements for Case 9. The shock induces a smallregion of separation bubble measuring about 5% of chord.
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Test MG Cycle CPU Time(sec) MG Parametersscalar Jacobi scalar Jacobi scalar JacobiTNS1 311 122 839 341 5 2 5 1 1 5 5 2 5 1 1TNS2 565 171 1510 472 5 2 5 1 1 5 5 2 5 1 1HNS1 234 78 1563 534 5 2 5 2 2 5 5 5 2 2 5HNS2 297 170 1982 1149 5 2 5 2 2 5 5 5 2 2 5Table 6.5 Two-dimensional turbulent Navier-Stokes results: Initial (100 ! 10�4) convergencecomparisons for scalar preconditioning vs. block-Jacobi preconditioning, both with semi-coarsenedmultigrid. Multigrid cycles, CPU time, multigrid parameters (# grids, level on/above �rst ordersmoothing is used, level for full multigrid startup, # pre and post smoothing iterations, # iterationson coarsest level).
Test MG Cycle CPU Time(sec) MG Parametersscalar Jacobi scalar Jacobi scalar JacobiTNS1 947 240 2522 649 5 2 5 1 1 5 5 2 5 1 1 5TNS2 1233 361 3293 1052 5 2 5 1 1 5 5 2 5 1 1 5HNS1 1788 918 11956 6152 5 2 5 2 2 5 5 2 5 2 2 5HNS2 2655 1697 17645 11377 5 2 5 2 2 5 5 2 5 2 2 5Table 6.6 Two-dimensional turbulent Navier-Stokes results: Asymptotic (100 ! 10�8) convergencecomparisons for scalar preconditioning vs. block-Jacobi preconditioning, both with semi-coarsenedmultigrid. Multigrid cycles, CPU time, multigrid parameters (# grids, level on/above �rst ordersmoothing is used, level for full multigrid startup, # pre and post smoothing iterations, # iterationson coarsest level).
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                                                                                                                                                                Figure 6.12 Edge-collapse grids for the triangular RAE2822 airfoil. 5 levels.
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                                                                                                                                                                Figure 6.13 Edge-collapse grids for the hybrid RAE2822 airfoil. 5 levels.



Chapter 6 � Numerical Results 102Convergence histories are shown for each grid, in Figs. 6.14, 6.15, 6.16, and6.17, for the block-Jacobi preconditioning and the standard approach of the scalarpreconditioning, both with semi-coarsened multigrid. In all cases, both methodsconverge to machine accuracy, along with the turbulence model. The Jacobi ap-proach converges quite smoothly and rapidly to engineering accuracy on triangularand hybrid grids. This remains true on triangles for asymptotic convergence, butnot on the hybrid mesh. After 4 orders of magnitude, a severe degradation in con-vergence occurs, making this method only as e�cient as the standard one. It isdi�cult to explain this dramatic loss, but one factor, based on Pierce work, couldbe related to the semi coarsening strategy. He observed that [63]:[...], the dominant e�ect of semi-coarsening [...] is to change the shapeof the convergence history by dramatically improving the asymptoticconvergence rate using either preconditioner so that the \elbow" at threeorders of magnitude is eliminated.The matrix preconditioner damps the convective modes very e�ectively, and theseare dominant in the initial stages of convergence. Then, acoustic modes becomesigni�cant, and semi coarsening yields improvements throughout the convergenceprocess. It looks as if the semi-coarsening strategy in the edge collapsing procedurehas not given meshes with a perfect regularity, where only the mesh interval in thenormal direction is allowed to double. In the unstructured approach, this is notguaranteed.In any case, the matrix preconditioner yields computational savings of a factorof 2.46 and 2.92, in initial convergence rate, for Case 6 on triangular grid and hybridgrid, respectively (factor of 3.2 and 1.73, for Case 9), and of a factor 3.88 and 3.13in asymptotic convergence on the triangular grid for Cases 6 and 9, respectively(comparisons on the hybrid grid are here irrelevant).In general, the convergence rate is signi�cantly enhanced, and the improvementranges from a factor 3 for engineering accuracy to 3-4 for asymptotic convergence.
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Figure 6.14 Test TNS1: Convergence comparison and Coe�cient of pressure. RAE2822 AGARDCase 6. M1 = 0:725, � = 2:4, Re = 6:5� 106 triangular mesh.
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Figure 6.15 Test TNS2: Convergence comparison and Coe�cient of pressure. RAE2822 AGARDCase 9. M1 = 0:73, � = 2:8, Re = 6:5� 106 triangular mesh.
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Figure 6.16 Test HNS1: Convergence comparison and Coe�cient of pressure. RAE2822 AGARDCase 6. M1 = 0:725, � = 2:4, Re = 6:5� 106 hybrid mesh.
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Figure 6.17 Test HNS2: Convergence comparison and Coe�cient of pressure. RAE2822 AGARDCase 9. M1 = 0:73, � = 2:8, Re = 6:5� 106 hybrid mesh.
6.2.2 3D bypass ductThe �nal example is the ow through the 3D bypass duct of a turbofan engine.The geometry is composed of ten struts and a pylon. The �ne grid has 274000 grid
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Figure 6.18 3D bypass duct; convergence history.points and is constructed by stacking a sequence of 2D grids. Convergence historyand Mach contours can be seen in Figures 6.18 and 6.19. From the �ne grid, 2coarser grids are produced containing respectively 138000 and 79300 vertices. Thecoarsening ratio is low because the multigrid semi-coarsening strategy is essentiallyonly removing points in one-dimension in the areas of high stretching, which is boththrough the boundary layer and radially. The radial stretching is a consequence ofthe grid being composed of stacked 2D grids with a �xed radial step. This leavesa high aspect ratio in the radial direction in all regions of the 2D grid that havea much smaller mesh spacing than the radial step. For an inow Mach number of0:55, with zero incidence and a Reynolds number of 6 million around the struts,convergence to 6 orders of magnitude is reached in 250 multigrid cycles (the pylonis here treated as inviscid, because the purpose of studying this geometry did notrequire the pylon boundary layer to be resolved).
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                                                                                Figure 6.19 3D bypass duct; Mach number contours.



