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Chapter 1

Introduction

1.1 Unsteadiness in turbomachinery

There are four principal sources of unsteadiness in a single stage of a turbomachine
in which there is one row of stationary blades (stators) and one row of moving blades
(rotors). As shown in Fig. 1.1, wake/rotor interaction causes unsteadiness because the
stator wakes, which one can consider to be approximately steady in the stator frame
of reference, are unsteady in the rotor frame of reference since the rotor is moving
through the wakes and chopping them into pieces. This causes unsteady forces on the
rotor blades and generates unsteady pressure waves. Although the stator wakes are
generated by viscosity, the subsequent interaction with the rotor blades is primarily
an inviscid process and so can be modelled by the inviscid equations of motion. This
allows two different approaches in numerical modelling. The first is to perform a full
unsteady Navier-Stokes calculation of the stator and rotor blades. The second is to
perform an unsteady inviscid calculation for just the rotor blade row, with the wakes
being somehow specified as unsteady inflow boundary conditions. This latter approach
is computationally much more efficient, but assumes that one is not concerned about

the unsteady heat transfer and other viscous effects on the rotor blades.

Potential stator/rotor interaction causes unsteadiness due to the fact that the pres-
sure in the region between the stator and rotor blade rows can be decomposed approxi-
mately into a part that is steady and uniform, a part that is non-uniform but steady in
the rotor frame (due to the lift on the rotor blades) and a part that is non-uniform but
steady in the stator frame (due to the lift on the stator blades). As the rotor blades

move, the stator trailing edges experience an unsteady pressure due to the non-uniform
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Figure 1.1: Sources of unsteadiness in turbomachinery flow

part that is locked to the rotors, and the rotor leading edges experience an unsteady
pressure due to the non-uniform part that is locked to the stators. This is a purely
inviscid interaction which is why it is labelled a “potential” interaction. There are
again two approaches to modelling this interaction. The first is an unsteady, inviscid
calculation of the stator and rotor blade rows. The second is an unsteady, inviscid cal-
culation of just one of the blade rows, either the stator or the rotor, with the unsteady
pressure being specified as a boundary condition. The latter approach is more efficient,
but unfortunately the situation in which the potential stator/rotor interaction becomes
important is when the spacing between the stator and rotor rows is extremely small,
and /or there are shock waves moving in the region between them. Consequently, one

does not usually know what values to specify as unsteady boundary conditions.

The first two sources of unsteadiness were both due to the relative motion of the
stator and rotor rows. The remaining two sources are not. The viscous flow past a blunt
turbine trailing edge results in vortex shedding, very similar to the Karman vortex street
shed behind a cylinder. In fact real wakes lie somewhere between the two idealized limits
of a Karman vortex street and a turbulent wake with steady mean velocity profile. It is
believed that provided the integrated loss is identical the choice of model does not affect
the subsequent interaction with the downstream rotor blade row. However, this is an
assumption which needs to be investigated sometime in the future. The importance of
vortex shedding lies in the calculation of the average pressure around the blunt trailing
edge, which determines the base pressure loss, a significant component of the overall

loss. There is also experimental evidence to suggest that the vortex shedding can be



greatly amplified under some conditions by the potential stator/rotor interaction.

Finally, there can be unsteadiness due to the motion of the stator or rotor blades.
The primary concern here is the avoidance of flutter. This is a condition in which a
small oscillation of the blade produces an unsteady force and moment on the blade which
due to its phase relationship to the motion does work on the blade and so increases the
amplitude of the blade’s unsteady motion. This can rapidly lead to very large amplitude

blade vibrations, and ultimately blade failure.

1.2 A brief review

In the last eight years considerable effort has been devoted to the calculation of unsteady
flow in turbomachinery. The first significant piece of work was by Erdos in 1977 [9]. In
his paper he presented a calculation of unsteady flow in a fan stage, including the use of
an algorithm to treat unequal pitches. Unfortunately, this method has some limitations
which will be discussed later. In 1985, Koya extended Erdos’ work to three dimensions
[21].

In 1984, Hodson modified a program written by Denton, and used Erdos’ technique,
to calculate wake/rotor interactions in a low speed turbine [18]. The incoming wakes
were specified as unsteady boundary conditions. The results show that the wake seg-
ments cut by the turbine rotors roll up into two counter-rotating passage vortices, and

the wake fluid migrates to the suction surface.

In 1985, Rai presented a paper showing stator/rotor interaction calculated using a
Navier-Stokes algorithm [29]. This paper generated considerable interest and sparked a
lot of research activity. In 1988, Rai extended his techniques to three-dimensional, vis-
cous calculations [30]. However, Rai, along with many other researchers since, assumed
that the stator/rotor pitch ratio is 1:1 or some simple ratio such as 2:3 or 3:4. This
assumption allows them to perform calculations with simple periodic boundary condi-
tions, but requires modifications to the geometry when applied to real turbomachinery

stages.

In the last few years there have been several papers: Fourmaux [10] and Lewis [22],
inviscid, two-dimensional stator/rotor interaction; Jorgensen [20] viscous, quasi-three-
dimensional stator/rotor interaction; Ni [27], inviscid three-dimensional stator/rotor
interaction; Chen [4], three-dimensional, viscous stator/rotor interaction. In general,
these papers have concentrated on numerical algorithm issues, and proof-of-concept

demonstrations. Progressively now, the emphasis is turning to applications and mathe-



matical modelling issues such as transition and turbulence modelling. Notable work in

this latter category has been done by Sharma [34].

1.3 Overview of UNSFLO and report

The computer program UNSFLO which has been developed over the last five years
has many capabilities. It can solve the steady or unsteady, inviscid or viscous equa-
tions of motion in two dimensions, with extensions to include quasi-three-dimensional
effects. It can handle many different kinds of flow unsteadiness; wake/rotor and po-
tential /rotor interactions in which the unsteadiness is generated by unsteady inflow or
outflow boundary conditions; stator/rotor interactions in which a full stage is calculated
and the unsteadiness is caused by the relative motion of the stators and rotors; flutter,
in which the unsteadiness is due to blade vibration. One novel feature of UNSFLO is
its ability to treat arbitrary wake/rotor and stator/rotor pitch ratios, which in extreme
cases requires the computation to be performed on multiple rotor passages. Another
is the incorporation of highly accurate non-reflecting boundary conditions which mini-
mize non-physical reflections at inflow and outflow boundaries. A third feature is the
use of unstructured grids which, in combination with an advancing front grid gener-
ator [24], makes it possible to perform calculations on complex geometries, such as

pylon/strut/outlet-guide-vane combinations.

Several papers have been written about different algorithmic components of UNSFLO,
as well as the use of UNSFLO to investigate various unsteady flows. On the algorithm
side the papers present the ‘time-inclined’” computational planes used to handle arbi-
trary stator/rotor pitch ratios [12]; the use of “time-inclined” computational planes
for convergence acceleration [11, 6]; the stator/rotor interface treatment for a tran-
sonic interaction analysis [15]; the mathematical theory behind non-reflecting boundary
conditions [14]. On the application side, UNSFLO has been used to look at compres-
sor interaction [8]; shock propagation in a shock-wave/rotor interaction [19]; complex
steady and unsteady pylon/strut/outlet-guide-vane flows [24]; unsteady heat transfer in
a transonic turbine stator/rotor interaction [1]. There is also a comprehensive validation

paper with a number of unsteady test cases [16].

This report describes in detail the numerical method used in UNSFLO. Chapter 2
derives the explicit, Lax-Wendroff algorithm which is used to calculate the unsteady,
inviscid flow. It also discusses the use of an unstructured, pointered grid system, and

the formulation of the numerical smoothing which is critical to the accuracy of the



method. Chapter 3 introduces the concept of “time-inclined” computational planes to
handle unsteady calculations with arbitrary stator/rotor pitch ratios. Full details are
presented on how this changes the basic Lax-Wendroff algorithm. Chapter 4 shows how
stator/rotor calculations are performed by calculating on two separate stator and rotor
grids using relative flow variables. The two are coupled together through an interface
region with moving cells. Chapter 5 presents the steady inflow and outflow boundary
conditions, using non-reflecting boundary condition theory to achieve accurate results
on very small domains. Chapter 6 gives the unsteady boundary conditions, which allow
for the specification of incoming wakes and potential disturbances, and again use the
non-reflecting theory to prevent artificial reflections of outgoing waves. Finally, Chapter
7 presents the viscous flow algorithm and full details on how it is coupled to the external

inviscid flow calculation.



Chapter 2

Lax-Wendroff Algorithm on
Unstructured Meshes

2.1 Unsteady Euler equations

The unsteady Euler equations, describing the motion of an inviscid, compressible gas in

two dimensions, are

ou oF oG
= (=== 2.1
ot (896 + ay) ' (2.1)
where U, I’ and GG are four component vectors given by,
P pu pU
2
v=| ", r=|"TP | g= e (2.2)
pv puv pve+p
pl puH pvH

The pressure p, and total enthalpy H, are related to the density p, velocity compo-
nents u and v, and total energy per unit mass F by the following two equations which

assume a perfect gas with a constant specific heat ratio +.
1
p=0-1p (E- 5+ (2.3)
H=r+2L (2.4)
p

Additional equations which will be required are the definitions of the speed of sound,

Mach number, stagnation pressure and stagnation density.

- w»?p (2.5)



uo= YA (2.6)
1 v/ (v=1)

b = (1 + %MQ) (2.7)
-1 1/(v=1)

b = p (1 + %MQ) . (2.8)

The flow variables are non-dimensionalized using the upstream stagnation density
and stagnation speed of sound which leaves the equations unchanged and gives the

following inlet stagnation quantities.

1
H=—— po =1, Po =

— (2.9)

o
An extremely useful extension to the two-dimensional Euler equations, is the in-
clusion of a varying streamtube thickness in the third dimension. The resultant quasi-

three-dimensional equations are

oU _ [O(hF) a(ha))
hat_—( 9 + oy + 5, (2.10)
where
0
9k
s=| "=, (2.11)
Py
0

and h is the streamtube thickness which in general varies only in the axial z-direction.
This is the most important three-dimensional effect in axial turbomachinery, but in
radial turbomachinery the radius change is also very important and one should include

Coriolis and centrifugal body forces [5].

These equations also apply in a rotating frame of reference at constant radius if

relative velocities, total energy and total enthalpy are used.

2.2 Unstructured meshes

Before beginning to present the numerical algorithm used to solve the unsteady Euler
equations, it is necessary to first discuss the organization of the computational data.
Historically, most algorithms and programs in computational fluid dynamics have been

developed on structured meshes, which means that the computational grid is usually



composed of quadrilateral cells which are arranged in a logically rectangular manner
and so each grid coordinate has an (¢,7) index. Each flow variable is then defined
at a particular point in a two-dimensional array, and neighboring points in the array

structure are also neighboring points in the physical computational domain.

The alternative approach of using unstructured meshes, is the one which has com-
monly been adopted in structural and thermal finite element analysis. Increasingly this
approach is also being used in computational fluid dynamics [25], and it is the approach
used here with UNSFLO. Each grid coordinate (and its associated flow variables) is
associated with a particular index in a one-dimensional array. There are also one-
dimensional arrays of cell-related variables, with one set of cell variables being pointers
given the indices of the grid nodes which form the corners of the cell. As will be described
in the next section, the flow algorithm is arranged to be implemented in a cell-by-cell
manner, sweeping through the list of cells gathering the values from their corner nodes
performing the necessary calculations and then distributing the appropriate changes in

the flow variables back to the corner nodes.

There are several reasons for choosing to use unstructured meshes. They offer great
flexibility in grid generation for complex geometries, and effectively separate the process
of grid generation from the flow solver, since any structured mesh can always be turned
into an unstructured mesh. For added flexibility, the mesh used in UNSFLO can be
a mixture of quadrilateral and triangular cells. Another related advantage lies in the
technique of adaptive meshes in which grids are locally refined through the addition
of extra grid points to resolve high-gradient features such as shocks and slip surfaces.
This is relatively easily done for unstructured meshes [25, 7], but can only be done in
a very limited and inefficient way on structured meshes. Proponents and opponents
of unstructured meshes disagree on both the relative ease of programming and the
vector /parallel efficiency of the flow solvers. The first depends on the complexity of the
geometry, since structured programs are simple for ducts, but get extremely complicated
when dealing with entire aircraft, whereas the unstructured flow solvers do not change.
The second point depends on the trade-off between the cost of gather/scatter operations
required to address the flow variables at the corners of the computational cells, versus
the increased efficiency of DO-loops which span the total number of cells rather than
the number in any one particular direction. The only drawback of unstructured meshes
is that they are generally unsuitable in applications where ADI algorithm are required,
since those algorithms require connection lists of nodes along implicit inversion lines.
Even in this case, however, it is possible to construct an appropriate partially structured
mesh [28].
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Figure 2.1: Control volume for quadrilateral Lax-Wendroft scheme

2.3 Quadrilateral Lax-Wendroff algorithm

The quadrilateral Lax-Wendroff scheme is very similar to that used by Ni [26] and Hall
[17], but differs in precise detail for non-uniform grids. The algorithm will first be
described for the two-dimensional Euler equations, and then the modified version for

the quasi-three-dimensional equations will be given.

The second-order Taylor series expansion for U"T! = U((n + 1)At) can be written

as,
oUN\" ?U\"
n+l _ 7 el 1 2
vt =u +At(8t) + 5 At (8t2) . (2.12)
Substituting from Eq. (2.1) and changing the order of differentiation yields,
oF oG\" At [0 J "
Urtt = U — At (— —) ——(—AF —AG) , 2.13
oz + dy 2 \Ox + dy ( )
where oF ac
AF" = At — AG" = At —. 2.14
ot’ ot (2.14)

Now consider the cells shown in Fig. 2.1. The grid nodes are numbered, and the
letters correspond to other points which will be used in explaining the method. a,c,e,g

are located at the center of their respective faces, and b,d,f,h are located at the center of



their respective cells. Integrating Eq. (2.13) over the cell a-b-c-d-e-f-g-h-a, and applying
Green’s theorem, gives

5U, = —j—f (yf(de _ Gda)+ %?{(AF@ - AGdac)). (2.15)

The first term can be split into four separate contour integrals around 1-a-b-c-1 etc.,
and each of these can be approximated as a quarter of the contour integral around the
larger cells 1-2-3-4-1 etc., which are labelled A,B,C,D for convenience. In this manner

dUy can be split into four parts,

oUy = 6U 4+ 0Ug + 6Uic +0Uip (2.16)
where,
1 At At
oUia = —(——?{ (de—Gdac)——/ (Ade—Ade))
Ay 4 Jeeua 2 Ja—b-c
1
= E (AAAUA — At (AFA (y4—y2) - AGA ($4—$2))) (217)

and the other terms are defined similarly.

AUy is obtained by a simple trapezoidal integration around cell A. Defining the

following face lengths in a counterclockwise direction,

Argy = x9— 14
Axzy = 13— 29
Arys = x4 — 23 (2.18)
Ariy = x1— 24
Ay = y2—u
Ayse = ys— 2
Aysz = Ya—ys (2.19)
Ayia = y1—ya
the equation for AUy, is
AUy = j—j (—%(F1 + F3) Ay + %(G1 + G2)Azgy
—%(Fz + F3)Ayss + %(Gz + G3)Azsy
—%(F:a + Fy)Ayss + %(G:a + G4)Azys
—%(F4—I-F1)Ay14+ %(G4+G1)A9€14) . (2.20)

10



The cell area A4 is obtained from

1

Ap = 5((963—961)(94—92) — (4 —22) (Y3 —y1) ), (2.21)

and the area Ay associated with node 1 is simply an average of the four cells A4, Ap,A¢
and Ap.

AF, and AG 4 are obtained from

or oG
AFA = (%)A A(]A7 AGA — (%)A AUA7 (222)

with the Jacobians being evaluated using Uy, the cell average of the four nodes. For
computational efficiency it is best not to actually form the Jacobian matrix and perform

the matrix-vector multiplication. Instead, the following equations are used.

