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Quasi-Monte Carlo

As in lecture 6, quasi-Monte Carlo methods offer much
greater accuracy for the same computational costs.

Same ingredients:

Sobol or lattice rule quasi-uniform generators

PCA to best use QMC inputs for multi-dimensional
applications

randomised QMC to regain confidence interval

New ingredient:

how best to use QMC inputs to generate Brownian
increments
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Quasi-Monte Carlo

In lecture 12, expressed expectation as a multi-dimensional
integral with respect to unit Normal inputs

V = E[f̂(Ŝ)] =

∫
f̂(Ŝ) φ(Z) dZ

where φ(Z) is multi-dimensional unit Normal p.d.f.

Putting Zn = Φ−1(Un) turns this into an integral over a
M -dimensional hypercube

V = E[f̂(Ŝ)] =

∫
f̂(Ŝ) dU
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Quasi-Monte Carlo

This is then approximated as

N−1
∑

n

f̂(Ŝ(n))

and each path calculation involves the computations

U → Z → ∆W → Ŝ → f̂

The key step here is the second, how best to convert the
vector Z into the vector ∆W . With standard Monte Carlo,
as long as ∆W has the correct distribution, how it is
generated is irrelevant, but with QMC it does matter.
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Quasi-Monte Carlo

For a scalar Brownian motion W (t) with W (0)=0, defining
Wn=W (nh), each Wn is Normally distributed and for j ≥ k

E[Wj Wk] = E[W 2
k ] + E[(Wj−Wk)Wk] = tk

since Wj−Wk is independent of Wk.

Hence, the covariance matrix for W is Ω with elements

Ωj,k = min(tj , tk)
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Quasi-Monte Carlo

The task now is to find a matrix L such that

LLT = Ω = h




1 1 . . . 1 1

1 2 . . . 2 2

. . . . . . . . . . . . . . .

1 2 . . . M−1 M−1

1 2 . . . M−1 M




We will consider 3 possibilities:

Cholesky factorisation

PCA

Brownian Bridge treatment
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Cholesky factorisation

The Cholesky factorisation gives

L =
√
h




1 0 . . . 0 0

1 1 . . . 0 0

. . . . . . . . . . . . . . .

1 1 . . . 1 0

1 1 . . . 1 1




and hence

Wn =

n∑

m=1

√
h Zm =⇒ ∆Wn = Wn −Wn−1 =

√
h Zn

i.e. standard MC approach
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PCA construction

The PCA construction uses

L = U Λ1/2 =
(

U1 U2 . . .
)



λ
1/2
1

λ
1/2
2

. . .




with the eigenvalues λn and eigenvectors Un arranged in
descending order, from largest to smallest.

Numerical computation of the eigenvalues and eigenvectors
is costly for large numbers of timesteps, so instead use
theory due to Åkesson and Lehoczky (1998)
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PCA construction

It is easily verified that

Ω−1 = h−1




2 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2 −1

−1 1




.

This looks like the finite difference operator approximating
a second derivative, and so the eigenvectors are Fourier
modes.
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PCA construction

The eigenvectors of both Ω−1 and Ω are

(Um)n =
2

√
2M + 1

sin

(
(2m−1)nπ

2M+1

)

and the eigenvalues of Ω are the reciprocal of those of Ω−1,

λm =
h

4

(
sin

(
(2m−1) π

2 (2M+1)

))
−2

Because the eigenvectors are Fourier modes, an efficient
FFT transform can be used (Scheicher, 2006) to compute

L Z = U
(
Λ1/2 Z

)
=

∑

m

(
√

λm Zm)Um
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Brownian Bridge construction

The Brownian Bridge construction uses the theory from
lecture 10.

The final Brownian value is constructed using Z1:

WM =
√
T Z1

Conditional on this, the midpoint value WM/2 is Normally
distributed with mean 1

2WM and variance T/4, and so can
be constructed as

WM/2 =
1
2WM +

√
T/4 Z2
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Brownian Bridge construction

The quarter and three-quarters points can then be
constructed as

WM/4 = 1
2WM/2 +

√
T/8 Z3

W3M/4 = 1
2(WM/2 +WM ) +

√
T/8 Z4

and the procedure continued recursively until all Brownian
values are defined.

(This assumes M is a power of 2 – if not, the
implementation is slightly more complex)

I have a slight preference for this method because it is
particularly effective for European options for which S(T ) is
very strongly dependent on W (T ).
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Multi-dimensional Brownian motion

The preceding discussion concerns the construction of a
single, scalar Brownian motion.

Suppose now that we have to generate a P -dimensional
Brownian motion with correlation matrix Σ between the
different components.

What do we do?
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Multi-dimensional Brownian motion

First, using either PCA or BB to construct P uncorrelated
Brownian paths using

Z1, Z1+P , Z1+2P , Z1+3P , . . . for first path

Z2, Z2+P , Z2+2P , Z2+3P , . . . for second path

Z3, Z3+P , Z3+2P , Z3+3P , . . . for third path

etc.

This uses the “best” dimensions of Z for the overall
behaviour of all of the paths.
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Multi-dimensional Brownian motion

Second, define

W corr
n = LΣ W uncorr

n =⇒ ∆W corr
n = LΣ ∆W uncorr

n

where W uncorr
n is the uncorrelated sequence,

W corr
n is the correlated sequence, and

LΣ LT
Σ = Σ
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Numerical results

Usual European call test case based on geometric
Brownian motion:

128 timesteps so weak error is negligible

comparison between
QMC using Brownian Bridge
QMC without Brownian Bridge
standard MC

QMC calculations use Sobol generator

all calculations use 64 “sets” of points – for QMC calcs,
each has a different random offset

plots show error and 3 s.d. error bound
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QMC with Brownian Bridge
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QMC without Brownian Bridge
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Standard Monte Carlo
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Final words

QMC offers large computational savings over the
standard Monte Carlo approach

again advisable to use randomised QMC to regain
confidence intervals, at the cost of slightly poorer
accuracy

very important to use PCA or Brownian Bridge
construction to create discrete Brownian increments
– much better than “standard” approach which is
equivalent to Cholesky factorisation of covariance
matrix
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