Chapter 6 � Numerical Results 1076.3 Low Mach number ow6.3.1 Inviscid 2D Naca0012 airfoilBased on the same sequence of grid as shown in Fig. 6.1, four cases are investigated,as listed in Table 6.7. Convergence histories are plotted together in Fig. 6.21, andadditional information is also provided in Table 6.8. The results presented have beenobtained with the matrix timestep, and it appears as expected that convergence isMach independent. In Fig. 6.20, plots of the coe�cient of pressure contours foreach case are depicted. For Mach numbers smaller than 0:1, an unpreconditionedcode is much slower (see Fig. 6.21) and produces, when it converges, solutions ofpoor quality with oscillations in the pressure and density contour plot (Fig. 6.22).These problems are fully addressed with a low Mach number preconditioner whichpreserves accuracy in the incompressible limit.Test Geometry M1 � Mesh NnodeTELM1 NACA0012 0.1 0.0 Triangular 5766TELM2 NACA0012 0.01 0.0 Triangular 5766TELM3 NACA0012 0.001 0.0 Triangular 5766TELM4 NACA0012 0.0001 0.0 Triangular 5766Table 6.7 Euler test case de�nitions for low Mach number: airfoil, free stream Mach number, angleof attack, type of grid, number of vertices.6.3.2 Accuracy preservation by preconditioningFor an incompressible, non-viscous uid, the velocity �eld and hence the pressurecoe�cient can be obtained by solving the potential ow via the Schwartz-Christo�elconformal mapping [47]. To demonstrate the accuracy discussed in the previoussection, the computed pressure coe�cient is here compared with that obtained withthe Schwartz-Christo�el tool-box written by Toby Driscoll [25]. In Fig. 6.23 thecomparison is presented for each case, proving an undeniable accuracy of the lowMach number preconditioner in the incompressible limit.



Chapter 6 � Numerical Results 108

                                                                                

                                                                                

                                                                                

                                                                                Figure 6.20 Computed pressure coe�cient contours around a Naca0012 airfoil, overview and zoomaround the leading edge. M1 = 0:1; 0:01; 0:001; 0:0001. Triangular mesh. � = 0.
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                                                                                                                                                                Figure 6.22 Computed pressure plot for M1 = 0:01 without low Mach number preconditioner.� = 0.
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Figure 6.23 Computed pressure coe�cient contours around a Naca0012 airfoil. Comparison withthe potential ow solution. M1 = 0:1; 0:01; 0:001; 0:0001. � = 0.