Au = (A(pu) —ulp)/p
Av = (A(pv) —vAp)/p (2.23)
Ap = (v=1) (A(pE) — ul(pu) — vA(pv) + L (u?+0v?)Ap)

Ay = Alpu)

AF, = ulA(pu)+ puldu+ Ap

AFs = uA(pv) + pvAu (2.24)
AFy = u(A(pE)+ Ap) + pHAu

AG; = A(pv)
AGy; = vA(pu)+ pulv
AGs = vA(pv) + pvAv+ Ap (2.25)

AGy = v(A(pE)+ Ap) + pHAv.

By construction, the Lax-Wendroff scheme as formulated here is ideally suited for
calculations on an unstructured grid. In the program the algorithm is accomplished in
three passes. The first pass calculates F' and G at all nodes. The second pass calculates
for each cell the AU, AF, AG and then the contributions to the changes at each of
its nodes. The third pass adds the changes onto the flow variables at each node and

evaluates the convergence checks.

The algorithm is also very suitable for calculations on a computer with either vector

pipelines or multi-processors. In this case the middle pass is split into several passes.

11



The cells are “colored” such that there are no two cells of the same color touching. Then
each pass calculates the update contributions from one color of cell. In this manner there
are no conflicts from two cells sending their contributions to the same node at the same
time. The coloring algorithm need not be too sophisticated. If there are 10,000 cells

then using ten colors is not much less efficient than using four.

Several modifications are needed to convert the basic two-dimensional algorithm into

the quasi-three-dimensional form. The first is that all cell areas become volumes.
Al = g(h+hoths+hy) ((@3—21)(ya—y2) — (za—22) (Ys—1) ) - (2.26)

It is also helpful to define the following face area terms.

A$/21 = %(hl —|—h2)A$21
A$52 = %(h2+h3)A$32
A$£13 = %(h3—|—h4)A$43 (227)
A$/14 = %(h4—|—h1)A$14
Ayy = (hitha)Ays
Aysy = 5(haths)Ays;
Ay = (ha+ha)Ayas (2.28)
Ayry = 5(hathi)Ayi
Awlzlz; = %(Awlm + AQC/M - Awﬁl?) - Awéz)
Azl = %(AwéQ + Azl — Azl — Azly) (2.29)
Ay§’4 = %(Ay§1 + Ayi4 - Ayz/;:a - Ayéz)
Ayé’l = %(Ayéz + A951 - Ayi4 - Ayfw)- (2-30)

Next, in the definition of AUy, there are two changes, one due to the multiplication
of the fluxes I’ and G by the average streamtube thickness at the centers of the faces,
and the other due to the inclusion of the source term 5. This latter term can be

approximated as

/dedy ~ pA// o | dedy

12



$ hdy
- P e
0
0
Ay +Aysy+Ayhs+ Ay
~  3(p1+p2tpstps) Yo S Aas T A1 . (2.31)

—(Azhy +Azg,+ Az +Axy,)
0

Inserting these two changes into the flux residual equation (2.20) gives, after some

tedious algebra,

V1P1 + Vzpz + V3P3 + V4P4
AU, = — At [ Vi(pu)r + Va(pu)o + Va(pu)s + Va(pu)a — (p3—p1) Aydy — (pa—p2) Ays,
247 | Vi(po)1 + Valpv)z + Va(pv)s + Va(pv)s + (p3—p1) Al + (pa—p2) Azl

Vi(pH)1+Va(pH )2+ Va(pH)s+Vi(pH )4

(2.32)
where the V terms are volume fluxes defined by
Vo= ui (Ayy +AY1) — vi(Azy +Azy)
V, = uz (Ayso+Ays) — va(Azsy+Axh,;)
Vs = us(Aylst+Ayhy) — va(Anl+Axh,) (2.33)
Vi = us(Ayi4+Ayss) — va(Ari+Axls)

AF and AG are calculated in exactly the same manner as before, but the second

order flux terms are slightly modified, so that the distributed changes to the nodes are

At A’
i (), (H(£) 00 are 13 )

At A’
= (3, (H(£) 0nsbar s 1)

At Al
oUsa = (T)g (i (E)A AUg — TAF4 Ayl + TAGy Ax;’4) (2.34)

At Al
0Usq = (I)Al (i (E)A AUy — iAFA Ayé’l + iAGA Aacgl) .

Note the rearrangement of the At terms. Expressed in this way the numerical scheme
remains conservative for steady-state calculations which use spatially varying timesteps

to achieve faster convergence.

13



Figure 2.2: Control volume for triangular Lax-Wendroff scheme

2.4 Triangular Lax-Wendroff algorithm

The quadrilateral Lax-Wendroff algorithm has been extended by Lindquist [23] for

triangular cells. The algorithm is very similar to the quadrilateral method. Fig. 2.2

shows the triangular control volume for a situation in which six triangles meet at node

1. a,c,e,g,ik are located at the center of their respective faces and b,d,fh, j,I are at the

centers of their respective triangular cells. The counter-clockwise lengths of the faces of

cell A are defined by

A$21
A$32
A$13

Ayay
Ayzz
Ayis

= T2 — X
= T3 — T2
= I1 — I3
= Y¥2—-WN
= Y3— Y2
= Y1 —Ys.

The volume and face areas of cell A are defined by

/A = %(hrl-hz-l-h:a) (Azg1Aysy — Az3aAys1),

and

‘o
Azxy, =
‘o
Axyy =

‘o
Axyy =

(hi+h2)Azgy
(h2+hs)Azay
(hs+hi)Azqs

[ T Y

—_
i~

(2.35)

(2.36)

(2.37)

(2.38)



Ayl = %(fh +ha) Ay
Ayzy = (haths)Ayss (2.39)
Ayiz = 5(hs+h1)Ays
Awlfz = —Agflzl + %(Awlm ‘|‘A$§2‘|‘A$/13)
Azly = —Azh,+ %(Aw’zl +Azl,+Axls) (2.40)
Awgﬁ = —Awlw + %(Awlm ‘|‘A$§2‘|‘A$/13)
Ayilz = —Ay§1 + %(Ay§1 ‘|‘Ay§2‘|‘Ayi3)
Ayg:a = —Ayéz + %(Ay§1 ‘|‘Ay§2‘|‘Ayi3) (2-41)
Ayé’l = —Ayi:a + %(Ay§1 —I—Ayéz—l—Ayb).

The change AUy4 in cell A is given by

V1p1 + Vzpz + V3P3
At | Vilpu)r + Valpu)z + Va(pu)s + prAyls + p2 Ayl + psAyt,
244 | Vi(pv)1 + Va(pv)a + Va(pv)s — p1Awls — paAaly — psAat,
Vi(pH)1+Va(pH )2+ Va(pH)s
(2.42)

where the V terms are volume fluxes defined by

Vi = ul(Ay§1 ‘|‘Ayi3) - Ul(Awlm ‘|‘A$/13)
Va = ua(Aysy+Ayy) — va(Axsy+Axy,) (2.43)
Vs = US(A913‘|‘AQ§2) - US(AQC/13‘|‘A$§2)-

AF and AG are calculated as before, but the first order term in the distributed
changes is slightly different since the flux residual has to be distributed in equal thirds
to the three corner nodes, and the second order term is different because of the geometric
differences between quadrilaterals and triangles.

At A’
i (), (4(£) 00 are 1)

At A
oUza = (T)z (% (E)A AUs + EAF, Ayl — $AG, Aacgl) (2.44)

At A’
(SU3A = (I):)) (% (E)A AUA + iAFA Ayi’Q — iAGA Awlllz) .
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Figure 2.3: Cells at a wall
2.5 Wall boundary conditions

At solid walls the analytic boundary condition is that there is no flow normal to the
wall. Computationally this is implemented easily by setting to zero the mass flux
through wall faces when calculating the change AU in any cell which has a solid wall
face. To maintain vector efficiency, the node-numbering of cells with wall faces is altered
if necessary to ensure that the wall face is the face between nodes 1 and 2. Also the
cell-coloring algorithm discussed earlier is modified to ensure that all cells of a particular
color either do have wall faces, or do not have wall faces. Then, when looping over cells

of a color with wall faces, the definitions of the volume fluxes Vl and VQ are changed to

Vi = wAyl, — Az,

Vo = upAyhy — vaAuh, (2.45)
for quadrilateral cells, and

Vi = w Ayl — v Az,

Vo = upAyhy — vaAzh, (2.46)

for triangular cells.

In addition to setting the normal mass flux to zero in the residual evaluation, at the
end of each timestep the velocity is also made tangent to the wall at each surface grid

node by eliminating the component of the momentum normal to the surface.
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Figure 2.4: Grid nodes in periodic boundary condition
2.6 Periodic boundary condition

The periodic condition for steady flows, and unsteady flows with equal stator and rotor
pitches, is implemented by adding the update contributions that one periodic node 1
obtains from its contributing cells A and B, see Figure 2.4, to the contributions that
the corresponding upper periodic node 2 obtains from its cells C and D, and using the

sum to update the flow variables at 1 and 2.

2.7 Numerical smoothing

Two types of numerical smoothing are added to the basic Lax-Wendroff algorithm. To
stabilize shock calculations and prevent large overshoots a carefully tailored second-
difference shock smoothing is used. Also, unwanted high-frequency waves in smooth

flow regions are suppressed by adding a form of fourth-difference damping.

2.7.1 Shock smoothing

The shock smoothing is similar to the second difference smoothing used by Ni [26],
but with an adaptive smoothing coeflicent based upon an idea of von Neumann and

Richtmeyer [31].

The internal structure of a physical shock is determined by the balance of the in-

viscid flux and the flux due to the bulk viscosity of the fluid. Thus von Neumann and
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Richtmeyer suggested modifying the Euler equations, Eq. (2.1), into the following form,

where F¥ and G are
0
FY = Wo'ﬁ . GV = WO e (2.48)

The shock width is proportional to the bulk viscosity « divided by the magnitude of the

velocity jump across the shock, and so they proposed the following formula for «.

PIV.d ,V.i<0
H:{ PEN. V. (2.49)

0 Vi >0

Making the viscosity zero when the flow divergence is positive prevents smoothing of
expansion regions. The variable [ is the desired shock width which is chosen to be

proportional to the local mesh spacing.

The shock smoothing in UNSFLO starts with Ni’s second difference smoothing,
which can be written as an additional distribution from each cell to its corner nodes.
Using the same labelling system as the description of the basic algorithm, the additional

smoothing distribution to node 1 due to cell A is

(Ul nins == () (57) (0= V). (2:50)

In this equation Uy is the average value of U in cell A, defined by a simple arithmetic
average of the nodal values. If k was taken to have a small, positive, uniform value,
then this smoothing would be very similar to Ni’s smoothing as described in his original
paper [26]. However, in UNSFLO it is defined to depend upon the flow divergence in a

manner based on the idea of von Neumann and Richtmeyer.

Firstly, a scaled flow divergence in cell A is defined by

(U1—U3)Ayz4 - (U1—U3)A9€24 + (u2—u4)Ay31 - (Uz—v4)A9631

div (i) = 2.51
(@) ¢ Az Ays — AzzAyag ( )

for quadrilateral cells, and
div (@) = u1Ayzs — v1Azaz + uaAysr — V2A231 + usAyrz — v3AR (2.52)

¢ VAz19AY23 — Aza3Ay1g
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for triangular cells. These definitions mean that in smooth regions div(#) is approxi-
mately the flow divergence multiplied by a cell length, and in regions with a discontinuity

due to a shock it is approximately the velocity jump across the shock.

Next, x is defined by

k= min (0.02, max (v, —0.1Mdiv(@), 0.1M*(div(#)—02), 0.02(M?*-2)))

(2.53)
The different terms in the above definition require explanantion. The first term sets
an upper limit on the magnitude of k; this is needed to prevent a numerical parabolic
instability. The second term is a constant which is usually zero, but can be set by
the user to be a small positive constant, in which case it acts like Ni’s fixed-coefficient
smoothing. This is usually done only when there is some difficulty in performing the
computation without this smoothing, which might happen if there is some excessively
strong flow transient. The third term is the regular bulk viscosity term which is positive
only when the flow is decelerating and the divergence is negative. The Mach number is
used to prevent excessive smoothing at stagnation points. The fourth term is designed
to prevent the possibility of expansion shocks. It is positive only when the flow is
accelerating strongly, and in almost all computations this term will be zero throughout
the flow field. The final term introduces smoothing when the local Mach number exceeds
V2, which is above the values to be expected in most turbomachinery calculations. This
term is included to cope with particular nasty transients in steady-state calculations

without having to resort to a non-zero value for v(2).

It should be clear to the reader that there is a great deal of empiricism and practical
experience built into the above shock smoothing formulation. All of the constants have
evolved over four years of calculations, and the values above work for a wide variety of
steady and unsteady turbomachinery flows. One final important observation is that in
smooth flow regions div(#) is proportional to the local cell dimension and so if v(?) is
zero and the Mach number is below /2, then the shock smoothing is second order in

magnitude and does not alter the global order of accuracy.

2.7.2 Fourth difference smoothing
Conceptually, the fourth difference smoothing corresponds to adding a term of the form
—v. IV (V)

to the right-hand-side of Eq. (2.1) or Eq. (2.10). The variable [ is a length which is

comparable to the local cell length, and so the error produced by this smoothing will be
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second-order at worst. As stated earlier, the function of this smoothing is to suppress
certain highly oscillatory steady-state modes which are otherwise allowed by the basic
Lax-Wendroff scheme.

The first step in formulating the fourth difference smoothing is to calculate a discrete
approximation to a Laplacian of the state vector U at each node. The average gradients

of U in a triangular cell can be found by an application of Green’s theorem.

GU) 1
. = — Ud
<39€ A Ap Jeelia Y
1
- T4, 5 (U1Ayss + U2 Ayis + UsAya) (2.54)
Oy ) 4 A Jeenta
1
= 2A (U1A$32 + U2A$13 + U3A$21) (255)

Having obtained the cell gradients, a second difference of U at node 1 can be defined

by

(D), = 24,V UINQ?{ —d vy (2.56)
The line integral is around the same control volume used to assemble the second order
flux terms in the Lax-Wendroff algorithm. In fully discrete form (D?U); is composed
of contributions from all of the cells bordering node 1, and the contribution from cell A

(as defined in Fig. 2.2) is

(D*U) 14 ( (U1Aysy + UsAyis + UsAyay ) Aysy +

(U1A$32 + U2A$13 + U3A$21)A$32 ) (257)

244

Similarly the contributions from cell A to D?U at nodes 2 and 3 are
1

(D*U)gn = 54, ( (U1 Aysa + UyAyis + UsAyar) Ayrs +
(U1A$32 + U2A$13 + U3A$21)A$13 ) . (258)
1
(D*U)34 = T34, ( (U1 Aysa + UyAyis + UsAya1) Ayar +
(U1A$32 + U2A$13 + U3A$21)A$21 ) . (259)

A noteworthy feature of this second difference operator D? is that when applied

to a linear function U on an irregular grid, it returns a value of zero. The proof is
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Figure 2.5: Division of quadrilateral cell into triangles

simple: if U is linear then VU must be uniform and so the line integral of the gradients
around the node’s control volume must give zero. For this to remain true at solid wall
boundaries, the distribution formulae must be modified to include the contribution due
to the control volume face lying on the wall surface. For example, in the case of cell A

in Fig. 2.3, the modified distributions to nodes 1 and 2 are

1
(D*U)yq = 24, ( (U1Aysz + Uz Ayrs + UsAyar) Ayrs +
(U1A$32 + U2A$13 + U3A$21)A$13 ) . (260)
1
(D*U)gy = 24, ( (U1Aysz + Uz Ayrs + UsAyar) Aysy +
(U1A$32 + U2A$13 + U3A$21)A$32 ) . (261)

The discussion so far has been for triangular cells. The natural extension to quadri-
lateral cells would involve computing the flux of VU in each cell through the usual
control volume. However, this leads to a very poor smoothing operator because an
odd-even sawtooth error mode (positive at nodes 1 and 3, and negative at nodes 2 and
4) would give a VU at the cell center which is zero. Thus this error mode would not be

suppressed by the smoothing.
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Instead, the approach for quadrilateral cells is to use the triangular algorithm by
dividing each quadrilateral cell into four different triangles (as shown in Fig. 2.5) when
calculating the distributions to each of the nodes, i.e (D?U) 4 is based upon triangle A1,
(D?U)y4 is based upon triangle A2, (D?U)s3y4 is based upon triangle A3 and (D?U)44
is based upon triangle A4.