Chapter 6 � Numerical Results 111Test MG Cycle CPU Time(sec) MG ParametersTELM1 109 156 5 2 5 1 1 5TELM2 91 133 5 2 5 1 1 5TELM3 86 124 5 2 5 1 1 5TELM4 57 81 5 2 5 1 1 5Table 6.8 Convergence history using block-Jacobi preconditioning with full-coarsened multigrid.Multigrid cycle, CPU time, multigrid parameters. (# grids, level on/above �rst order smoothing isused, level for full multigrid startup, # pre and post smoothing iterations, # iterations on coarsestlevel)6.3.3 A 3D example: the U-bend ductThe next example is the numerical computation of a ow inside a sharp U-bendused as an internal cooling passage inside the turbine rotor blades to maintain theoperating temperature of the blades down to safe levels. The geometry is shownin Fig. 6.24 and the mesh containing only hexahedrals has 200000 vertices. Thecalculation is performed on a single grid since no sequence of coarser meshes wasavailable at the moment of the writing of this document, and the convergence his-tory is presented in Fig. 6.27. The purpose of this example is to check the 3Dcapabilities of the implementation of the low Mach number preconditioner. TheReynolds number de�ned by UmD� , where Um is the bulk mean velocity and D theduct width is set to 100000. Figure 6.25 and 6.26 provide a picture of the overallow development through the U-bend for a stationary condition. The boundaryconditions are such that at the inow, the total pressure and the total temperatureare both set to 1 with an outow static pressure equal to 0:986. The results indicatethat there is a reasonably symmetric developing ow approaching the bend entrywith a strong ow acceleration along the inner wall and deceleration along the outerwall which becomes stronger near the corner between the top and outer walls. Asthe ow progresses through the bend, the uid begins to move faster over the outerwall. Along the inner wall, by the 90o location the ow has separated near the
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                                                                                Figure 6.24 Geometry of a U-bend.symmetry plane while, close to the top wall, the ow is still attached. By the bendexit, the separation region accros the pipe has grown to approximately 20% of theduct diameter, while near the top wall the reverse motion is weaker and con�nedto a narrower region. Over the downstream region, even though the reverse motionis stronger near the symmetry plane than near the top wall, reattachment occursearlier along the symmetry plane. All these observations seem to be in a relativegood agreement with the experiments [33, 34], but more investigations need to bedone to fully validate the accuracy of the solution.
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Figure 6.25 U-bend; Velocity �eld along the symmetry plane. Overview and zoom around thebend.

Figure 6.26 U-bend; Velocity �eld along the near-wall plane. Overview and zoom around thebend.
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Chapter 7
Conclusions and future work
7.1 ConclusionIn a continuation of recent breakthroughs in convergence acceleration, an e�cientpreconditioner working for a wide range of Mach numbers has been developed andimplemented in a new multigrid algorithm for hybrid meshes. The standard schemein common use employs local time step based on the largest eigenvalues of thesystem. When used in conjunction with multigrid, this approach works relativelywell for Euler calculations, but appears to be much less e�ective for turbulent Navier-Stokes calculations due to the highly stretched cells needed to e�ciently resolve ahigh Reynolds number boundary layer.For Euler calculations, the block-Jacobi matrix preconditioner improves thedamping of the convective modes of Runge-Kutta schemes when used with full coars-ened multigrid. In comparison to the standard approach, the computational savingsusing this approach is between a factor of two and three, for both convergence toengineering accuracy and asymptotic convergence.For turbulent Navier-Stokes ows, the same matrix preconditioner with a semi-coarsened multigrid strategy in which coarsening is performed only in the directionnormal to the wall yields a computational saving, relative to the standard approach,of a factor of three. The new scheme provides rapid and robust convergence fortwo and three dimensions and for all kinds of geometric con�guration. The good115



Chapter 7 � Conclusions and future work 116behaviour of the numerical computations is explained by examining and evaluatingthe limits of the stability region of the scheme considering the Euler equations in a�rst order upwinding scheme. This is a close approximation of what is solved on thecoarse levels of the multigrid, since a purely �rst order numerical dissipation is usedand the viscous terms are not signi�cant on these coarse levels. The preconditionedsystem has a �eld of values which remains bounded by the largest circle lying insidethe stability region of the Runge-Kutta scheme guaranteeing algebraic stability. Aslip boundary condition does not e�ect the analysis which is extended to include it.For low Mach number applications, a low Mach number preconditioner is in-corporated into the numerical dissipation and hence into the block-Jacobi precon-ditioner to improve the damping of error modes. Convergence to the steady stateis enhanced, and the quality of the numerical solution improved for inviscid andturbulent Navier-Stokes calculations. Extension of the stability analysis draws thesame conclusion, i.e. an algebraic stability of the scheme as long as the low Machnumber preconditioner is symmetric and positive de�nite. The analysis of the pre-conditioned Euler equations shows the quite signi�cant e�ect of the preconditioningon the e�ectiveness of boundary conditions in eliminating initial transients. Forexample, boundary conditions based on the Riemann invariants of the Euler equa-tions are found to be reective in conjunction with preconditioning, whereas theyare non-reecting at the inow without it.To take advantage of multi-processor computers, the three dimensional code isfully parallelised and all of the theory is backed up by an extensive selection of twoand three dimensional test cases simulating internal and external turbulent ows.7.2 Further workSubstantial further work will be necessary to validate in more detail the implemen-tation of the turbulence model. Calculations over a at plate and comparison ofthe structure of the ow in the inner layer of the boundary layer with experimentaldata should be done. Also it will be necessary to go through more validations on



Chapter 7 � Conclusions and future work 117three dimensional hybrid grids involving other types of element than those used inthis work, - e.g. prisms, pyramids. This will require the generation of meshes usingacademic or industrial grid generation software. Although there has been excellentprogress in the development of such software in the last few years, it neverthelessstill requires expert use to produce good grids, especially for viscous ows aroundcomplex geometries.On the stability analysis side, some additional work could also be done to in-vestigate the eventual possibility of integrating in the analysis the second ordertreatment of the scheme.The work described in this thesis is a description of the nonlinear code calledHYDRA, which is also the basis for additional codes modelling linear unsteady owsand solving adjoint equations for design: the nonlinear ow code is used to obtainthe approximate sensitivity of the ow �eld to small perturbations to the geometry,or used in the analysis of the numerical error in integral functionals such as liftand drag which are two quantities of primary concern on an aircraft for example.The adjoint solution de�nes the relationship between the error in the functionalof interest and the �nite volume residual error, which is the extent to which the�nite volume solution is not the solution of the original analytic problem. In thatcontext, and since the use of hybrid grids is well suited to the inclusion of adaption,an estimate of the adjoint solution together with the local �nite volume residual errorcould lead to an optimal grid adaptation to obtain the most accurate prediction ofa particular functional.Also another interesting capability would be the modelling of the unsteady aeroe-lastic behaviour of complex con�gurations, such as a complete aircraft. Followingthe approach of Jameson [36] this could be achieved by using an implicit time dis-cretisation, with the resulting equations being solved using the multigrid method.Finally, since the methodology and numerical analysis is now well established,the extension to other application areas - e.g. acoustics, electromagnetics could alsobe done.



Bibliography[1] S. Abarbanel and D. Gottlieb. Optimal time splitting for two- and three-dimensional Navier-Stokes equations with mixed derivatives. J. of Computa-tional Physics, 35:1, 1981.[2] S.R. Allmaras. Analysis of a local matrix preconditioner for the 2-D Navier-Stokes equations. AIAA 93-3330-CP, 1993.[3] W.K. Anderson, R. Rausch, and D. Bonhaus. Implicit multigrid algorithms forincompressible turbulent ows on unstructured grids. AIAA Paper 95-1740-CP,1995.[4] T. Barth. Randomized multigrid. AIAA Paper 95{0207, 1995.[5] T.J. Barth. On unstructured grids and solvers. In VKI Lecture series VKI-LS1990-03, March 1990.[6] T.J. Barth. Aspects of unstructured grids and �nite-volume solvers for theEuler and Navier-Stokes equations. VKI lecture series, von Karman Institutefor Fluid Dynamics, Belgium, 1994.[7] T.J. Barth and S.W. Linton. An unstructured mesh Newton solver for compress-ible uid ow and its parallel implementation. AIAA Paper 95-0221, January1995.[8] J. Boussinesq. Theorie de l'ecoulement tourbillonant. Comptes-Rendus del'Academie des Sciences, 23:46-50, 1877.[9] A. Brandt. Multi-level adaptive solutions to boundary value problems. Math-ematics of Computation, 31:333{390, 1977.[10] D.A. Burgess, P.I. Crumpton, and M.B. Giles. A parallel framework for unstruc-tured grid solvers. In K.M. Decker and R.M. Rehmann, Eds., Programming En-vironments for Massively Parallel Distributed Systems, pp. 97{106. Birkhauser,1994.[11] P.N. Childs, J.A. Shaw, A.J. Peace, and J.M. Georgala. SAUNA: A systemfor grid generation and ow simulation using hybrid structured/unstructuredgrids. In Computational Fluid Dynamics'92, pp. 875{882. Hirsch, 1992.[12] P. Cook, M. McDonald, and M. Firmin. Airfoil RAE 2822 - Pressure distri-butions, and boundary layer wake measurements. AGARD AR-138, p. A6,1979. 118