In UNSFLO, the second difference function is evaluated by a preliminary sweep
over all of the cells before beginning the Lax-Wendroff algorithm. The fourth difference
smoothing is then built in as part of the Lax-Wendroff sweep. This part of the smoothing
is very similar to the shock smoothing, except that we smooth D?U instead of U itself.
In each cell the average value of D?U is calculated and then an extra distribution is sent
to each node based upon the difference from the average value. For node 1 in either a

quadrilateral or a triangular cell this addition is

(Ul ains =7 (5) (57) (0?00 -@02001), o2

with v being a smoothing coefficient whose value is typically taken to be 0.001.

2.8 Timestep

A conservative estimate for the maximum stable timestep in each cell is given by
2A
Atmal’

= |ulAyz —vAzg| + /Ay +Az3, +

|uAysy —vAz3| + e/ Ay3,+Ax3, +

|uAy 3 —vAxy3] + ¢

L ] &
+ + | +
L | b

_|_

|[uAy1a—vAz14| + ¢ (2.63)
for quadrilateral cells, and
2A . .
N = |ulAyz —vAzg| + c/Ays +Az35 +
|uAyss —vAxss| + ¢ +
luAy13—vAz3] + ¢ Ay%3+A$%3 (2.64)

for triangular cells. All terms are as defined earlier in this chapter, with u, v, ¢ based

upon the cell-averaged flow quantities.

For unsteady calculations the uniform global timestep is taken to be the minimum
over all of the cells of the local maximum timestep, multiplied by a CFL number which

is typically taken to be 0.9.
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For steady calculations, local time steps are used to march to steady-state conver-
gence as quickly as possible, so one used the local maximum timestep multiplied again
by a CFL number which is typically 0.9. The area/timestep ratio associated with a grid
node is then defined by

(50), = S 00 (50)..s 245

cells

where the sum is over all of the neighboring cells and f..; is i for quadrilateral cells

and % for triangular cells.

2.9 Conservation

In earlier sections it has been stated that the Lax-Wendroff algorithm, as implemented
here, is conservative in the solution of the nonlinear Euler equations. It is appropriate
now to discuss what this statement means for both steady and unsteady flows, and to

outline the proof of conservation for the given algorithm.

Steady-state solutions of the two-dimensional Euler equations satisfy the following

integral equation, evaluated by a counter-clockwise integration around the domain.
?f(F dy — G de) = 0 (2.66)

A steady, discrete solution is said to be conservative if, for any domain composed of
a group of cells, there is a corresponding discrete equation which approximates this
integral equation, and becomes equal to it in the limit of infinite grid resolution. The
importance of conservation is due to the fact that this property guarantees the correct
Rankine-Hugoniot jump relations across a shock and the correct treatment of other
discontinuities such as slip lines (assuming the solution is sufficiently smooth away from
the discontinuity). Thus conservation for nonlinear discontinuous solutions is similar to
consistency for nonlinear smooth solutions as a requirement in order to obtain a discrete

solution which will approach the analytic solution as the mesh is refined.

Similarly, unsteady analytic solutions satisfy the following equation.

%//dedﬁ?f(my—adx):o (2.67)

Discrete solutions are conservative if they satisfy an equivalent discrete solution.

To prove that the Lax-Wendroff scheme is conservative we must show that

Z (% 5U) = Z(boundary fluxes). (2.68)

7 K3
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The change 0U; is equal to a sum of the contributions from all of the cells of which node

¢ is a corner. The order of summation can then be interchanged to obtain

A
Z (E 5U) = Z (sum of contributions to corner nodes) (2.69)

¢ cells

7
The second order inviscid flux terms and both the shock and fourth-difference smoothing
terms were written in such a way that the sum of their contributions to the corner nodes
of a cell is zero. This leaves only the first order inviscid flux terms, and hence
A A
— U = — AU
(&), = 2 (5e)
% cells

= Z (inviscid fluxes out of cell) (2.70)

cells

The final step is the observation that the flux out of a particular cell across a particular
face is equal and opposite to the flux out of the neighboring cell across the same face.

Thus all interior fluxes cancel leaving the desired result, Eq. (2.68).

For quasi-three-dimensional flows the theory is modified slightly by the presence of
the pressure source term in the momentum equations, and so the analytic and discrete
conservation relations have an additional area integral/summation of the source term.

The basic concept remains the same, however, and so does the proof.
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Chapter 3

Time-Inclined Computational

Planes

3.1 Lagged periodic condition

When the stator/rotor pitch ratio is unity the periodic boundary condition is simply,
Ulz,y,t) = Uz, y+P,1), (3.1)

meaning that what is happening on the lower periodic line is exactly the same as is
happening on the upper periodic line at exactly the same time. When the stator pitch is
different from the rotor pitch this has to be changed. Considering the case of wake/rotor
interaction, in which the stator pitch is larger than the rotor pitch, then an incoming
wake (moving downwards in the rotor frame) crosses the inlet boundary/upper periodic
boundary junction a small time AT after the neighboring wake crosses the inlet/lower

periodic junction.

Thus the inlet boundary conditions satisfy the lagged periodic condition,
U(z,y,t) =Ulz,y+ P, t+AT), (3.2)

where the time lag, AT, is equal to the difference in pitches divided by the rotor wheel
speed.
AT =(Ps - P)/V (3.3)

The next step is to apply this lagged periodic condition to the upper and lower

periodic lines. Strictly speaking this is an assumption about the nature of the flow
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Figure 3.1: Origin of lagged periodic boundary condition

produced by the wake rotor interaction. There are many examples in mathematics
(including some fairly simple examples in dynamics) in which periodic terms (either
as forcing terms or time-varying coefficients) produce solutions with a subharmonic

component, a component whose period is a multiple of the original period.

As an example, consider vortex shedding from a turbine row. Imposition of spa-
tially periodic boundary conditions forces the solution to exhibit synchronous shedding,
in which each blade sheds vortices of the same sign at the same time. However it may
be true that in actuality the blades shed at the same time, but shed vortices of alter-
nating sign, with one blade shedding a vortex of positive sign at the same time that
its two neighbors shed vortices of negative sign. This would be an example of a spatial
subharmonic whose period is 2F,. Mathematically, the spatially periodic solution pro-
duced by the program would be a valid solution to the unsteady Euler equations, but
it would have a linear, subharmonic instability which would grow into the fully nonlin-
ear, subharmonic shedding. In this case to compute the true solution would require a

computational domain spanning two blade passages.
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Figure 3.2: Erdos’ periodic boundary treatment
3.2 Erdos method

Erdos [9] was the first researcher to develop a solution to the problem of the lagged
periodic boundary condition. As illustrated in Figure 3.2, his procedure involves setting
values at dummy points along each periodic line from stored values at points along the
other periodic line at earlier times. The value at the dummy point on the upper periodic

line is obtained from the equation
Ulz,y,t)=U(z,y — P.,t — AT). (3.4)

To obtain the value on the lower periodic line, it must be assumed that the flow is
periodic in time, with period equal to the blade passing period T'= P;/V. With this

assumption, it follows that

Uz,y,t) =Ulz,y+ P, t + AT) =U(a,y+ P, t — (T'-AT)), (3.5)

The implementation of this requires storing the full solution along the periodic lines
for a whole period. This can involve a considerable amount of storage. However, the
primary drawback of this method is the assumption of periodicity in time. This is
probably valid only when calculating inviscid flows. In viscous flows there are physical
instabilities and oscillations, such as vortex shedding at the trailing edge, in which the
frequency is not a multiple of the blade-passing frequency. In these situations Erdos’
method would fail to converge to a consistent periodic solution. The new computational

method using inclined computational planes avoids this assumption.
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Figure 3.3: Concept of inclined computational plane
3.3 New computational method

Computationally it is very easy to enforce the spatial periodicity for steady flows, as
described in an earlier section. For unsteady flows with the lagged periodicity condition
it was desired to have as simple an implementation. This led to the following idea:
suppose that instead of a computational “time level” being at a fixed time, it is sloped
in time such that if a node at y=0 is at time ¢, then the corresponding periodic node
at y=1F, is at time t+ AT, and so once again one has simple spatial periodicity in this

inclined computational plane. Fig. 3.3 illustrates this concept.

Mathematically this corresponds to the following coordinate transformation.

T = 2

y =y (3.6)
g t_(AT)
= Pr y

In this new coordinate system each computational plane corresponds to ' =constant.

When one transforms the unsteady Euler equations the resultant equations are,

%(U—/\G)—I-% 2—520 (3.7)
with A = AT/ P,.. Thus, the conservation state variables have changed from U to U-AG.
An alternative way of arriving at the same conclusion is to consider the conservation
cell shown in Fig. 3.4 in the original (y,t) plane. The flux through the “time-like” face

is UAy — GAt = (U—-XG)Ay.
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Figure 3.4: Inclined conservation cell

The change in the conservation variables requires just minor changes to the Lax-

Wendroff algorithm, because fortunately one can calculate U from @ = U—AG in closed

form for a perfect gas.

G =

g =

g3 =

qq4 =

p— Apv (3.8)
pu — Apuv
Qu (3.9)

pv — A(pv* +p)

Qv — Ap (3.10)
1 L 2 2 ( 2l L 2 2)
4= o —L—pt =
7_1p+2,0(u +07) = Av 7_1p+2,0(u +v7)
Lo 2) 1 v
— —p—2A A1
@ (2(u +07) |+ P (3.11)

Eliminating u and v using the last three equations gives a quadratic equation for p.

where,

This has solutions,

Ap® —2Bp+C =0 (3.12)
A = (y+1)A?
B = ¢ —Ags (3‘13)
C = (v-D)Q2ua -4 —¢3)
C
IR G 3.14
P B VB—AC (3-14)
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The positive root is chosen because this gives the correct value in the limit A=0.

u, v and p are then obtained from

q2
U = — 3.15
0 (3.15)
A
v = BT (3.16)
q1
q1
= . 1
P T (3.17)

Eqs. (3.14)-(3.17) can also be linearized to obtain the following equations.

(y=1) (%(u2+v2)q1 Aqi+ 1 Ags — 2Aq2 — quqg) + Ap(Ags — yvAq)

A =
P p(1=Av)? = A2yp
Au = Agy — uAq
q1
Ags — vA AA
Avp = 2BZvAUTAAP (3.18)
q1
Aqr 4+ Ap Av
A ot Y
P 1— v

The fact that the independent variable is now ) instead of U requires two changes
to the basic Lax-Wendroff algorithm. The flow variables that are stored are still the
standard conservation variables U. These are used as before to calculate the fluxes F
and G, and the cell residual on both quadrilateral and triangular cells. However, these
cell residuals, which before defined the change AU, now give the change AQ. The
linearized equations Eqgs. (3.18)-(3.19) are then used to evaluate AF and AG in the
cell. The distribution equations now give changes in () at the nodes. For example, the
equations for quadrilateral cells are

5014 = (ﬁ) (l (i/) AQu+ LA, Ayl — LAG, Ax!
1A = Al ) 1 At N A 1 A y A $

AL\ [, (A X
Q24 = 2 ), U\ & AAQA—I-ZAFA Ayl — 1AG 4 Ay

(3.19)
A

At Al
0Qz4 = <I)3 (i (E) AQa — %AFA Ayl, 1AGA Az,
At Al
0Qua = (z) (i (E) AQa — FAFs Ays + §AG Y Awg’l)
4 A

The smoothing terms are handled exactly as before. The final step is to take the old
variables U", calculate Q", add the change 6Q" to obtain Q™*! and then use Eqs. (3.14)-
(3.17) to convert back to UL, The additional work involved in these steps is approx-
imately 15% of the cost of the basic algorithm.
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Figure 3.5: Physical characteristics and permissible values of A
3.4 Multiple blade passages

The need for multiple blade passages in some calculations arises from a fundamental
limit on the magnitude of A. Re-examining Eqs. (3.8)-(3.14), and defining r, = Av and

r.=Ac, it can be shown that,
B = p ((1—rv)2 + —rf) (3.20)

C = pp (2(1—rv)2 - 7_173) 7 (3.21)

and hence that Eq. (3.14) reduces to

(2(1—rv)2 - Ww;lrf) P
(=) + I =r e 27

p= (3.22)

When A = 0 the positive root reduces to p, while the negative root is infinite, and
so, as stated earlier, the positive root is chosen for all values of A. This remains correct
at non-zero values of A provided (1—r,)? > r2. Assuming that the flow is subsonic in

the y-direction this condition can be re-expressed as,

1 1
<A<
c—v c+v

(3.23)

As shown in Fig. 3.5 this condition means that the slope of the computational plane
may be increased or decreased up to the point at which it is coincident with one of
the three physical characteristics of the Euler equations. This is clearly a fundamental
physical limitation because beyond this point a signal which propagates forward in time

in the physical coordinates would be propagating backward in time in the computational
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coordinates, which is clearly inconsistent with the numerical procedure which marches

forward in time.

Substituting the definition of A gives the corresponding limits on the stator/rotor

pitch ratio.

(3.24)

M,=v/cis the Mach number in the y-direction, and M, =V /c is the Mach number
associated with the rotor speed V. The range of possible pitch ratios clearly depends
most strongly on M,. In most practical turbomachinery applications M, lies in the
range 0.3-0.6, allowing pitch ratios in the range 0.6-1.5. Unfortunately many detailed
experiments are performed for good experimental reasons on large scale, low speed
rigs for which M, is substantially lower (0.05-0.2) producing a much smaller range of
possible pitch ratios. In either case there are plenty of examples of situations in which
the geometry to be analyzed lies outside the range of pitch ratios which can be analyzed

by the current method as described so far.

The solution to this problem is to perform calculations on multiple blade passages.
If, for example, the stator/rotor pitch ratio is exactly 2.0, then this case could be
calculated on a grid covering two rotor passages, without requiring any time inclination
of the computational plane, i.e. with A=0. At the other extreme, if the ratio is exactly
0.5 then this case could be calculated on a single rotor passage, but with two wakes

specified at the inlet plane.

In the most general case the calculation is performed on m rotor passages, with n
wakes (or potential disturbances) specified at the inlet (or outlet) plane. The ratio m/n
is chosen to be approximately equal to the pitch ratio. If it is exactly equal then no
time inclination is required. If it is not exactly equal then A “makes up the difference”

in the same way as before.

\— AT 1 nP,—mP,
~mP. mP Vv
1 /P, m
= —(=/— -1 2
s (3 - (3.25)

In operation, the user of UNSFLO specifies m, which controls the size of the compu-
tational grid and the corresponding computational cost, and the program calcuates the
value of n which minimizes the magnitude of A. Clearly the larger the value of m, the
closer the fraction m/n will be to the pitch ratio P;/P,, and so the smaller A will be.
Thus for any pitch ratio and any values of M, and M, it is possible to find a value for

m such that A will not violate the domain of dependence restrictions discussed earlier.
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Chapter 4
Stator /Rotor Interface Region

This section describes the computational algorithm used for calculations in which there
are two blade rows moving relative to each other. The algorithm for the case in which
the blade rows have equal pitches is presented first, because it is relatively easy to
visualize and it contains all of the essential new algorithm components. Then, the
algorithm for the general case of unequal pitches is presented. This uses the time-
inclined computational planes described in the last section, and viewed from a purely
mathematical viewpoint it is a straightforward extension of the equal pitch method.
However, it becomes extremely difficult to visualize the shearing, inclined computational

cells which are involved. !

4.1 Algorithm for equal pitches

The basic geometric approach is shown in Fig. 4.1. The computational grid is
composed of two parts, one part fixed to the stator blade row (which in this discussion
will be assumed to the upstream blade row) and the other part fixed to, and moving
with, the rotor blade row. The two parts are separated by a cell width at the interface,
with equal grid node spacing along the interface on either side. In this section we will
assume that there are the same number of grid nodes on both sides of the interface, so
that the gap between the two halves can be spanned by a set of quadrilateral cells defined
by connecting each stator grid node to the nearest rotor grid node. In a later section we

will present an alternative treatment with triangular cells which allows unequal number

'In fact, in my experience trying to visualize and understand it can quickly cause a severe headache

which can only be relieved by taking a long walk!
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Figure 4.2: Periodic extension of rotor grid

of nodes on either side of the interface.