Bibliography 119[13] P.I. Crumpton. A cell vertex method for 3d Navier Stokes solutions. TechnicalReport NA93/09, Oxford University Computing Laboratory, Wolfson Building,Parks Road, Oxford, OX1 3QD., 1993.[14] P.I. Crumpton. An e�cient cell vertex method for unstructured tetrahedralgrids. Technical report, Oxford University Computing Laboratory, NumericalAnalysis Group, 1995.[15] P.I. Crumpton and M.B. Giles. Aircraft computations using multigrid and anunstructured parallel library. AIAA Paper 95-0210, 1995.[16] P.I. Crumpton and M.B. Giles. Aircraft computations using multigrid and anunstructured parallel library. Technical report, Oxford University ComputingLaboratory, Numerical Analysis Group, 1995.[17] P.I. Crumpton and M.B. Giles. Implicit time accurate solutions on unstruc-tured dynamic grids. International Journal for Numerical Methods in Fluids,25:1285{1300, 1997.[18] P.I. Crumpton, M.B. Giles, and G. N. Shrinivas. Design optimisation for com-plex geometries. 15th ICNMFD Conference, Monterey, USA, June 1996.[19] P.I. Crumpton, J.A. Mackenzie, and K.W. Morton. Cell vertex algorithms forthe compressible Navier-Stokes equations. Journal of Computational Physics,109(1):1{15, 1993.[20] P.I. Crumpton, P. Moinier, and M.B. Giles. An unstructured algorithm forhigh Reynolds number ows on highly-stretched grids. In C. Taylor and J. T.Cross, Eds., Numerical Methods in Laminar and Turbulent Flow, pp. 561{572.Pineridge Press, 1997.[21] D.L. Darmofal. Eigenmode analysis of boundary conditions for the one-dimensional preconditioned Euler equations. AIAA Paper 99-3352, 1999.[22] D.L. Darmofal, P. Moinier, and M.B. Giles. Eigenmode analysis of boundaryconditions for the one-dimensioned Euler equations. Journal of ComputationalPhysics, 1999. submitted.[23] D.L. Darmofal and P.J. Schmid. The importance of eigenvectors for local pre-conditioners of the Euler equations. Journal of Computational Physics, 127(2),September 1996.[24] D.L. Darmofal and K. Siu. A robust multigrid algorithm for the Euler equa-tions with local preconditioning and semi-coarsening. Journal of ComputationalPhysics, 151:728{756, 1999.[25] T.A. Driscoll. A Matlab toolbox for Schwartz-Christo�el mapping. ACM Trans.Math. Software, pp. 168{186, 1996.[26] J. Elliott. Aerodynamic optimization based on the Euler and Navier-Stokesequations using unstructured grids. PhD thesis, MIT Dept. of Aero. and Astro.,1998.



Bibliography 120[27] M.B. Giles. Eigenmode analysis of unsteady one-dimensional Euler equations.ICASE NASA Contract No. NAS1-17130, 1983.[28] M.B. Giles. Stability analysis of Galerkin/Runge-Kutta Navier{Stokes discreti-sations on unstructured grids. Journal of Computational Physics, 132:201{214,1997.[29] B. Gustafsson and A. Sundstr�om. Incompletely parabolic problems in uiddynamics. J. of Computational Physics, 35(2):343{357, 1978.[30] W. Hackbusch. Multi{grid convergence theory. In W. Hackbusch and U. Trot-tenberg, Eds., Multigrid Method Proceedings of the Conference Held at K�oln{Porz, November 23{27, 1981, pp. 177{219. Springer{Verlag, 1981.[31] A. Harten. High resolution schemes for conservation laws. Journal of Compu-tational Physics, 49:357{393, 1983.[32] C. Hirsch. Numerical Computation of Internal and External Flows, volume 2.John Wiley & Sons, 1990.[33] H. Iacovides, D.C. Jackson, G. Kelemenis, B.E. Launder, and Y-M Yuan. Re-cent progress in the experimental investigation of ow and local wall heat trans-fer in internal cooling passages of gas-turbine blades. In 2nd EF Conference onTurbulent Heat Transfer, Manchester,UK, 1998.[34] H. Iacovides and M. Raisee. Recent progress in the computation of ow and heattransfer in internal cooling passages of turbine blades. In 2nd EF Conferenceon Turbulent Heat Transfer, Manchester,UK, 1998.[35] A. Jameson. Transonic aerofoil calculations using the Euler equations. InP.L. Roe, Ed., IMA Conference on Numerical Methods in Aeronautical FluidDynamics, pp. 289{308, London, 1982. Academic Press.[36] A. Jameson. Time dependent calculations using multigrid, with applications tounsteady ows past airfoils, wings, and helicopter rotors. AIAA Paper 91-1596,1991.[37] A. Jameson. Analysis and design of numerical scheme for gas dynamics,2:Arti�cial di�usion and discrete shock structure. comp. Fluid Dyn., 5:1{38,1995.[38] A. Jameson and D. Mavriplis. Finite volume solution of the two-dimensionalEuler equations on a regular triangular mesh. AIAA Journal, 24(4):611{618,Apr 1986.[39] Y. Kallinderis, A. Khawaja, and H. McMorris. Hybrid prismatic/tetrahedralgrid generation for complex geometries. AIAA Paper 95-0211, 1995.[40] T.J. Kao, T.Y. Su, and N.J. Yu. Navier-Stokes calculations for tranport wing-body con�gurations with nacell and struts. AIAA Paper 93-2945, 1993.



Bibliography 121[41] J.F.B.M. Kraaijevanger, H.W.J. Lenferink, and M.N. Spijker. Stepsize restric-tions for stability in the numerical solution of ordinary and partial di�erentialequations. Journal of Computational and Applied Mathematics, 20:67{81, Nov1987.[42] H.O. Kreiss and L. Wu. On the stability de�nition of di�erence approxima-tions for the initial boundary value problem. Applied Numerical Mathematics,12:213{227, 1993.[43] D. Lee. Local Preconditioning of the Euler Equations. PhD thesis, Universityof Michigan, 1996.[44] D. Lee and B. van Leer. Progress in local preconditioning of the Euler andNavier-Stokes equations. AIAA Paper 93-3328-CP, July 1993.[45] H.W.J. Lenferink and M.N. Spijker. On the use of stability regions in thenumerical analysis of initial value problems. Mathematics of Computation,57(195):221{237, 1991.[46] H. Luo, J. D. Baum, and R. Lohner. Edge-based �nite element scheme for theEuler equations. AIAA Journal, 32(6), 1994.[47] J.E. Marsden and M.J. Ho�man. Basic Complex Analysis. W.H. Freeman,1999.[48] L. Martinelli. Calculations of Viscous Flows with a multigrid method. PhDthesis, Dept. of Mech. and Aerospace Eng., Princeton University, 1987.[49] D. Mavriplis and A. Jameson. Multigrid solution of the Euler equations onunstructured and adaptive meshes. In S. McCormick, Ed., Proceedings of theThird Copper Mountain Conference on Multigrid Methods: Lecture Notes inPure and Applied Mathematics. Marcel Dekker Inc, 1987.[50] D. J. Mavriplis and V. Venkatakrishnan. Agglomeration multigrid for viscousturbulent ows. AIAA Paper 94-2332, 1994.[51] D.J. Mavriplis. Multigrid strategies for viscous ow solvers on anisotropic un-structured meshes. AIAA Paper 97-1952, 1997.[52] D.J. Mavriplis. On convergence acceleration techniques for unstructured grids.Technical report, ICASE, 1998. Report No. 98-44.[53] D.J. Mavriplis and V. Venkatakrishnan. A uni�ed multigrid solver for theNavier-Stokes equations on mixed element meshes. International Journal ofComputational Fluid Dynamics, 8:247{263, 1997.[54] P. Moinier and M.B. Giles. Preconditioned Euler and Navier Stokes calculationson unstructured meshes. In M. J. Baines, Ed., Numerical Methods for FluidDynamics VI. Oxford University Computing Laboratory, 1998.[55] E. Morano, M.H. Lallemand, M.P. Leclercq, H. Steve, B. Stou�et, and A.Dervieux. Local iterative upwind methods for steady compressible ows. InThird European Conference on Multigrid Methods, p. 227. Springer-Verlag,Berlin 1991, 1990.