As time progresses, the rotor moves and the cells change from State 1 (with solid
lines) to State 2 (with dotted lines) to State 3 (with dashed lines). At that time the
connecting lines are redefined to maintain nearest neighbor connections, and the cells

revert to State 1.

As shown in Fig. 4.2, spatial periodicity is used to extend the rotor grid as needed
as the rotor grid moves. The solid lines denote the actual position of the rotor grid and
the dotted lines show the position of the rotor grid shifted by one pitch. The open and
closed circles denote matching pairs of rotor nodes, so that when the computation is

performed on cell A, the distributions really go to nodes 1, 2, 3 and 4.

On each half of the grid the flow solution is calculated using local grid-relative flow
variables. This allows one to use the Lax-Wendroff algorithm described in Chapter 2

without modification. At the interface cells the basic algorithm has to be modified for
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two reasons.

Firstly, all flow variables have to be converted into some chosen frame of reference
and when the flow change are calculated they must be converted back into the local
frame of reference. In the analysis presented, and in the implementation in UNSFLO,
the chosen frame of reference is the absolute stator frame. It can be verified (and has
been both on paper and by programming) that using another frame of reference will

produce the same final results.

The rotor-relative and stator-relative flow variables are related by

Ps = Pr
Us = Uy
v, = v+ V (4.1)
Ps = DPry

where V is the rotor wheel speed, and the subscript s denotes stator-relative values and

the subscript r denotes rotor-relative values. Hence

U

Usz

Uiz + VU

U+ VUrs + V23U

Us1
Us2
Uz = VUgq
Ust — VU + V23U
and
oUs
su, = | U= : (4.4)
U3 — VoUg
SUss — VoUss + LV25U,,

Eq. (4.2) is needed at the beginning of the cell calculation to convert the rotor-
relative values on the rotor side of the interface into stator-relative values. Eq. (4.4) is
needed at the end of the cell calculation because the flow variable changes distributed
to the nodes on the rotor side of the interface are changes in stator-relative quantities

that have to be converted into changes in rotor-relative quantities.
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Figure 4.3: Shearing interface cell

The second modification to the basic Lax-Wendroff algorithm is due to the move-
ment of the computational cell. The change is best understood by considering the
following integral form of the two-dimensional Euler equations on a control volume

whose boundary has a unit normal vector 7 and is moving with velocity V= (Va, Vy)T.

d oUu o
%/ Udedy = //ﬁdxdy—l—?{U(V.n)ds

- ?{(F dy — G dz) + ?{(UVx dy — UV, dz) (4.5)

Considering the computational cell shown in Fig. 4.3, the extra flux term across face

1-2 is approximated by treating U as being linear.
o 1
/ UVyd$ = A$21/0 (U1—|—€(U2—U1))€Vd€
r1

Including the corresponding term on face 3-4, the modified equation for the cell

change AUy is

AUy = —m( (F14+F3)Ayz — (G1+G2) Az + ( U, + %Uz)VAQCm
+ (Fo+F5)Aysg — (Go+Gs)Axsy
+ (F3+Fy)Aygs — (Gs+Gy)Azys + ( Us + %U4)VA9643
+ (Fy+F1)Ayrg — (Ga+G1) Az ). (4.7)

The second order terms in the distribution formulae also change because of the

motion of the control volume.

At A
5U1A = (A) (1 (At) AUA——AFA (y4—y2)—|— AGA ($4—$2) AUA%($4—$2))
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At A
0Uzs = <—) (i <—) AUy — iAFA (yl—y3) + iAGA (901—963) - iAUA%(%—ﬂC:&))
FUACAVYIN
At A
dUss = <—) (i <—) AUs + 3AF4 (ya—y2) — $AG 4 (z4—22) + %AUA%($4_$2))
FUACAVYIN
_ (A (1 (A 1 a1 _ AT Y (g
0Usp = 1 i\ Ay AAUA + 3AFL (y1—ys3) — AG A (21 —23) + gAUs 3 (21 —23) | .
4

(4.8)

As explained earlier, the distributions to nodes 2 and 3 must be converted into

rotor-relative changes using Eq. (4.4).

4.2 Algorithm for unequal pitches

When the pitches of the stator and rotor are unequal, the conceptual approach remains
the same, but the details become much more complicated. Time-inclined computational
planes are used to calculate the flow in both the stator and rotor halves of the com-
putational grid, but the time-step and inclination parameter A are different in the two

halves. In the stator frame of reference the blade-passing period is
T, = P./V, (4.9)

whereas in the rotor frame it is

T, =PV, (4.10)

The calculation has the same number of time-steps per period on each half, so the

time-steps on the two halves are related by

iij - % (4.11)
Similarly, the lagged period boundary condition in the stator frame is
Uz,y,t) =Ulz,y+ Ps, t + AT), (4.12)
and in the rotor frame it is
Uz,y,t)=U(z,y+ P, t + AT), (4.13)
with the time lag AT given by
AT:PS‘;PT:TT—TS. (4.14)



Consequently, the time-inclination parameters in the two frames of reference are

AT P, —F.
Ay = oui 7o (4.15)
and AT P, — P

The differing values of At and A in the two frames of reference are extremely con-
fusing; it is hard to understand how this can be consistent at the stator/rotor interface.
Fig. 4.4 attempts to explain this by showing both the stator and rotor inclined compu-

tational grids in the stator frame of reference.

The figure shows a case in which the the stator pitch P; is greater than the rotor
pitch P,, and, for simplicity, there are only six timesteps per period, and only five cells
spanning one pitch. The stator and rotor nodes are aligned so that they coincide at
the beginning of a computational period. There are several important things to note
in the diagram. At each time-level, the stator and rotor grids lie on the same inclined
computational plane, but the rotor grid is displaced relative to the stator grid. The
circles denote three points which are defined to be equal through the lagged periodic
boundary condition, and so computationally correspond to the same two points (one on
the stator side of the interface, the other on the rotor side). The diagram shows that
the stator node spacing Ays; is greater than the rotor node spacing Ay, at fixed time ¢,
but that on the inclined computational plane the rotor node spacing becomes equal to
Ay,. Thus, viewed on the inclined stator computational plane, the shearing cell in the
interface region is a parallelogram, exactly the same as in the case of equal stator and
rotor pitches. The diagram also shows that the stator timestep At is not equal to the
rotor timestep At,, even though both grids are consistently at the same computational
time level. This is because the spatial shift of the moving rotor grid produces a temporal
shift on the inclined computational grid. One final observation is that the velocity of
the rotor changes when viewed in the stator inclined computational plane. It travels
one pitch P; in an apparent time of P, /V| the time between the first and last time-level
in a stator period, and so its apparent speed is

P
V,=V=. 4.1
Pr ( 7)

Similarly, in the inclined rotor frame of reference the apparent speed is

P,
S 7l 4.1
V=g (4.18)
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Figure 4.4: Inclined computational planes at stator/rotor interface

39



The algorithm for the interface region follows the same approach as for equal pitches.
The first step is to form a set of shearing parallelograms in the stator inclined compu-
tational plane, by connecting stator nodes to rotor nodes, using spatial periodicity as
needed. The second step is to convert the rotor-relative flow variables at the rotor nodes

to stator-relative flow variables using Eq. (4.2).

The modified equation for AQ 4 at the center of the shearing cell is similar to
Eq. (4.7). However the apparent rotor speed V, and the modified conservation variable
() must be used instead of V and U respectively. Also introducing the quasi-three-

dimensional terms gives the following equation.

V1P1 + Vzpz + V3P3 + V4P4
AQ4= — At | Vi(pu)1 + Va(pu)z + Va(pu)s + Va(pu)a — (p3—p1) Ayzs — (Pa—p2) Ays,
2A4% [ Vi(pv)1 4 Va(pv)2 + Va(pv)s + Vi(pv)s + (p3—p1) Azl + (pa—p2) Azl

Vi(pH )1+ Va(pH )2+ Va(pH )3+ Va(pH) 4

Al
247,

((%Ql +2Q2) Vil + (3Q3 + %Q4)V5Aa@23) (4.19)

The geometric and V variables are as defined in Chapter 2.

AU, AF and AG are calculated from A in the usual manner, and then the distri-

bution formulae are

At Al
Qi = (57), (1 (57) A0+ SAFs Mgl — §AG At + 1AQu Y A
1 A
_ Al 1 A 1 1" 1 " 1 3Vs "
0Q24 = )\l A7 AQ4 + 7AF4 Aysy — 3AG 4 Axgy + 7AQ A= Ay,
2 A
) _ Al 1 A A 1AF A " 1 " 1 3Vs "
Q3a = Al T\ Ar Qa— 1 AAYgyy + ZAGA Azgy — ZAQATAQCM
Al Js At /4
5Q - ﬁ 1 il A —LAp, Ay LAGs Az — LA YA
44 — 7 . 1 t N QA 1 A LS + 1 A ATz 1 QA 1 T3y | -

(4.20)

The smoothing terms are calculated and distributed as normal. The final step is the
conversion of the distributed changes to nodes 2 and 3 from stator-relative changes to
rotor-relative changes. There are two components to this. One is due to the different

At and Ay in the two frames of reference (as discussed earlier).

().~ ),
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The other is similar to the conversion from §U; to 6U,, except that the conversion

is now from 6Q); to §(Q),., making the algebra considerably more complicated although

the final result is almost identical.

p— Apv

pu — Apuv

pv = A(pv*+p)
pE — ApE+p)v

Qr

rotor

— LSl v
P=vp *
Ps_Pr
|7 VP, Py
_is 2
pU PVPTP (pvi+p)
E-—=—L(pE
P VPr (p —I_p)v rotor
}%» }; - }1
5 X J‘D/P“’P( v
p | prv —yp V)
- jij }%“ ‘[2 ‘[?
FIO(U—V)_ VP (p(v=V)?+p)
P _b-B
Lp(E—oV4+iVE) - 2 T (p(E—oV+LV)4p)(v-V
Psp( 2 ) VPS (p( 2 ) )( )) stator
Ps_Pr
P v Y
Ps_Pr
A VPSP’OW
Bl po—v) - SX/PST(}fsU(U;VHp)
pE=0V+5V?) = = (p(E— oV +§V2) fp)v - pV)
VPS stator
p— Apv
P | pu—Apuw
Bo| po=V) = Apo(v—V)+p)
PE=0V+3V2) = Mp(E—oV+3V3)+pjo—pV) |
@1
_ B Q2 (4.22)
N }%“ 623 - ‘/621 |

Qs —VQs+ V20,
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Figure 4.5: Triangular cells at unsteady stator/rotor interface

Thus, the equation to convert the distributed changes into rotor-relative changes is

O

AN o B (AN | 9
(B)r 0=, (At)s 505 — VO, ' (4.23)
5Q4 — VQs + V200,

4.3 Unequal numbers of interface nodes

In the first section in this chapter, an assumption was made that the number of grid
nodes on either side of the stator/rotor interface is equal. This is generally desirable,
but sometimes it is useful to be able to perform calculations with differing numbers
of nodes on the two sides. In this case, it is no longer possible to span the interface
gap with quadrilaterals. Instead, triangular cells are created in the time-inclined stator
frame by joining each cell face on either side to the node on the opposing side which is
closest to the face’s midpoint. Fig. 4.5 shows a typical interface region created by this

technique.

The discrete equations for the shearing triangular cells in the interface region take
differing forms depending on whether the majority of the nodes are on the stator or
rotor side. If nodes 1 and 3 are on the stator side of the interface, then the cell change

AQ) 4 is given by

V1P1 + Vng + V3p3
At Vi (pu)1 + Va (pu)2 + V3(pU)3 + P Ay + pa Ayl + psAyy,
2A°% | Vi(po)1 + Va(pv)a + Va(pv)s — prials — paAaty — psAat
VilpH )14 Va(pH) o+ Va(pH)s

AQs =

42



At
—E ((%Ql - %Q:&)Vsﬁﬂﬁlm)

(4.24)

The geometric and V variables are again as defined in Chapter 2. AU,AF and AG are

calculated from A in the usual manner, and then the distribution formulae are

6014 = (ﬁ) ( (Al) AQa+ LAF4 Aygy

FACAVY;
At
6Q24 = (I)z( iAFA Aysy
_ (AN /(A 1
0Q34 = (I):a (5 (E)AAQA + TAF, Ay,

— IAG 4 Azl + 1AQA—

—IAG, Al

—IAG, A, + 1AQA—A90 )
(4.25)

Note the fact that the first order distribution term going to node 2 is zero, and so

nodes 1 and 3 equally share the first order changes.

This was done because the only

way for the scheme to remain conservative is to consider half of the triangle’s area to

‘belong’ to node 1 and the other half to node 3. This way the nodal areas of 1 and 3

remain constant because each ‘owns’ half of the two triangles on either side. Given this

apportioning of the cell area, the first order change has to be distributed consistently.

For a triangular cell with nodes 2 and 3 on the rotor side, the corresponding equations

are,
V1P1 + Vzpz + V3P3
AQs =
Vi(pH)1+Va(pH )2+ Vs(pH)s
At
_QA/A ((%Q? - %QS)VsAwlm) s
and
At
0Q1a = (E) ( LAF, Ayl
1
At A’
6Q24 = (I)z (% (At) AQa+ TAF4 Ay

0Qz4 = (I)B (% (E)AAQA + TAF4 Ayl

43

At [ Vi(pu) 1 + Valpu)a + Va(pu)s + prAyls + paAyll, + psAyl,
QAA Vl (pU)l + Vz(PU)z + V3(,0U)3 — p1A$23 p2A$g1 _ pSAxlllz

(4.26)

— LAG 4 Aal
— LAG 4 Azl + IAQ 4= ARl

—IAG s Al + 2AQAEE ALY )
(4.27)



The smoothing terms are calculated and distributed as usual. Finally, the conversion
of the distributions from stator-relative changes to rotor-relative changes is exactly the

same as for the quadrilateral algorithm.

4.4 Multiple blades

As with wake/rotor calculations, there are situations in which stator/rotor calculations
with just one stator and one rotor leads to time-inclination parameters which are too
large. In this case it may be necessary to perform the calculation with m rotors and
n stators. All of the preceding discussion in this chapter remains valid by considering
an equivalent stator pitch which is equal to nF; and an equivalent rotor pitch which is

equal to mPF,. Thus, the time-tilting parameters in the stator and rotor frames are

-1
= () (2
V \mbP, mP.
1 /nP
A = — > 1), 4.2
v(mPr ) (4.28)

and the periods in the two frames of reference are

mP,
T, =
V]
nP,
T, = = (4.29)
V]
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Chapter 5

Steady Boundary Conditions

5.1 Overall approach

This section describes the numerical inflow and outflow boundary conditions which
are used for calculations of steady flow. They are an implementation of a theoretical
development in non-reflecting boundary conditions which is presented in Refs. [13, 14].
The objective of non-reflecting boundary conditions for steady flows is to be able to
bring the far-field boundary location relatively close to the blades without affecting
the flow field in the neighborhood of the blades. The smaller computational domain
leads to much more efficient calculations. It is also very important when doing steady

stator/rotor calculations since the spacing between the blade rows can be quite small.

The approach is based upon a characteristic analysis of the linearized Euler equa-
tions. At each inflow or outflow boundary there is a certain number of incoming modes
and a certain number of outgoing ones. The changes in the outgoing characteristic
values are taken from the changes distributed by the Lax-Wendroff algorithm. The
average changes in the incoming characteristics are determined to satisfy a number of
user-specified average quantities. At the inflow these are flow angle, stagnation den-
ity and stagnation enthalpy. At the outflow it is the average static pressure. The
remaining changes, the spatial harmonics of the incoming characteristics are specified
by the non-reflecting boundary condition theory based upon the the amplitudes of the

corresponding spatial harmonics of the outgoing characteristics.
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5.2 Average flow definitions

The computational grid is constructed so that the grid nodes are equally spaced along

the inflow and outflow boundaries. The average values of any flow quantity ¢ can be

defined by .
S (51)
j

where the sum is over the N nodes at the boundary, including the periodic grid node

only once.

If the Euler equations were linear then this definition would be all that was required.
However, because of non-linearities, the average value of a variable will not in general

be equal to its value based upon averages of other variables. For example,
p# (=15 (E - Ha+vY) (5.2)

Hence, this raises the question of what is the correct way in which to perform the
averaging procedure. The only rigorous definition is based upon the ‘mixed-out’ flow-
field. This approach starts from the two-dimensional Euler equations, integrated in the
y-direction over one pitch.

d Ff P oF
— Fdy = —d
dx/o Y o Oz Y

=0 (5.3)

Thus, if one assumes that sufficiently far upstream or downstream the flow is uniform,
then the flux F* based upon this uniform value U, must be equal to the average flux F

at the boundary under consideration. This gives the following set of equations for U,.

Pty =
PtV = Py (5.4)
pptpHy = Fy
Together with the equation
_ P P a2 2
T Pg
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these can be solved to obtain

P = 7%<F2+\/F§+(72—1)(F§+F§—2F1F4))

W oo P

FoT I

o - % (5.6)
_ h

=

Based on these values, ‘mixed-out’ values of all other flow variables can be defined,
and will be denoted by the subscript o An important point to note is that the physical
mixing process implied in this procedure will generate viscous losses, and will result
in a flow with a higher entropy level. Hence, when applied to flow at the outflow
boundary this averaging procedure will tend to produce higher ‘measured’ losses than

other averaging methods, such as averaging the outgoing entropy.

The same flux-averaging method can also be used to determine losses in an unsteady
flow. In this case the flux components must be averaged in time as well as in space,
over a time interval which for periodic flows is the period, and for non-periodic flows is

large compared to any other time-scales in the flow.

5.3 Characteristic variables

When calculating the change in the boundary values from time level n to time level n41,
the characteristic variables are defined in terms of perturbations to the average inflow
or outflow flow field at time level n. As shown in Reference [13], the one-dimensional
characteristic variables are related to the perturbations in the primitive variables by the

following two equations.

1 -2 0 0 1 p—p
| _ 0 0 pc 0 u—1u (5.7)
c3 0 pc 0 1 v—
Cq 0 —pc 0 1 p—0p
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p=p = 0 = w\[a
_ 1 1
uUu—u _ 0 0 2_pc _Z_pc C9 (58)
V=0 0 = 0 0 cs
p_i) 0 0 % % Cyq

The first characteristic variable is the linearized perturbation in entropy, the second
variable is the tangential velocity at the boundary and is associated with the vorticity,
and the remaining two variables are downstream and upstream running pressure waves,
assuming that the axial Mach number is subsonic. At the inflow boundary the first three
characteristics are incoming and so must be specified. The fourth is outgoing and so
must be extrapolated or obtained in some other manner from the interior flow field. At
the outflow boundary the roles are reversed and it is the fourth characteristic variable

which must be set.

The boundary conditions are implemented at the point in the overall algorithm
at which the Lax-Wendroff algorithm has distributed changes §U to all of the nodes,
including nodes on the boundaries, but the nodal values have not yet been updated.
The Lax-Wendroff changes at the boundary nodes can be used to define changes in the

characteristic variables at each boundary node.

deq -2 0 0 1 op

deg B 0 0 pc O du (5.9)
des N 0 pc 0 1 dv '
dey W 0 —pc 0 1 op W

These Lax-Wendroff changes in the characteristic variables are used for the out-
going characteristic variables, since the Law-Wendroff algorithm should correctly cal-
culate and distribute the changes due to the outgoing characteristic waves. The Lax-
Wendroff changes in the incoming characteristic variables are discarded, since these are
the changes which are to be specified by the non-reflecting theory and the user-specified
average flow quantities. Once these have all been specified in the manner shown in the
next sections, the changes in the characteristic variables at the boundary nodes can be

converted back into changes in the primitive variables.

dp —c% 0 % % dcy
1 1
ouf _f 00 g e || O (5.10)
Sv 0 pL 0 0 Ses
op 0 0 % % dcy
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These can then be converted into changes in the conservation variables and the entire
flow field can be updated.

The remaining sections in this chapter describe how the changes in the incoming

characteristic variables are determined in the various different inflow and outflow cases.

5.4 Subsonic inflow

The subsonic inflow boundary conditions are the most complicated. The reason for
this is that a straightforward implementation of the non-reflecting boundary condition
theory would produce a flow field which to first order would have uniform entropy and
stagnation enthalpy. However, due to second order effects neglected in the linear theory,
there would be small variations in the entropy and stagnation enthalpy, which might
be comparable in magnitude to the small losses produced in a viscous calculation. To
avoid this problem, the boundary conditions which are used are a combination of the
non-reflecting theory together with the requirement that the entropy and stagnation

enthalpy are perfectly uniform across the inflow.

The changes in the incoming characteristic variables at each point on the inflow
boundary can be split into two components, one part which is an average change along
the boundary, and a second which is due to the harmonic variations in the characteristic

variables along the boundary.

The average characteristic changes are calculated from the requirement that the
average entropy, flow angle and stagnation enthalpy have certain values. This is achieved

by driving to zero the following three residuals.

Rl = pS
Ry = pe (UF - tan(oeml)uF) (5.11)
mo o)
S is an entropy-related function defined by
S = log(vp) — vlog p, (5.12)

and because of the non-dimensionalization chosen earlier, the correct inflow values for
S and the stagnation enthalpy H are 0 and w%l respectively. oy, is the user-specified
average inflow angle, and note that in defining Ry the flux-averaged values of the velocity

have been used.
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The average changes in the incoming characteristic variables, which are required to

drive the residuals to zero, are obtained by one step of a Newton-Raphson procedure.

n

B o(Ry. By Ra) | 260

Ry oLt B, Bs) 1 ey | =0 (5.13)
8(01762763) _

R3 503

The Jacobian matrix is obtained as the product of two other matrices.

O(Ry, Ry, Rs) _ O(Ry, Ry, R3)  9(p,u,0,p)
8(01702703) 8(/07“77]7]’) 8(01702703)
1 1
—c? 0 0 1 T2 0 22
0 0
- 0 —pctan(aiy) pe 0 L
12 pu v L 0 2 0
-1 —1 1
vy vy 0 0 3
1 0 0
= 0 1 —1tan(ai) (5.14)
My (14M)
In forming the matrix % several terms which are proportional to the residuals

were neglected since these are zero in the converged limit. Inverting the Jacobian matrix

gives the following equation for the average changes.

ocy . 1+ M+ M, tan(ay,) 0 0 Ry

d¢y = T Mo tan(oe' 1) —ﬁ tan(oeml) 1+ M, tan(ozml) R,

5es ! ~% oM, 2 Rs
(5.15)

The next step is to calculate the local changes in the characteristic variables at each
point on the inflow boundary due to the variation in the characteristic variables along
the boundary. Firstly, the outgoing fourth characteristic variable is evaluated at each
point, and its discrete Fourier transform is calculated for a range of values of k from
—N/24+1to+N/2—1. N
Cap = %Z} C4; €XP (%W) (5.16)

j=

Because of the definition of the characteristic variables as perturbations from the current

uniform state, the Fourier component corresponding to k=0 is zero.
According to the steady-state non-reflecting theory presented in Ref. [13], the correct
steady-state amplitude of the Fourier transform of the second characteristic is

R +M, |
Coks = _f+Mi Cak, (5.17)
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where

B =isign(k) vV1-M?2. (5.18)

Transforming back into the physical domain gives

N/2-1 o
C2js = Z Cok s €XP (22]7{,]k) (5.19)
k=—N/2+1

Because terms corresponding to £k form complex conjugate pairs, this expression

can be rewritten as

Nz 275k
c2js = 2 Re { Z Cok s €XP ( N] )} , (5.20)
k=1

reducing the amount of computation required.

The ideal steady-state correction to the local second characteristic variable is the

difference between the correct steady-state value and the current value.

0cajs = €255 — Caj (5.21)

The ideal steady-state corrections to the local first and third characteristic variables
are obtained from the condition that the local entropy and stagnation enthalpy should
match the average values. This is achieved by the same Newton-Raphson procedure used
earlier to obtain the average changes. This time, the residuals are given by perturbations

from the average entropy and stagnation enthalpy values.

Ry = p(S;-5S
Rs; = p(H;—H) (5.22)

The Newton-Raphson equation is

n (SCl]‘
(T I ! Seay | =0 5.23
1 02] - 9 ( ° )

and the solution is

[N

501]‘5 = —le
2
desis = —1r (L5 8e1je + M, Geajs + Rsj) - (5.24)
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Now that the ideal local non-reflecting corrections have been calculated, these are

added to the average global changes, and multiplied by an under-relaxation factor, o.

(SCl]‘ = O'((Sél + (SCl]‘S)
(SCQ]‘ = 0(562 + 502]'5) (525)
503]‘ = 0(553—|— 503]‘5)

Ref. [13] discusses the need for this under-relaxation to guarantee the wellposedness of
the mathematical formulation. The value of ¢ which has been found to work well is
1/N. This corresponds to a relaxation time which is similar in magnitude to the blade

pitch divided by the speed of sound.

Together with the change in the outgoing fourth characteristic given by the Lax-
Wendroff algorithm,

CaiLw
this completes the calculation of the characteristic changes, and the final step is to

convert the changes into the conservation variables before updating the flow field.

5.5 Supersonic inflow

The treatment of the inflow boundary conditions when the flow is supersonic, but still

axially subsonic, is almost the same as for subsonic flow. The only difference is in the
definition of j.
f = —sign(v) VM?2-1 (5.27)

Because 3 is now independent of the Fourier mode k, it is no longer necessary to perform
the discrete Fourier transforms. Instead, the ideal steady-state values for the incoming
second characteristic variables are given by

B+M,
1+ M,

C2js = — Cq;- (5.28)

The remainder of the boundary condition implementation is exactly the same as
for subsonic flow. There is a physical significance in the fact that the discrete Fourier
transforms are not needed for supersonic flow. The linear steady-state non-reflecting
boundary conditions for supersonic flow specify that the incoming linearized supersonic
Reimann invariant is uniform along the inflow boundary. The Riemann variables are
locally defined quantities and so it is natural that this leads to a local boundary condi-

tion.
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An additional option for supersonic inflows, is to specify the value of the incoming
nonlinear supersonic Reimann invariant as an alternative to the specification of the

mean flow angle. In this case the second mean flow residual becomes
Ry = pc*(a+ sgn(a) v(M) — rin), (5.29)

where « is the current flow angle, r;,; is the specified value of the Riemann invariant,

and v(M) is the Prandtl-Meyer function,

V(M):,/% tan_l( %(MQ—l)) — tan! (VAP1). (5.30)

5.6 Subsonic outflow

The subsonic outflow boundary conditions are a straightforward implementation of the
non-reflecting boundary condition theory. The first three characteristics are outgoing,

so only the fourth characteristic variable needs to be set.

The average change in the characteristic is determined to achieve a user-specified
average exit pressure. The derivative of pressure with respect to variations in the fourth
characteristic is

Ip
8—04 =

and so the equation for the average change in the fourth characteristic variables is

7 (5.31)

[N

6y = =2(pp — Pewit)- (5.32)

Pesit 18 the user-specified exit pressure, and Py is the flux-averaged pressure of the current

flow field.

The next step is to calculate the local changes. Firstly, the outgoing second and third

characteristic variables are evaluated, and the discrete Fourier transforms are calculated.

1 N L
Cof = WZCQ‘?QXP(%W)
7=1
R 1 —i2mjk
A NZ;C;),jexp (Tj) (5.33)
]:

From Ref. [13], the correct steady-state amplitude of the Fourier transform of the
incoming fourth characteristic variable is

. 2M,

b = L BM,
ks — 5 a1
ﬁ_My

CoL — m C3k. (534)
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Again using the simplification due to the complex conjugate pairs, the ideal non-

reflecting steady-state values for the incoming fourth characteristic variables are

Nz 275k
cajs = 2 Re Z Cak s €XP ( N] ) . (5.35)
k=1

The ideal local change is then
0cajs = Cajs — Cajy (5.36)

and when added to the average change, and under-relaxed as before to ensure well-

posedness, this gives the final change in the incoming characteristic.

504]‘ = 0(564 + 504]‘5) (537)

The changes in the outgoing characteristics are again taken from the Lax-Wendroff

algorithm.
dey; = 561]‘LW
Scgj = 562]‘LW (5.38)
des; = 563]‘LW

5.7 Supersonic outflow

As with the inflow boundary conditions, the supersonic outflow boundary condition is
identical to the subsonic outflow boundary condition, except in the definition of 3 which
is

f = —sign(v) VM?2-1 (5.39)
Because § is again independent of the Fourier mode k, it is again possible to simplify
the computation by not performing the discrete Fourier transforms. Instead, the ideal
steady-state values for the incoming fourth characteristic variables are given by

2M, - p+M,
ﬁ_My 4 ﬁ_My

Ca55 = C3;. (540)

The remainder of the boundary condition implementation is exactly the same as for

subsonic flow.
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5.8 Steady stator/rotor interaction

One interesting application for a steady-state flow analysis is a coupled calculation of
a stator/rotor configuration. In this problem one simultaneously calculates the steady
flow in both a stator and a rotor stage, with boundary conditions implemented to couple
the two calculations together. Assuming that the stator is upstream of the rotor, then
the stator inflow and rotor outflow boundary conditions are treated as usual. Each
blade row is calculated using local relative flow variables, and the user can specify the

stator inflow angle and the rotor exit pressure.

The interesting boundaries are the stator outflow and the rotor inflow, since these
are the two that must be matched together. To a large extent these are treated by
the same methods presented above. The only difference is in the calculation of the
average changes of the three incoming characteristics at the rotor inflow and the one
incoming characteristic at the stator outflow. To conserve mass, momentum and energy,
the objective is to make the flux of these out of the stator equal to the flux into the

rotor. If flux-averaging is used then an equivalent objective is to match the average flow

quantities.
pF stator = pFrotor
uF stator = uF rotor
UF stator UFrotor +V (541)
pF stator = pF rotor

Note that because of the use of relative flow variables, the rotor wheel speed V' has to

be introduced into the condition of matching circumferential velocities.

If the current computed solution does not satisfy these matching conditions then it

can be interpreted as a jump in characteristic values.

Acl _C2 0 0 1 pF stator pFrotor

ACQ — 0 0 pe 0 uF stator uFrotor (5 42)
ACS 0 pe 0 1 UF stator UFrotor -V

AC4 0 —pe 0 1 pF stator pFrotor

The average characteristic changes at the stator outflow and rotor inflow are now
set to eliminate each of these characteristic jumps, taking note of the direction of prop-

agation of each characteristic. At the stator outflow the characteristic change is

554 = —O'AC4 (543)

55



and at the rotor inflow the changes are
d¢q
d¢q

dcs

ocAcy
ogAcy (5.44)

ocAcs

Again the under-relaxation is used to ensure wellposedness and convergence. Now that

the average characteristic changes have been calculated for both sides of the interface,

the remainder of the boundary condition treatment is exactly the same as for a standard

inflow and outflow boundary.
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Chapter 6

Unsteady Boundary Conditions

6.1 Overall approach

The unsteady inflow and outflow boundary conditions have to fulfill two distinct func-
tions. The first is the ability to specify unsteady, incoming disturbances. These fall
into two categories, wakes and potential disturbances. At the inflow boundary probably
the most important unsteady effect is due to wakes shed by the upstream blade row.
These can produce a significant unsteady lift on the subsequent blade row which can
eventually lead to fatigue and blade failure. Thus it is important to be able to pre-
scribe incoming wakes to calculate their effect. The other type of disturbance is due to
the potential pressure field associated with the blade row upstream or downstream of
the blade row being calculated. Because of the relative motion of the blade rows this
causes an unsteady, isentropic pressure disturbance, which can also produce significant

unsteady forces if the spacing between the blade rows is small.

The first three sections in this chapter present the mathematical models of the
wakes and potential disturbances which can be specified in UNSFLO, and the combined
specified flow field at the inflow and outflow boundaries. These incoming disturbances
are only used in UNSFLO when it is being used to calculate a single blade row. In the
stator/rotor interaction mode it is assumed that there are no unsteady incoming waves,
and so the prescribed inflow and outflow are steady, and uniform except for small non-
uniformities taken from a previous steady calculation. Also, in presenting the details of
the wake and potential disturbances, it is written as if the blade row being calculated
is the rotor, and so the wake has been shed by an upstream stator row. Thus the wake

pitch is equal to the stator pitch Ps;, and the wake frame of reference is moving with
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velocity (0, —V)T relative to the rotor blade row. Of course, UNSFLO also handles the
case in which there is a rotor wake being swept into a stator blade row, by changing the

sign of V and interchanging the roles of the stator and rotor pitches.

The second function of the boundary conditions is to be transparent to outgoing
waves, particularly pressure waves, so that they are not artificially reflected when they
reach the boundary. This is achieved by implementing the non-reflecting boundary
condition theory presented in Ref. [13]. The last two sections of this chapter show how

this is done for both the inflow and the outflow boundaries.

6.2 Prescribed wake models

The wake models, describing the form of incoming wakes at the inflow boundary, assume
that in the wake’s frame of reference the flow is parallel, with uniform static pressure,

uniform total enthalpy, and a prescribed velocity defect.

Pvw = pFw

wy, = (1—=Dd(n)) U

vy = (1=Dd(n)) v, (6.1)
Y P

Pw = £

7L (Hy, - Sz +02))

The subscript ,, denotes the wake flow values and the flow variables with the subscript
7y A€ flux-averaged values. These are obtained from a prior calculation of a steady flow,
but have to be modified since the wake frame is assumed to be moving with velocity

(0, =V)T relative to the blade row being calculated.

Ppw = Pp
Uy, = Up
Up, = vtV (6.2)
Pp, = Pp
tan(a,,) = ZF—w
Fow

D is the fractional velocity defect, d(n) is a shape function describing the form of the
velocity defect, and 7 is defined as

oy —tan(ay) @

B (6.3)
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0.5-
N(n)

-0.51

Figure 6.1: Definition of sawtooth function N (n)

Three different shape functions have been implemented in UNSFLO. The first is a
simple sinusoidal function, which has been used to validate the program and the concept
of time-inclined planes [12]. The second is a Gaussian velocity defect, and the third is

a very similar shape function used by Hodson [18].

di(n) = cos(2mn)

day(n) = exp (—Zg);) (6.4)

ds(n) = (max{ml—(%)%}y

W is the wake width (expressed as a fraction of the wake pitch) and N (n) is a periodic

sawtooth function, shown in Fig. 6.1, which can be expressed as,

1 1
Nn)=n-—n, n—g <n<ntg (6.5)

The assumption that the total enthalpy is uniform is a good approximation for
wakes shed from adiabatic blades. One could also specify a periodic variation in the

total enthalpy to model the effects of hot streaks, injected film cooling or cooled blades.

6.3 Prescribed potential disturbances

The potential disturbances are derived as linear, isentropic, irrotational perturbations
to a uniform flow. The steady, linear potential equation is
0% 0%

— 2 _—
(1 Mx)ayﬂ 2M .M, 92y

9% _
dyr

+(1- M) 0. (6.6)
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M, and M, are the axial and circumferential Mach numbers in the stator frame of
reference, in which the flow is steady. Consider a steady disturbance which is periodic
in the circumferential direction and has some form of exponential behavior in the axial

direction.

o(x,y) = A exp(iky + Az) (6.7)
This is a solution of Eq. (6.6) provided that
(1=MHN? = 2iMyMykX — (1-M})k* = 0. (6.8)

Solution of this quadratic equation for A yields

ik M, M, % ky/T—M?
1— M2 ‘

(6.9)

Clearly the qualitative behavior of this perturbation depends on whether the flow is

subsonic or supersonic, and so these two possibilities will now be considered separately.

6.3.1 Subsonic case

If M < 1 then A has both a real and an imaginary component. If one is interested
in perturbations at the inlet boundary then it is not physical to have a perturbation
growing exponentially downstream, and so we choose the negative root in Eq. (6.9).
The rate of decay depends linearly on k the wavenumber of the Fourier mode in the
y-direction, which must be some multiple of 27/ P; to satisfy the periodicity condition.
As a consequence the most important mode is the fundamental mode k=27 /P, and so

the model which is used assumes that only this mode is present.

27 /1—M? 27
¢($7 y) = A exp (—me) exp (lF(y—tan(Oep) x)) (610)
where,
M, M
tan(oy,) = — 1—Mg (6.11)

Differentiating ¢ gives the perturbation velocities with the understanding that the

physical velocity is the real part of the following expressions.

27
fo = i— 12
v ZPS 10} (6.12)
27 27 v/ 1—M?2
(SU = —’LE tan(oep)¢— EW¢
AV1-M?2
= (— tan(ap) —I_ZTW) (SU (613)
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Since the complex potential amplitude A has no simple physical meaning it is more
convenient to define Av, to be the maximum v perturbation at ., the nominal location
of the trailing edge of the upstream stator blade row. With this definition the final forms
for du and & are,

2rV1—M? .
v = —Av,exp (—Em(x—xte)) sin (27 (e+Ae)) (6.14)
1—M?2 27 /1—M?
Su = — TWAU@ exp (—%W(x—xte)) cos(2m (e+Ae))
— tan(a,) ov (6.15)
where,
y — tan(oy) x
= 1
€ 2 (6.16)

and Ae is a phase constant.

The corresponding density and pressure perturbations are obtained from the condi-

tions that there are no variations in either the entropy or the total enthalpy.

o o
P2y (6.17)
p P
o o
L(—p—p—zp)—l—ucm—l—v&}:o (6.18)
y=1\p p
Combining these two equations gives
op = —pludu+vv)
§p = dp/c, (6.19)

and substituting for du and v gives the following expression for the pressure variation

at T=x..
2

1- M2

cos(2m (e+A€)) + (%—I— %ﬁg) sin(Qﬂ'(e—I-Ae)))

op = puAvp(

A M,
= oY% (\/1—M2 cos(2m(e+A€)) + —ysin(Qﬂ'(e—l—Ae)))
1—M?2 M,
MA t w
= %COS (277(6—|—Ae) — tan_l<%)) (6.20)

xT
Thus the maximum pressure disturbance, Ap;, is related to the maximum velocity dis-

turbance by
_ pcM Avg,

1-M2’

xr

Ap, (6.21)
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and the phase constant Ace is chosen to be

1 _yf tan(ov,) (tan(ay,) — tan(ow,)) T4
Ae= —tan™' £ 6.22

¢ 21 al ( 1—M2) + Ps ( )
so that the pressure maximum from the potential disturbance is located on the wake

centerline at the position corresponding to the stator trailing edge.

So far the discussion has dealt solely with the incoming potential disturbance at the
inflow boundary. The corresponding formulae for the outflow boundary are only slightly

different due to the different choice of root discussed earlier.

6.3.2 Supersonic case

If M > 1, but M, < 1 so that the flow is still axially subsonic, then A has only an
imaginary component and ¢ can be written as,
27

¢z, y) = A exp <ZF(y—tan(oep)x)) (6.23)

where,
—MyM, +VM?—1
1— M2

tan(oy,) = (6.24)

Combining all the Fourier modes, since now there is no spatial decay of any mode,

the most general form of ¢ is,

oz, y) = A f(y—tan(ay)z) (6.25)
where f is some periodic function.

To determine which root should be chosen in Eq. (6.24), note that using the usual su-
personic characteristic theory the angle of the incoming supersonic characteristic should
be equal to the flow angle, v, minus 3=v/M2?—1 if o, >0, and plus 3 if a,, <0. Using
standard trigonometric results the following identity is derived.

tan(a,,) F tan(f)
1+ tan(ay,) tan(s)

tan(a, F5) =

My £ 1
My vV M3-1

My 1
1+ Mz \/M?—1

MyV/M?=1F M, M,V/M?>—1 £ M,

MoV/M?—1F M, M,/M?>—1 F M,

M, M,M? F M2/M?—1
M2(M?-1) — M2
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— MM, £ VM?—1
1— M2

(6.26)

Thus the positive root in Eq. (6.24) should be chosen if a,, > 0, and the negative
root if a,, <0.

The model used for the incoming perturbation represents a weak oblique shock
generated at the trailing edge of the stator. As in the subsonic case it is easier to deal

directly with the velocities rather than the potential and so the chosen form is

dv = 2Av, N(c+Ae) (6.27)
du = —tan(a,)dv, (6.28)
where ()
_y—tan(ap) @
€= B T— (6.29)

The function N(e) is the same sawtooth function used in the wake definition. d&p

and dp are obtained again from Eq. (6.19). The maximum pressure disturbance Ap, is
Ap, = puAv, (tan(a,,) — tan(ay,)) (6.30)

and the phase constant Ace is chosen to be

(tan(ay) — tan(ay,)) T4e
P,

Ae=1+ (6.31)

so that the shock crosses the centerline of the wake at the stator trailing edge.

6.4 Combined flow field specification

The prescribed inlet flow in the rotor frame is a combination of the nonlinear wake
model, plus the linear potential disturbance, plus the steady nonuniformity across the
rotor inflow boundary which comes from a previous steady calculation. In addition the
rotor wheel speed must be subtracted from the circumferential velocity because of the

shift from the stator frame to the rotor frame.

pint(,y,1) = pu(n) + opp(x, €) + 0p;
Uint (2,y,1) = ww(n) + dup(w, €) + du;
vint(,4,8) = vu(n) + vp(x, €) +0v; =V (6.32)
Pint(2,y,8) = pu(n)+ 6py(a, €) + Op;



where,

y+ Vit —tan(ay,) «
Py
y+ Vit —tan(a,)z

= 6.33
€ Ps ? ( )

and the flow variables with subscript ; are the difference between local values and

average values coming from a steady rotor blade row calculation.

pj = pi—rg
w; = u;— Uy
oj = v -y (6.34)
P = pj— Dy

The point of including the steady state nonuniformity in the prescribed flow defi-
nition is that when no incoming wake or potential disturbance is specified the steady

state flow solution should be the correct solution to the unsteady flow problem.

With the coordinate transformation from the physical coordinates to the inclined
computational coordinates, the equations above remain the same except for the defini-

tions of 1 and € which become

! ! !
oy Vi —tan(ay) @
"SRR
y Vit —tan(a,) 2’
= = 6.35
€ Pr Ps ? ( )

The effect of the time-tilting in solving the problem of unequal pitches is clear in that
both 1 and € are increased by 1 when 3’ is increased by one blade pitch P, and so the

inclined inflow specification is spatially periodic, with period F,.

The outflow specification is simpler because there is no wake flow, and so it is

simply the flux-averaged flow field plus the potential disturbance and the steady state

nonuniformity.
Pout (T, Y1) = p.+3pp(w,€) + dp;
Uout (2, Y,8) = g+ Sup(z, €) + du;
Vout (2, y,1) = v+ 0vp(a, €) + 6v; (6.36)
Pout(@,y,t) = pu+0pp(a,€) + dp;
where,

Y+ Vt—tan(a,)
€= 2

. (6.37)
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In the inclined computational plane ¢ becomes

! Vt/ _ t !
¢ = % ¥ ;n(o‘p) T (6.38)

6.5 Inflow boundary

At the inflow boundary the characteristic variables are defined in terms of perturbations

of the flow from the prescribed inlet flow.

& - 0 0 1 p = Pini
2 | _ 0 0 pc 0 U — Ul (6.39)
c3 0 pc 0 1 U — Ul
C4 0 —pc 0 1 D — Pinl

The objective now is to construct boundary conditions for these perturbations so
that the boundary is transparent to outgoing waves and does not produce significant
spurious reflections. Ref. [13] shows that this is achieved analytically by setting the first
characteristic variable to zero,

c1 =0, (6.40)
and letting the second and third characteristics satisfy a first order partial differential

equation along the inflow boundary.

d [ 2 v (c+u)
%(03)+(%(C—u) v 0

When transformed into the inclined computational coordinates, the last equation be-

[N

g | o | =0 (6.41)

[N
)
|

S
v

(o))
)
)

comes
c
1-Xv —iX(etu) —iX(c—u) |\ O ?
1 A/ C3 +
—3A(c—u) 1-\v 0 ot
Cq
1 Lie_ 2
1 v 2 (C-I—U) 2 (C U) i/ cs — 0 (642)
7 (c—u) v 0 dy
Cq
Premultiplying by the correct matrix inverse converts this into the following form.
9 9 o |
Cy Cq
- B — 4+ B,— = 4
BTG (03) + By o + 28y’ c3 0 (6.43)

Cy

65



B is a 2x1 vector and B is a 2x 3 matrix.

The numerical implementation of these boundary conditions begins by calculating
Ur, and UZ;‘}'I, the prescribed inlet flow at the beginning and end of the time step.
The next step is to evaluate the four characteristic variables at the beginning of the
time-step, using Eq. (6.39). At the new time level n+1 the first characteristic variable is

zero, but the other three are evaluated by calculating their changes over the timestep.

The change in the outgoing fourth characteristic is obtained from the distributed
Lax-Wendroff changes at the boundary node minus the change due to the unsteady
prescribed flow. Thus,

0cq = 0py . — pCOU (6.44)
where
P i = Uy = 00Ut
Suy = (OU,, = 6Uss — udp,, )/
OV p_iy = (OUsp 0 = 8Usimy —vdp, ) /p (6.45)
iy = (V= DOU = Ui —puduy gy =po 8oy, =5 (W +0%)0p )

The changes in the second and third characteristics are obtained by integrating in
time Eq. (6.43) using a one-dimensional Lax-Wendroff algorithm. The changes at the

center of the j¥ face are given by

AC4j+% = %(504] + (SC4j_|_1)7 (646)
and
C2 C2
ACQ At
=—-B{A¢,.,1 ——B c -1 c 6.47
( ACS )] . 1 4]_|_2 Ay 2 CS 63 ( )
g AT 1/

The changes distributed to the two boundary nodes from the face are

dcy; = %(Aczﬂ-l Ag2]+%)
dez; = %(ACBH_; AgS]-I—%)
deajpr = 3(Acy i1 +A0gy501) (6.48)
desjpr = 3(Acgy;1+Ags;00),

where the second order fluxes, Ag, are defined by

A At Acy
C C
(Agz) =5, | Ao —q ( 2) —( 2) (6.49)
) ivr Acy )i N9/
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The second term in the Ag definition is a numerical smoothing term. A typical
value for the coefficient ¢ is 0.05. Distributing the changes from all of the boundary

faces gives the characteristic changes at the nodes.

One final modification must be made. Eq. (6.43) can be integrated over one pitch to

obtain the following ordinary differential equation for the pitch-averaged characteristic

d 2 _
£f(#)ene) o

When integrated in time, there is an arbitrary constant of integration. To ensure that

variables.

the final solution does not depend on the initial conditions, this constant is set equal to

zero by subtracting the average values from the local values.

new old
o o C
€ [ °?) — %) - B (6.51)
503 503 C3

Using these corrected changes, the new characteristic variables are obtained. The
new perturbations to the prescribed inlet flow are then calculated and added to get the

new flow solution on the inflow boundary.

6.6 Outflow boundary

The unsteady outflow boundary conditions are similar to the inflow conditions, but
are slightly simpler since there is only one incoming characteristic. The characteristic

variables are defined by

3] -2 0 0

1 P = Pout
2 | _ 0 0 pc 0 U — Uout (6.52)
c3 0 pc 0 1 U — Uout
C4 0 —pc 0 1 P — Pout

and Ref. [13] shows that the best non-reflecting outflow boundary condition is

804 8 C9 .
E+(uv)a—y(c4)‘° (6:53)

When transformed into the inclined computational coordinates, this equation becomes

(—/\u 1—/\v)%(zz)+(u v)aiy,(z):(), (6.54)
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which can be rearranged into

dey A Jeg v ey w dey
a0  Toaw oy Tioway Tiaway (6.55)

The numerical implementation begins again by calculating the prescribed outlet flow

Ur,, and U™F' and the characteristic variables at the beginning of the time-step.

The changes in the three outgoing characteristics are obtained from the distributed
Lax-Wendroff changes at the boundary node minus the changes due to the unsteady

prescribed flow.

561 = 5pLW—out o Cz(SpLW—out
deg = pccSvLW_out (6.56)
563 = 5pLW—out + pC(SuLW—out
where
P w—out = Uiy — Utout
Sty e = (OUypyy = 0Usout —udppy /P
OV o = (OUspyy = 0Usour =0 dppy /P (6.57)
P —one = (V= DU,y =0Usout—pudupy, —podv = %(uz—l_vz)(spLW—out)

The change in the fourth characteristic is obtained by integrating Eq. (6.55), again

using a one-dimensional Lax-Wendroff algorithm. The face center changes are

A02j+% = %(502] —|— 502j+1)7 (658)
and
A At v U
Alyjpt = =700 D2t ~ @(m (cajr—cag) + T (02]‘+1—02j)) (6.59)

The distributed changes to the nodes are

deq; = (Ac4j+%_Ag4j+%)

(AC4]‘+% + Ag4]‘+%)7 (6.60)

M= |

dcajr1 =
where the second order flux, Agy, is defined by

At v U
Ag4j+% = A_y (mAC4j+% + HACQJ-F%) —O'(C4j_|_1 —C4]‘). (661)
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The numerical smoothing coefficient, o, again has a typical value of 0.05. As with

the inflow boundary conditions, Eq. (6.55) can be integrated to obtain

i( A )— (6.62)
a \ T 1) T ‘

To set the constant of integration to zero, the characteristic changes are modified by

subtracting the corresponding pitch-averaged values.

Au
e = ded? — ey + T 2= 0 (6.63)

Using these characteristic changes, the new characteristic variables are obtained,

and hence the new outflow variables.
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Chapter 7

Viscous Algorithm

7.1 Overview

The standard approach to viscous calculations is to use everywhere throughout the com-
putational domain one numerical algorithm, which is suitable for viscous calculations
but may not evaluate the viscous stresses in regions where they are small. In UNSFLO
an alternative approach was chosen, in which there are two numerical algorithms. A
viscous algorithm is used in a relatively thin viscous grid around each blade, and the
inviscid Lax-Wendroff algorithm is used in the rest of the domain as described in earlier

chapters.

There were several reasons for this choice of approach. The explicit Lax-Wendroff
algorithm could have been modified to peform viscous calculations, but in this case
the maximum stable timestep is extremely small in the boundary layer, and so the
computational cost would have been excessive. However, the Lax-Wendroff algorithm
is very good for the inviscid region because of its efficieny, its second order accuracy on
irregular meshes, and the ability to add grid adaptation at a later time. To avoid the
excessive timestep restriction in the boundary layer requires an implicit algorithm. All
of the established implicit codes use structured grids and are cell-based, meaning that
the flow variables are stored at the centers of the computational cells. Such methods
are more significantly more expensive than explicit methods, and lack all of the other
features of the Lax-Wendroff algorithm listed above. Therefore, it was concluded that
the best approach was the hybrid one, using two separate algorithms on two separate

grids, suitably connected at the interface.
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7.2 Basic algorithm

In the viscous boundary layer region there are two grids. The first grid is created by
the grid generator, and is structured, with each grid node having a (j, k) index. k=1
corresponds to the line of nodes on the blade surface. k=K corresponds to the line of
nodes at the interface with the inviscid grid; each of these nodes is at the same position
as an inviscid grid node. The viscous flow variables are stored at the grid nodes of this

first grid, and the grid is used in plotting contours in the viscous region.

The second grid is the one which is used by the viscous algorithm. It is created by
joining the centers of the cells of the first grid, to form an overlapping grid with the

flow variables being stored approximately at the center of each new cell. Thus,

Tiplart = 7 @k ik F Tk + itnke)
1
Yirtprd = 7 Wik T Uikt F Yirrh + Yirrht) (7.1)

The basic algorithm is based upon the ADI scheme of Beam and Warming [2], but
uses the upwind flux-difference splitting developed by Roe [32]. It is similar to the
scheme used by Rai [30]. The two-dimensional unsteady Navier-Stokes equations, with

variable streamtube thickness, are

U OF) | OhG)  hV.) OV,
et Tor T Tar T o oy (7.2)

where U,F,G¢ and S are the same as in the Euler equations, and V,, and V,, are viscous

fluxes defined by

vV, = Tay . (7.4)

UTpy + VTyy — Gy

The heat flux terms ¢, g, are given by

_ 0T o 0
o = dr (y=1)Pr O«
B or po 0(c?)
R R T )
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and the stress terms are given by

Ju Ov
Toy = “(8_y+8_x) (7.6)
4 20u

Tyy — “(58_y - 58_96)

Under a high Reynolds number approximation in which streamwise derivatives are
neglected relative to normal derivatives across the boundary layer, the viscous contri-

butions simplify considerably.

d(hVy) L d(hVy)  O(hV,)

~ 7.7
Oz oy on ' (7.7)
where
0
Ju
v, = Hom (7.8)
Mo,

1o (30t +30°+ oy e?)

To complete the specification of these thin-layer Navier-Stokes equations, the Prandtl

number Pr is a constant (0.72 for air), and the viscosity p is given by Sutherland’s law.

T i Tref + Tcon
B = Href

Tref T+ Tcon

¢? o0 CZef + Cgon
. 7.9
fired (CZef) CQ—I_Cgon ( )

T.on is a temperature constant in the Sutherland model, T} is the reference tempera-

ture at which p=yp,.yr, and c.,, and c,.; are the corresponding speeds of sound.

Approximating the spatial derivatives on the computational cell shown in Figure 7.1
produces the following semi-discrete equation.

dU; j

Ajh dt

+ (FF Fr oy )4 (G =Gy 1) = (Vi = Vi 1) = 87y (7.10)

itk -4, Jk+i 7 R ]

A}k is the volume of the computational cell, which is the product of the area and
the streamtube thickness. F”™ is the inviscid flux through one of the cell faces lying
approximately in the normal direction, and G and V* are the inviscid and viscous fluxes

through one of the faces lying approximately in the streamwise direction. Omitting
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Figure 7.1: Grid geometry for viscous algorithm

certain upwinding terms which will be discussed later, these discrete fluxes are defined

by the following equations.

. 1
Frnp =5 (Bt By = (G b GonAely, ) (1)
. 1
G = 5 (Pt Faak) A = (Gaat Gos) Al ) (112)
. Mk + kg1 As'
1% = Mk TRkt 25
Skt 2 An
0
Ujk+1 — Ujk
Vik+1 — U5k
1 1 1 1 1 1
(5“?,k+1‘|’§%2,k+1‘|’ (-1)Pr C?,k+1) - @“ik"‘ivik"‘ 1) Pr C?,k)
(7.13)
where
hjg+hy
/ _ Js J+1,k
Arjiay = =5 (@tel ~ Tipte-t)
hjg+hy
/ _ Js J+1,k
Ayipre = g Wikleel ~ Yieia-t)
hjk + Ikt
Ax;k-l—% = 9 (wj—%,k-l—% - xj+%7k+%) (714)
bk + hjrs1
! _ Js Js
AYippr = — 5 Wintaet ~Yirlart)
" (At P+ AV, )P
As Az gl + Ay% 1
2kt 35 1k+3 (7'15)

An o Aat o Wik = Yike) = Ay @k = 2ik)
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The source term is approximated in a manner which ensures that a uniform pressure

field produces no net force on the control volume.

0
7 7 7 7
N B L (7.16)
j,k - 7 I I °
—ATL L T AT A T A,
0

The fully discrete equations are obtained by approximating the time derivative using
backward differencing.
/

U n)+(F*"“ -F k)+(G*"“1—G*"“

>kn-l-l >kn-l-l >kn-l-l
At ( gk ark +3k Vikrt = Vig-1) = S5k

]7k+_ k__) ( k‘l'_
(7.17)
This is a nonlinear system of equations which cannot in general be solved to obtain
U™t Instead, each of the flux terms is linearized about U™ to obtain the following

‘unfactored linearized-delta’ equation.

At aU],k oU; i oU; i, oU; i aUJ p U 7
OF 1, OF_,
Z-AU _izzk AU
T U s = T T B,

n 8G;k+— 8‘/;16%—% AU oy — 8G;k—— 8VJTk 2\ AU b —
8UJ,k-I—l 8Uj,k-l—l skt 8Uy,k—l 8U1k 1 e

Uy = P = Oy = G+ (Vg = Vi) + S0 (19

For simplicity, the linearized change in the source term has been ignored.

This is now a linear system of equations, but its solution is computationally time-
consuming since the work for a viscous grid of size J x K is proportional to the smaller
of J2K and K3J. This direct solution cost is avoided by an iterative line relaxation ap-
proach. At the beginning of each time step AU is initialized to zero. An approximate
solution AU is obtained by solving

oF* oF* oF* aF,*
(il_l_ ]+2’k ]_%Jg) AU(l)—I- ]+2’kAU( ) - 27 AU() —
At

aU] k 8U]'7k 8U]+1 k ARE aU] 1,k
(F*+27k F],*_%Jg) (G]*H_ G*k 1) + (X/]fk+_ V;k_%) + 57
(G G DV N A A
8U]‘7k 8U]‘7k 8U] k 8U]‘7k Ik
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dG* 1% dG™ ov>
- Jktd s A © ik k3 ) Ap© (7.19)
OU; k1 8U]‘7k+1 Bkt OU; -1 8U]k 1 k-l

and an better approximation AU®) is obtained by solving

a _ 3 +3 {
At—l— 8U]‘7k 8U]‘7k 8U]k + 8U]‘7k Ik

0G* ov'* 0G* ov'*
—I—( Jk+i J,k+§) AU® ( Jk—% Jvk—%) AU](fk)_l _

O;pr1  OUjppn s jpy  OU;py
(F]*+ N F],*" L) = (G*H_ G*k 1)—|-(Vk+ V*k__)—l-S*

AU( i (7.20)

(s U, . m_aFﬁMA " +8F, L
8U]7k 8U]‘7k 7k 8U]+17k JtLk 8U

The first of these steps requires the solution of a 4x4 block-tridiagonal system of equa-
tions for each k, and the second step requires a block-tridiagonal solution for each j.

The combined work is proportional to JK.

Although it is not immediately obvious, this procedure is exactly equivalent to Beam
and Warming’s factored ADI procedure. Also, if both steps are repeated, always using
the latest known AU on the right-hand-side, the procedure will converge to the solution
of the ‘unfactored linearized-delta’ equations, and is exactly equivalent to Rai’s ADI

method with sub-iteration.

7.3 Flux difference upwinding

A Fourier stability analysis of the above algorithm would conclude that it is uncondition-
ally stable, but in fact it has two major problems. The first is that both the unfactored
and the block-triagonal systems become extremely ill-conditioned when the Reynolds
number is large and the timestep is large. This is because the off-diagonal matrices
are independent of At, whereas the inviscid flux terms in the diagonal matrix almost
perfectly cancel, leaving only terms proportional to 1/Re or 1/At. The second problem
is that there is no numerical smoothing to suppress the emergence of the ‘sawtooth’

error mode which is the standard problem of central differencing algorithms.

Both of these problems become clear when one considers the scalar one-dimensional

convection problem.

Ju Ju
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Using central spatial differencing and backward time differencing gives

cAt

u?"’l —ul + 5Az (u?j_'ll — u?fll) =0 (7.22)
which can be rearranged as
r r o, "
§Au]‘_|_1 + Auj — §Au]‘_1 = —§(uj_|_1 —uj_y) (7.23)

The right-hand-side shows that u; = (—1)7 is a valid steady-state solution. The left-
hand-side shows that when r = ¢At/Axz becomes large the diagonal matrix term is

smaller than the off-diagonal terms, leading to an ill-conditioned matrix.

The simplest solution to these problems is to use upwinding, and for ¢ >0 approxi-

mate the spatial derivative by a discrete finite difference using nodes j and j—1. This

gives
ut — +E(uj+1—uj_+}):0 (7.24)
which can be rearranged as
(I4+r)Auj — rAu;_y = —r(u] —uj_q). (7.25)

This is well-conditioned and does not allow a sawtooth error mode.

Next consider a linear hyperbolic system,

U oU
St A =0 (7.26)

This equation can be diagonalized by use of a matrix T' whose columns are eigenvectors

of A. If the eigenvalues of A are A;, ordered consistently with the vectors in 7', then
T7YAT = A = diag(Aq, Ay, ....) (7.27)

and so if one defines U = TV then

A% A%
o TA5 =0 (7.28)

Since the characteristic equation are uncoupled, each can be upwinded separately. For

the 7** characteristic, the upwinded equation can be written as

vig = o+ == (T et + S e =0, (7.29)
where
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Combining all of the characteristics into one equation gives

At At
n+1 n + n+1 n+1 — n+1 n+1y _
Vi Vi ATV V) ATV -V =0, (7.31)
where
Al =diag(Af), A; = diag()]) (7.32)
Converting back to original variables gives
At At
n+1 n + n+1 n+1 — n+1 n+1y _
urmr = U; —I—@A (U; _Uj_l)—l_ﬂA (Uny =urm) =0, (7.33)
where
AT = TAET! (7.34)
In ‘delta-form’ this can also be written as
At At _ At
A AU+ (I—|— E(AJ’—A )) AU;j — EA*AUj_l
At n n At — n n
= —@AJF(U]‘ —Un) = A U - U7) (7.35)
= XL (%A(U]‘H +UT) = AU + U]‘—1)) + E(AJF—A J(Uf =207+ U )

This last form has a right-hand-side which is expressed as a central difference term plus
a smoothing term. This is important for the next complication, moving to a nonlinear

system of equations,

oU | OF

5. =0 (7.36)
for which the upwinded implicit scheme is
gA;F%AUHl + (I—|— g(A;%—A;_%)) AU; — gAj_%AUj_l
= o (3 E) - 50+ FL)
For (BT A7)y (U ~UD) = §(AT A7),y (07 ~ULy)
= (M ) - AT A7) (U -U) (737)

- (0 )~ Bt - UR) )

with oF
A]-I—% = (%) it (7.38)
being evaluated using a value of U which is some average of U; and U;4;. Note that the

nonlinear upwinded equation is written in a form which is clearly conservative, since
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the right-hand-side is equal to the difference of two fluxes through faces j—l—% and j— %
Before finishing with these model problems, a final note is that the upwinded schemes
presented so far have only first order spatial accuracy. Third order spatial accuracy is

achieved with the following scheme.

At At At At —, —
iy ) 2 o4t _a- 2 a4+ i O AL R
AxAH%AU]H—I_(I—I— e (Aj+% Aj_%)) AU; AxAJ—%AU]_l = AL (F]_l_% F]_%)

(7.39)
where

Fyo=YFr + 1) - éA;%(U;H—QUfJFUf_I) — éAJ,; (U, —2U%+U?) (7.40)

i+t L

Returning now to the Navier-Stokes equations, the final form of the upwinded, un-

factored, discrete Navier-Stokes equations is as follows.

£’+<8F*)+ _<8F*)— _|_<8G*)+ _<8G*)‘ _3‘%+5+3V5k—5 NS
At N OU Jipr gy \OU Jii g NOU Jippt \NOU gt OUj — OUjp Pk
OF*\ "~ JF*\ T
AUjpre — AU;- 7.41
+<8U)j+%,k J+Lk <8U)j_%7k J—1.k (7.41)
. (@G*)— VY gL (8G*)+ A=A
aUu ikt L 8U]‘7k+1 ket ou jk—1t 8U]‘7k_1 k=1

_*n _*n _*n _*n n n n
= _(Fj-l—%,k - Fj—%,k) - (Gj,k+§ - Gj,k_%) + (V'*H% - V‘*k_g) + 57k

Js Js

«\ «\
The upwinding matrices (%) and (%) are both constructed in the same

way. Both F* and G* are inviscid fluxes of the form FAy — GAz’. The corresponding
linearization matrix is

IFAyY — GAz')

A= U

0 Ng ny 0
—upu+ (P 0)n,  w, — (Y=2ung  uny — (y—Lvng  (y—1)n,
—uv+ SHuioHn,  ong — (y=1L)uny,  u, — (Y=2)on,  (y=1)n,

—u  H + S +vH)u, Hng — (y=Duu, Hny— (y—1)vu, Yy,

= A

where the unit normal vector is
Ny 1 Ay
- 7.43
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and the normal and tangential velocities are

Unp,

Uyt

= un; +vny

= —UNy +vn,

The transformation matrix 7 which is used to diagonalize A is

1
U—Cny,
T =
V—CNy
H—u,c

and its inverse is

%unc—l—WT_l(UQ—l—vz)
71— 1 ¢ =255 (uP+v?)
c? —UsC

1 =1/ 2 2
—gunc+ I (u+ o)
The corresponding eigenvalues are

A1
Az
As
A4

As discussed earlier, AT and A~ are

1 0 1
u —Cny  Uten,
b
v cny vteny
%(uz—l—vz) e  H4ug,e
_1 _a=1 _1 _o=1
5CNy 7 U 3CNy 7V
(v—Du (v=Dwv
—Cny cn,;
1 y—1 1 y=1

§Cnx—Tu §Cny—Tv

= As (u, — ¢
= Asu,
= Asu,
= As (u, + ¢

then defined by

AT = AT

(7.44)
(7.45)
—(v-1
0
M (7.46)
(7.47)
(7.48)

The upwinded matrices are evaluated based on a special average of U~ and U™, the

state vectors on either side of the face. The average is defined as

H =

Votut +/pmu~
Vot + Vo~

Vptot +/pv~
Vot + Vo~

VptHY +\/p~H~
Vet Ve

(7.49)

All other needed quantities can be derived from these three. This form of average was

developed by Roe, and reasons for its use are presented in Ref. [32].
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Another small but important addition to the basic upwinding ideas is the upwinding
treatment in areas in which one of the characteristic speeds passes through zero. An
improper treatment can lead to the formation of non-physical expansion shocks and
problems with stability. The treatment that is used in UNSFLO is based upon the
ideas of van Leer [35], and involves modifying the definition of AE.

AT = max(0,\) + 0.5 max(0, 2AA—|A|)
AT = min(0, A) — 0.5 max(0, 2AX—|A|) (7.50)

In these definitions, A is the eigenvalue, evaluated using the Roe-averaged state, and
AN is the difference between the corresponding eigenvalues evaluated at states U™ and
U~. Note four things about this formulation. First, in most of the flow field, away
from points where A goes through zero, this returns to the standard definition. Second,
AT is always positive (or zero), and A~ is always negative (or zero); this maintains the
upwind /dissipative character. Third, AT+ A~ = X; this maintains the consistency of
the discretization. Fourth, when A =0, A* = £A\; the effect of this is to maintain a
certain minimum level of numerical smoothing which prevents non-physical behavior

but without unnecessary corruption of the physical solution.

The fluxes on the right-hand-side of Eq. (7.41) are defined as

Fﬁr%,k = S(FAF, k)Ay]—I— K — 3G+ Gl p) A /+§,k
_U;” ((%1;]*)]+%k B (%1;]*)];%]) (Ul x=Ulx)
and
G;,H% = (I +F] k+1)Ay] k+1 (GZ’“—I_GZ’““)AQC;J““
_U;” ((%%*)]H% - (%C(;]*)];Jr%) (Uit =Ujx)
g (8@%)+k+( e = 2 )
1 —60% (%%*);H% (U2 = 2U g + US) (7.52)

When o5, =1 these give first order upwinded fluxes; when o9, =0 they give third

order fluxes.
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Figure 7.2: Wall boundary cell
7.4 Wall boundary conditions

The computational cell next to a wall boundary is different from the standard viscous
computational cells, in that it extends from k=5/2, to k=1, with U; 5 being the average
value of U in the cell. U;; is used for only two purposes, computing the third order
upwinding term for the face at k=5/2, and post-processing. U;  is the first point that
is actually calculated as part of the implicit viscous scheme, using the wall boundary

cell.

Because the wall boundary cell is different, the first change to the basic viscous

. .. .. , ,
algorithm is in the definitions of A$j+%,2 and ij+§,2‘
hj2+hy hji1+h;
! Js J+1,2 _ 7,1 j4+1,1 o
ATjry = 2 ( i+ied $j+§,1%)+ 2 ( JARSE Titt)
hio+ itz hii+hivia
A / — Jy ]‘I’ 9 _ Jy J i ‘53
Yitho 2 (y],%’?% yj+%,1%) + 2 (yj+§,1% Yiat §7:53)
A f hese ch o d (22)* luated |
part from these changes, j+L2 an (W) ., . areeva uated as normal.

]+572
The other changes for the wall boundary cell are all related to the wall boundary

face. The inviscid flux @;1 through the wall face has only a pressure force term.

0
. A
Gia=| 270 (7.54)
—pj2Ax,
0
where
Ay§‘71 = h]‘71(y]‘_%71_y]‘+%71). (7.55)

This flux is linearized directly to obtain the matrix to be used in the implicit operator;

no flux-difference upwinding is performed on the wall face.
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For adiabatic walls, the viscous flux term V' is

0

As' Us 9
V¥ = i — - 7.56
g1 Hia An v ( )

1,2 41,2
22T 2052

For walls with a specified temperature (and a corresponding speed of sound ¢,q1), the

viscous flux term is

0
As' Uj,2
Ve = . Aas ; 7.57
(b beks et — et
In both cases,
As' Az’ )2+ (Ay )2
s (A} )"+ (Ayis) (7.58)

An Aac}l(yj,l - yj,z) - Ay;q(xj,l - w]ﬂ)

V7 is linearized as usual to obtain the viscous implicit matrix term.
?

The final form of the implicit unfactored equation for the wall boundary cell is
(£’+(3F*)* () (2 () _@vzﬁﬁvfn)w
At ou il ou j—Lo oU /2L oU - U, U, s
+ (88];*)%%72 AUjp12 — (881;*):—_%2 AU; 19 (7.59)
+ ((8(;*)_ _ GX/ij%) AU, »
aUu j2k U s

= —(Fjato = Fio1n) = (Gior = G + (Vi = Vin) + 552

J

7.5 Inviscid interface treatment

The computational cell next to the viscous/inviscid grid interface is also different
from the standard viscous computational cells, in that it extends from k = K—% to
k=K. U,k is the average value of U in the cell, and is also (by definition) equal to the

value of U at the inviscid node on the interface.

The first change to the basic viscous algorithm is in the definitions of Az’ and

J+iK
Ay
Jt5.K

2! _ hj,]x’"|‘hj-|-1,K($ _ )

AT O 2 5K T VAR5

A
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Figure 7.3: Interface boundary viscous cell plus inviscid cells

hik + hjt1 K

/
AYjptr = 2 Wit =~ Yiplac-1) (7.60)
7 o=\ *
Apart from these changes, Fj-l—% % and ( T ) Ll are evaluated as normal.
! J 2 3¢

The second change is in the flux through the interface. To make the coupling con-
servative, the viscous flux is set to zero, and the inviscid flux is treated explicitly, in
a manner that is consistent with the flux evaluation used in the inviscid Lax-Wendroff

calculation on the outer inviscid cells.

Gk = Fir Ay — G Az i (7.61)
where
Ax;,ls" = hLK(%—%,K - xj-|—%,K)
Ayix = hix Wi Lk = Yl (7.62)

The third change is that since U; i is associated with both the viscous node/cell,
and the inviscid node at the same location, the cell volume A}K must be equal to the
sum of the viscous cell volume and the inviscid node’s share of the volume of the two
neighboring inviscid cells, and the inviscid changes which have previously been calcu-
lated and distributed to the inviscid node must be added in to the viscous calculation
as an additional explicit contribution. Note that the combined volume A’ must also be

the volume used for the inviscid calculation.

The final form of the implicit unfactored equation for the interface cell is

*

A or\t o aaT VKo
—+ - T +— AUj,Ix"
At aUu j—l—%,K aUu ]‘_%J( aUu ]‘7](_% 8U]‘7K
IF*\~ OF*\T
AU - AU_ -
+ ( U )j%’K J+1,K ( BT )j_%J( j—1,K
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G\t GVJ‘*K—%
— —_— — 2 | AU j— 7.63
(( ou )j,K—% oU; k-1 PR (7.63)

. _*’ﬂ _*’ﬂ _*’ﬂ _*’ﬂ *’ﬂ *’ﬂ
= _(Fj-|—%,K - Fj—%,K) - (Gj,K - Gj,K—%) - VM(_% + Sj,]x’
Z A SU
tnviscid At

7.6 Algebraic turbulence model

The algebraic turbulence model which is used is due to Cebeci and Smith [3]. The
formulation splits the boundary layer into inner and outer regions. The inner region
is a combination of the log-law layer and the laminar sublayer; the Prandtl mixing
length is taken to the normal distance to the wall surface multiplied by the von Karman
constant, with the van Driest exponential damping term to give the correct behavior in

the sub-layer.

Ju
tnner — 12 a_ 7.64
iner = o[ (7.6
[=0.4y(1—e ¥4 (7.65)
2
A= 28 (7.66)
pilr
Tw
Ur = [ — 7.67
5 (7.67)
The outer region formulation is based on the velocity defect.
5
(1) outer = 0.0168,0/ lue—u|dy (7.68)

The transition between the inner and outer formulations occurs at the value of y

(the coordinate normal to the wall) for which the two are equal.

A tricky numerical aspect is the definition of 4, used for the velocity defect integration
and to define the edge velocity value u.. After some experimentation the definition which

is used is 5 o7
5 e (12 + 2L dy

2 U5+ Ig D dy

where the integrals are performed across the entire boundary layer grid. The effect of

(7.69)

this definition is to get a value for § which is at the edge of the physical boundary layer,
but is still typically much less than the thickness of the viscous grid. Using the edge of
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the viscous grid instead for § gives much poorer values for 4, because of variations in u

outside the boundary layer due to flow curvature.

To avoid the need for very small grid spacing at the wall, a law-of-the-wall formu-
lation is used to calculate the wall shear stress based on the velocity at the first grid

point off the wall. Spaulding’s law-of-the-wall formula [33] is

yt =ut 4P (emﬂr —1—rut = L(rut)? - %(Hu"’)?’) (7.70)
where
yt = Ll (7.71)
Mo
=t 7.72
=t (7.72)

and the constants x and B have values 0.4 and 5.5 respectively.

Two limits are worth noting. If 7, is very small, then y* and uT are small, and so

wt oyt = e Bl (7.73)
y

which is the laminar limit. If 7, is very large, then y* and u™ are large, and so

yt & e Bernt oyt By %log yt, (7.74)

which is the log-law limit. Thus the full Spaulding formula combines both behaviors

and will remain valid even through separation.

If yo and usy are the normal coordinate and tangential velocity at the first grid point

off the surface, and Rey is defined as

Re, = 2wt292 (7.75)

oz

then the definition for ¥ can be re-expressed as

R€2
+
yt= i (7.76)
Substituting this into Spaulding’s formula gives
R
ut 4 7B (emﬂr —1—kut — F(kut)? - %(Hu"’)S) — u—? =0. (7.77)

For a given value of Res, this equation is solved using a Newton-Raphson procedure to

obtain ut and hence 7.
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Figure 7.4: Alternative inclined computational plane for viscous calculations

7.7 Time tilting

The technique of time-tilting can also be applied to the Navier-Stokes equations. The

transformed equations are

oQ or oG IV, oV,

where

Q=U— G+, (7.79)

The difference from the inviscid time-inclined equations is that now () contains deriva-

tives of U and there is no simple algebraic transformation from ¢ to U.

The solution to this problem is to simply ignore the derivative terms in (), or equiv-
alently to replace @ by U — AG. This procedure can be justified for large Reynolds
numbers through the following argument. Time derivatives are comparable in magni-
tude to streamwise spatial derivatives, and so

O*u *u _1 0*u
509y =© (ax/ay/) =0 (Re™2) x 57 (7.80)

Therefore, the neglected terms are comparable in magnitude to the terms which are
dropped in the usual thin-shear-layer N-S equations, due to their being much smaller

than the dominant diffusive terms in the boundary layer.

An alternative approach which would also work for high Reynolds numbers is to use
“time-tilting” only outside the narrow viscous regions around each blade, and in each
wake. This idea is illustrated in Fig. 7.4. The high-Reynolds number assumption is
again required to ensure that the wakes and boundary layers form a small fraction of

the total domain.
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Figure 7.5: Low Reynolds number domain of dependence

Both of the above approaches fail at low Reynolds numbers. This is correct and
proper since, as shown in Fig. 7.5, parabolic equations have infinite speed of propagation
of information and any inclined computational plane will not fully include this domain

of dependency, and so cannot produce the correct solution.

In the discrete Navier-Stokes equations used in UNSFLO, the only change due to

time-tilting is to replace the term
Al
At
in the implicit operator, by
A’ oG
il S Yl
At( OU)

thereby approximating % instead of %.

7.8 Moving blades

One capability of UNSFLO is to perform viscous calculations for moving blades, in
which the blade motion is prescribed usually as a combination of bending and torsion.
The viscous computational grid for this problem moves accordingly, with the wall nodes
moving with the blade, and the interface nodes remaining stationary. This approach
allows the inviscid solver to remain unchanged, with moving grid modifications being

necessary only for the viscous solver.

Consider the two-dimensional Navier-Stokes equations being solved in a control vol-
ume 2 whose boundary is moving at velocity @, and has an outward pointing unit

normal vector 7. Because of the motion of the boundary 012,
d
—//dedy:// 8—Udacdy—l—/ U iip-7i ds (7.81)
dt JJa Q Ot 20
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Figure 7.6: Moving control volume

As shown in Fig. 7.6, the second term corresponds to the volume being swept out by

the moving boundary. Hence,

i// Ude dy = —// NF=Vy) | NGV dy—l—/ U iy ds
dt JJq Q Oz dy a0

— —/ (F=V,) g + (G=V,)ny — U - ds. (7.82)
219

Next, define U to be the average value of U in the control volume. Therefore,

d d, — dU  —dA dU  —
— de dy= —(AU) = A— — =A— iy - 7 d .
dt//QU z dy dt( U) o +Udt o +U o T ds (7.83)
Combining with Eq. (7.82), gives
dU N
AS = —/ (F=V,) no + (G—V,) ny — (U = T) @y ds. (7.84)
29

The corresponding equation for the quasi-3D Navier-Stokes equations on a moving
control volume is very similar. In discretizing this, the viscous algorithm on standard

viscous cells has two changes. On the explicit right-hand-side the following terms are

added.

+ + + +

The grid velocity (ug,vg)T is evaluated at face centers by averaging the appropriate

nodal velocities.
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The second change is in the implicit left-hand-side, which is constructed in exactly
the same way as usual apart from the subtraction of ;-7 from all four eigenvalues. This

is because

NFAY' —GAz' —iiy,-nU)  O(FAy' -GAz') Lo
5T = i — Uy-il (7.85)

and so the eigenvectors are the same, and the eigenvalues are reduced by amount ,-7.

There are also changes to the wall boundary conditions. The combined inviscid flux

term is

*

Gy = (Uwant AY ;= vwan Az’ ) (U2 —Uj 1)

P2 (Uwat AY; 1 = Vwan Az’ 1)
! ! !
B P22 (UwaltAY; 1 —Vwat AT 1) + pi2Ay) (7.86)
- , .
02052 (Wwati DY) | —Vwan AT} ) — pj2Azl

/ /
P22 (Ut AY; 1 —Vwan Az} )

where 4 is the wall velocity. The viscous flux term is also modified due to the motion

of the wall. For adiabatic walls, V/"; becomes

0
As' Ui — Upall
* 7 wa
Via Pit R, : (7.87)
V5.2 — Vwall
1 1 1,2 1,2
(352505 2) = (5Uan+ 3V0an)
while for walls with a specified temperature, it becomes
0
v A Uj2 — Unall
7,1 M1 A
" Vj2 = Vwall
1,2 11,2 12 1,2 1.2 12
(3U52F 305 0+ Tmypr G2) = (3Ywati 2 Vwa) T Gy Pr Cuvatt)
(7.88)
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