Bibliography 122[56] K. Morgan, J. Peraire, J. Peir�o, and O. Hassan. The computation of threedimensional ows using unstructured grids. Computer Methods in Applied Me-chanics and Engineering, 87:335{352, 1991.[57] W.A. Mulder. A new multigrid approach to convection problems. Journal ofComputational Physics, 83:303{323, 1989.[58] J.-D. M�uller. Coarsening 3-d hybrid meshes for multigrid methods. In 9thCopper Mountain Multigrid Conference, 1999.[59] J.-D. M�uller and M.B. Giles. Edge-based multigrid scheme for hybrid grids.In M. J. Baines, Ed., Numerical Methods for Fluid Dynamics VI. Will Print,Oxford, 1998.[60] R.H. Ni. Multigrid convergence acceleration techniques for explicit Euler solversand applications to Navier-Stokes calculations. VKI lecture series, von KarmanInstitute for Fluid Dynamics, Belgium, 1986.[61] C. Ollivier-Gooch. Towards problem-independent multigrid convergence ratesfor unstructured mesh methods I: Inviscid and laminar ows. In Proceedings ofthe 6th International Symposium on CFD, Lake Tahoe, September 1995.[62] J. Peraire, J. Peir�o, and K. Morgan. Finite element multigrid solution of Eulerows past installed aero-engines. Computational Mechanics, 11:433{451, 1993.[63] N.A. Pierce. Preconditioned Multigrid Methods for Compressible Flow Calula-tions on Stretched Meshes. PhD thesis, Oxford University, 1997.[64] N.A. Pierce and M.B. Giles. Preconditioning compressible ow calculations onstretched meshes. AIAA Paper 96-0889, 1996.[65] N.A. Pierce and M.B. Giles. Preconditioned multigrid methods for compressibleow calculations on stretched meshes. J. of Computational Physics, 136:425{445, 1997.[66] D. Jesperson T. Pulliam and P. Buning. Recent enhancements to OVERFLOW.AIAA Paper 97-0644, 1997.[67] S.C. Reddy and L.N. Trefethen. Stability of the method of lines. NumerischeMathematik, 62:235{267, 1992.[68] R.D. Richtmyer and K.W. Morton. Di�erence Methods for Initial-Value Prob-lems. Wiley-Interscience, 2nd edition, 1967. Reprint edn (1994) Krieger Pub-lishing Company, Malabar.[69] P.L. Roe. Approximate Riemann solvers, parameter vectors, and di�erenceschemes. Journal of Computational Physics, 43:357{372, 1981.[70] M.W. Rubesin and W.C. Rose. The turbulent mean-ow, Reynolds-stress andheat-ux equations in mass-averaged dependent variables. Technical report,NASA-TM-X-62248, 1973.



Bibliography 123[71] C. L. Rumsey and V. N. Vatsa. A comparison of the predictive capabilitiesof several turbulence models using upwinding and central-di�erence computercodes. AIAA 93-0192, 1993.[72] A. Jameson W. Schmidt and E. Turkel. Numerical solution of the Euler equa-tions by �nite volume methods using Runge-Kutta time stepping schemes.AIAA Journal 81-1259, 1981.[73] G.N. Shrinivas and M.B. Giles. Application of sensitivity analysis to the re-design of OGV's. In Proceedings of the IMECE Conference, 1995.[74] G.N. Shrinivas and M.B. Giles. OGV tailoring to alleviate pylon-OGV-faninteraction. ASME Paper 95-GT-198, 1995.[75] T. Sonar. On the design of an upwind scheme for compressible ow on generaltriangulations. Numerical Algorithms, 4:135{149, 1993.[76] P.R. Spalart and S.R. Allmaras. A one-equation turbulence model for aerody-namic ows. La Recherche A�erospatiale, 1:5{21, 1994.[77] E. Turkel. Preconditioning methods for solving the incompressible and lowspeed compressible equations. Journal of Computational Physics, 72:277{298,1987.[78] E. Turkel. Preconditioning-squared methods for multidimensional aerodynam-ics. AIAA Paper 97-2025, 1997.[79] E. Turkel, V. Vatsa, and R. Radespiel. Preconditioning methods for low-speedows. AIAA Paper 96-2460, 1996.[80] van J.L.M. Dorsselaer, J.F.B.M. Kraaijevanger, and M.N. Spijker. Linear stabil-ity analysis in the numerical solution of initial value problems. Acta Numerica,pp. 199{237, 1993.[81] B. van Leer, W-T. Lee, and K.G. Powell. Sonic{point capturing. AIAA Paper89-45-CP, The University of Michigan, Department of Aerospace Engineering,1989.[82] B. van Leer, W.T. Lee, and P.L. Roe. Characteristic time-stepping or localpreconditioning for the Euler equations. AIAA paper 91-1552-CP, June 1991.[83] V.N. Vatsa, M.D. Sanetrick, and E.B. Parlette. Development of a exible ande�cient multigrid-based multi-block ow solver. AIAA Paper 93-0677, 1993.[84] V. Venkatakrishnan and D.J. Mavriplis. Agglomeration multigrid for the three-dimensional Euler equations. ICASE Report, 1994.[85] S. Ward and Y. Kallinderis. Hybrid prismatic/tetrahedral grid generation forcomplex 3-D geometries. AIAA Paper 93-0669, 1993.[86] J. Weiss and W. Smith. Preconditioning applied to variable and constant den-sity ows. AIAA Journal, 33(11):2050{2057, 1995.[87] P. Wesseling. An introduction to multigrid methods. John Wiley, 1992.



Appendix A
Matrices for stability analysis
The conservative form of the Euler equations in three dimensions is given by@Q@t + @F@x + @G@y + @H@z = 0 (A.1)where

Q = 0BBBBBBBBBB@
��u�v�w�E
1CCCCCCCCCCA F = 0BBBBBBBBBB@

�u�u2 + p�uv�uw(�E + p)u
1CCCCCCCCCCA

G = 0BBBBBBBBBB@
�v�uv�v2 + p�vw(�E + p)v

1CCCCCCCCCCA H = 0BBBBBBBBBB@
�w�uw�vw�w2 + p(�E + p)w

1CCCCCCCCCCA :
�, u, v, w, p, E denote the density, the three cartesian components of velocity, thepressure, and the total speci�c energy. Also we have,p = ( � 1)��E � q22 � ; with q2 = u2 + v2 + w2:The system (A.1) may be written in the quasi-linear non-conservative form@Q@t +Ax@Q@x +Ay @Q@y +Az @Q@z = 0; (A.2)124



Appendix A � Matrices for stability analysis 125by de�ning the ux Jacobians in the x, y, and z directions Ax = @F@Q , Ay = @G@Q , andAz = @H@Q . The structure of the Jacobian matrices is quite complicated. Calculationand decomposition are most easily accomplished by transforming to an intermediateset of primitive variables, which are de�ned for three dimensions by
V = 0BBBBBBBBBB@

�uvwp
1CCCCCCCCCCA :

By de�ning the Jacobian matrix of the transformation from conservative to non-conservative variables, asM = @Q@V = �@Q@� ; @Q@u ; @Q@v ; @Q@w ; @Q@p �
= 266666666664

1 0 0 0 0u � 0 0 0v 0 � 0 0w 0 0 � 0q22 �u �v �w 1(�1)
377777777775 ;we can rewrite (A.2) asM@V@t +AxM@V@x +AyM @V@y +AzM@V@z = 0:If now we multiply by M�1, we then obtain@V@t + (M�1AxM)@V@x + (M�1AyM)@V@y + (M�1AzM)@V@z = 0:, @V@t + �Ax@V@x + �Ay @V@y + �Az @V@z = 0:



Appendix A � Matrices for stability analysis 126The primitive Jacobians are related to the conserved variable Jacobians by thesimilarity transformation Ax =M �AxM�1, Ay =M �AyM�1, Az =M �AzM�1, with
M = 266666666664

1 0 0 0 0u � 0 0 0v 0 � 0 0w 0 0 � 0u2+v2+w22 �u �v �w 1(�1)
377777777775 ;and

�Ax = 266666666664
u � 0 0 00 u 0 0 1�0 0 u 0 00 0 0 u 00 �c2 0 0 u

377777777775 ;
�Ay = 266666666664

v 0 � 0 00 v 0 0 00 0 v 0 1�0 0 0 v 00 0 �c2 0 v
377777777775 ;

�Az = 266666666664
w 0 0 � 00 w 0 0 00 0 w 0 00 0 0 w 1�0 0 0 �c2 w

377777777775 :In a non-conservative form, the system of the Euler equation may be written ,with the primitive variable V as@V@t + (Â:~r)V = 0;



Appendix A � Matrices for stability analysis 127with
Â = 266666666664

Q �Sx �Sy �Sz 00 Q 0 0 Sx�0 0 Q 0 Sy�0 0 0 Q Sz�0 �Sxc2 �Syc2 �Szc2 Q
377777777775 ;where c denotes the speed of the sound, and Q = uSx+vSy+wSz. The eigenvaluesof Â are obtained as solution of det(Â � �I) = 0, and thus, we get the diagonalmatrix

� = 266666666664
Q 0 0 0 00 Q 0 0 00 0 Q 0 00 0 0 Q+ cS 00 0 0 0 Q� cS

377777777775 ;where S2 = S2x + S2y + S2z . Also, the right eigenvectors of Â are the columns of
L = 266666666664

nx ny nz 1 10 �cnz cny cnx �cnxcnz 0 �cnx cny �cny�cny cnx 0 cnz �cnz0 0 0 c2 c2
377777777775 ;where nx, ny, and nz are the components of the unit normalnx = SxS ; ny = SyS ; nz = SzS :The left eigenvectors of Â are the rows of

L�1 = 266666666664
nx 0 nzc �nyc �nxc2ny �nzc 0 nxc �nyc2nz nyc �nxc 0 �nzc20 nx2c ny2c nz2c 12c20 �nx2c �ny2c �nz2c 12c2

377777777775 :



Appendix A � Matrices for stability analysis 128Finally, Â can be decomposed as Â = L�L�1:


