
Module 2: Monte Carlo Methods

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

MC Lecture 1 – p. 1

Overview

In these two lectures, we are concerned with estimating
expected discounted payoffs by simulating the solutions of
stochastic differential equations

module 2 – fundamentals for geometric Brownian
motion with European payoffs

module 4 – path-dependent options requiring simulation
of entire path

We will not cover the modelling required to come up with
the SDE, and in particular will start with the risk-neutral
form of the SDE

MC Lecture 1 – p. 2

Geometric Brownian Motion

In the scalar case we have

dS = r S dt+ σ S dW

and we can use Ito calculus to convert this to

d(log S) = (r− 1
2σ

2) dt+ σ dW

which can be integrated to give

log S(T) = log S(0) + (r− 1
2σ

2)T + σW (T)

=⇒ S(T) = S(0) exp
(
(r− 1

2σ
2)T + σW (T)

)

MC Lecture 1 – p. 3

Geometric Brownian Motion

In the vector case, each stock has a different volatility σi
and driving Brownian motion Wi(t), and so

Si(T) = Si(0) exp
(
(r− 1

2σ
2
i)T + σiWi(T)

)

This will be the main application we consider today.

Linkage between stocks comes through correlation in
driving Brownian motions

E[dWi dWj] = ρij dt

MC Lecture 1 – p. 4

Monte Carlo objectives

What are we trying to achieve with Monte Carlo simulation?

estimate prices which correspond to expectation of
discounted payoff

V = E

[
P (S(T))

]

estimate price derivatives (Greeks) for hedging,

∂V

∂θ

where θ might correspond to initial asset price (delta) or
volatility (vega), or some other quantity

MC Lecture 1 – p. 5

Monte Carlo vs. finite differences

Hard to get reliable figures, but my “guesstimate” is that the
computational effort (CPU hours) on different methods in
the finance industry is split

60% Monte Carlo

30% finite differences

10 % binomial trees and analytic transform methods

So why are Monte Carlo methods used most heavily?

. . . and will it stay that way in the future?

MC Lecture 1 – p. 6

Monte Carlo vs. finite differences

Monte Carlo strengths:

simple and flexible (with a clear trade-off between
simplicity and efficiency)

easy parallel speedup

easily able to handle high-dimensional problems (avoids
“curse of dimensionality” of finite difference methods)

Monte Carlo weaknesses:

not as efficient as finite differences for very low
dimensions (1-3?)

not yet efficient for applications with optional exercise
(American options, Bermudan options, optimal trading
given transaction costs)

MC Lecture 1 – p. 7

Monte Carlo vs. finite differences

What is used in industry?

FX – finite difference because low-dimensional
(1 domestic interest rate, 1 foreign interest rate and 1
exchange rate = 3-dimensional)

fixed income – MC for LIBOR models because of
dimensionality

energy options – finite difference because
low-dimensional and options with conditional exercise

credit – MC because high-dimensional (multiple
companies)

equities – MC because of high-dimensional baskets

MC Lecture 1 – p. 8

Monte Carlo vs. finite differences

My long-term prediction?

mathematical modelling likely to become more complex,
leading to higher dimensional problems to be solved

consequently, Monte Carlo methods likely to become
more important, rather than less

improved methods will be developed for
American/Bermudan options

Alternative viewpoint?

sparse grid methods will extend finite difference
methods to much higher dimensions

ability to handle real-world features such as transaction
costs will be crucial

MC Lecture 1 – p. 9

Random Number Generation

Monte Carlo simulation starts with random number
generation, which often is split into 3 stages:

generation of independent uniform (0, 1) random
variables

conversion into independent Normal N(0, 1) random
variables

conversion into correlated Normal N(0, 1) random
variables

I will focus on what you need to know as a quant
– see Monte Carlo Methods in Financial Engineering
by Paul Glasserman for more information

MC Lecture 1 – p. 10

Uniform Random Variables

Generating “good” uniform random variables is
technically complex

Never write your own generator; always use a well
validated generator from a reputable source

Matlab

NAG

Intel MKL / VSL (Math Kernel / Vector Stats libs)

AMD ACML

not MS Excel, C rand function or Numerical Recipes

What you need to know is what to look for in a good
generator

MC Lecture 1 – p. 11

Uniform Random Variables

Pseudo-random number generators use a deterministic
(i.e. repeatable) algorithm to generate a sequence of
(apparently) random numbers on (0, 1) interval.

What defines a good generator?

a long period – how long it takes before the sequence
repeats itself

232 is not enough – need at least 240

various statistical tests to measure “randomness”
(Diehard – G. Marsaglia, TestU01 – P. L’Ecuyer)

well validated software will have gone through these
checks

MC Lecture 1 – p. 12

Uniform Random Variables

Practical considerations:

computational cost – RNG cost can be as large as rest
of Monte Carlo simulation

trivially-parallel Monte Carlo simulation on a compute
cluster requires the ability to “skip-ahead” to an arbitrary
starting point in the sequence

first computer gets first 106 numbers

second computer gets second 106 numbers, etc

MC Lecture 1 – p. 13

Uniform Random Variables

My favourite: mrg32k3a

developed by Pierre L’Ecuyer

available in MKL, ACML and NAG libraries

period ≈ 2191 ≈ 1057

fast skip-ahead makes it well suited to parallel
implementation

Mersenne twister is very popular in finance:

developed by Makoto Matsumoto and Takuji Nishimura

huge period of 219937−1, but I’ve heard conflicting
comments on its statistical properties

slow skip-ahead makes it tough for parallel
implementation MC Lecture 1 – p. 14

Uniform Random Variables

For more details see

Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

NAG library information
www.nag.co.uk/numeric/CL/nagdoc cl08/pdf/G05/g05 conts.pdf

Matlab information
www.mathworks.com/moler/random.pdf

Wikipedia information
en.wikipedia.org/wiki/Random number generation

en.wikipedia.org/wiki/List of random number generators

en.wikipedia.org/wiki/Mersenne Twister

MC Lecture 1 – p. 15

Normal Random Variables

To generate N(0, 1) Normal random variables, we start with
a sequence of uniform random variables on (0, 1).

There are then various ways of converting them into N(0, 1)
Normal variables – I’ll mention just two:

Box-Muller method

inverse CDF transformation

MC Lecture 1 – p. 16

Normal Random Variables

The Box-Muller method takes y1, y2, two independent
uniformly distributed random variables on (0, 1) and defines

x1 =
√

−2 log(y1) cos(2πy2)

x2 =
√

−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random
variables, and independent.

A log, cos and sin operation per 2 Normals makes this a
slightly expensive method.

MC Lecture 1 – p. 17

Normal Random Variables

The transformation method takes y, uniformly distributed on
(0, 1), and defines

x = Φ−1(y),

where Φ(x) is the Normal cumulative distribution function.

Φ−1(y) is approximated in software in a very similar way to
the implementation of cos, sin, log, so this is just as accurate
as the other methods.

It is also a more flexible approach because we’ll need

Φ−1(y) later for stratified sampling and quasi-Monte Carlo
methods.

MC Lecture 1 – p. 18

Normal Random Variables

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

Φ
(x

)

0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

x

Φ
−

1
(x

)

MC Lecture 1 – p. 19

Normal Random Variables

Some useful weblinks:

home.online.no/∼pjacklam/notes/invnorm/
code for Φ−1 function in many different languages

lib.stat.cmu.edu/apstat/241/

single and double precision code in FORTRAN
(coming soon in next version of NAG libraries)

en.wikipedia.org/wiki/Normal distribution

Wikipedia definition of Φ matches mine

mathworld.wolfram.com/NormalDistribution.html

mathworld.wolfram.com/DistributionFunction.html

Good Mathworld items, but their definition of Φ is
slightly different; they call the cumulative distribution
function D(x).

MC Lecture 1 – p. 20

Normal Random Variables

The Normal CDF Φ(x) is related to the error function erf(x)
through

Φ(x) = 1
2 +

1
2erf(x/

√
2) =⇒ Φ−1(y) =

√
2 erf−1(2y−1)

This is the function I use in Matlab code when norminv is
not available:

% x = ncfinv(y)

%

% inverse Normal CDF

function x = ncfinv(y)

x = sqrt(2)*erfinv(2*y-1);

MC Lecture 1 – p. 21

Correlated Normal Random Variables

The final step is to generate a vector of Normally distributed
variables with a prescribed covariance matrix.

Suppose x is a vector of independent N(0, 1) variables, and
define a new vector y = Lx.

Each element of y is Normally distributed, E[y] = LE[x] = 0,
and

E[y yT] = E[LxxT LT] = LE[xxT]LT = LLT .

since E[xxT] = I because

elements of x are independent =⇒ E[xi xj] = 0 for i 6= j

elements of x have unit variance =⇒ E[x2i] = 1

MC Lecture 1 – p. 22

Correlated Normal Random Variables

To get E[y yT] = Σ, we need to find L such that

LLT = Σ

L is not uniquely defined, but any choice will give correct
correlated distribution.

Simplest choice is to use a Cholesky factorization in which
L is lower-triangular, with a positive diagonal. In MATLAB,
use the chol function.

In Module 6, will use other factorisations with quasi-Monte
Carlo methods.

MC Lecture 1 – p. 23

Final RNG advice

always use mathematical libraries as much as
possible

usually they will give you uncorrelated Normals, and
you have to convert these into correlated Normals

later with stratified sampling and quasi-Monte Carlo
methods, we will use the inverse cumulative Normal
distribution to convert (quasi-)uniforms into
(quasi-)Normals

MC Lecture 1 – p. 24

Expectation and Integration

If x is a random variable uniformly distributed on [0, 1] then
the expectation of a function f(x) is equal to its integral:

f = E[f(x)] = I[f] =

∫ 1

0

f(x) dx.

The generalisation to a d-dimensional “cube” Id = [0, 1]d, is

f = E[f(x)] = I[f] =

∫

Id
f(x) dx.

Thus the problem of finding expectations in finance is
directly connected to the problem of numerical quadrature
(integration), often in very large dimensions.

MC Lecture 1 – p. 25

Expectation and Integration

Suppose we have a sequence xn of independent samples
from the uniform distribution.

An approximation to the expectation/integral is given by

IN [f] = N−1
N∑

n=1

f(xn).

Two key features:

Unbiased: E
[
IN [f]

]
= I[f]

Convergent: lim
N→∞

IN [f] = I[f]

MC Lecture 1 – p. 26

Expectation and Integration

In general, define

error εN (f) = I[f]− IN [f]

bias = E[εN (f)]

RMSE, “root-mean-square-error” =
√
E[(εN (f))2]

The Central Limit Theorem proves that for large N

εN (f) ∼ σ N−1/2Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = E[(f − f)2] =

∫

Id

(
f(x)− f

)2
dx.

MC Lecture 1 – p. 27

Expectation and Integration

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN) −→ CDF(Z)

so that

P

[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and

P

[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z| > s] = 2 Φ(−s)

P

[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z| < s] = 1− 2 Φ(−s)

MC Lecture 1 – p. 28

Expectation and Integration

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(f(xn)− IN)2 = I
(2)
N − (IN)2

where

IN = N−1
N∑

n=1

f(xn), I
(2)
N = N−1

N∑

n=1

(f(xn))
2

σ̃2 is a slightly biased estimator for σ2; an unbiased
estimator is

σ̂2 = (N−1)−1
N∑

n=1

(f(xn)− IN)2 =
N

N−1

(
I
(2)
N − (IN)2

)

MC Lecture 1 – p. 29

Expectation and Integration

Objective: want an accuracy of ε with confidence c.
i.e. |ε| < ε with probability c.

How many samples do we need to use?

Recall,

P

[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

so define function s(c) such that

1− 2 Φ(−s) = c ⇐⇒ s = −Φ−1((1−c)/2)

MC Lecture 1 – p. 30

Expectation and Integration

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

Then |ε| < N−1/2 σ s(c) with probability c, so to get |ε| < ε
we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many
samples.

MC Lecture 1 – p. 31

Expectation and Integration

How does Monte Carlo integration compare to grid based
methods for d-dimensional integration?

MC error is proportional to N−1/2 independent of the
dimension.

If the integrand is sufficiently smooth, trapezoidal

integration with M = N1/d points in each direction has

Error ∝ M−2 = N−2/d

This scales better than MC for d < 4, but worse for d > 4.
i.e. MC is better at handling high dimensional problems.

MC Lecture 1 – p. 32

Applications

Geometric Brownian motion for single asset:

S(T) = S0 exp
(
(r − 1

2σ
2)T + σW (T)

)

W (T) has a Normal distribution with mean 0, variance T ;
from this we will calculate the risk-neutral expectation for

V = E
[
f(S(T))

]

MC Lecture 1 – p. 33

Applications

We can put

W (T) =
√
T Y =

√
T Φ−1(U)

where Y is a N(0, 1) random variable, and U is uniformly
distributed on [0, 1].

Thus

V = E [f(S(T))] =

∫ 1

0

f(S(T)) dU,

with

S(T) = S0 exp
(
(r − 1

2σ
2)T + σ

√
T Y

)

= S0 exp
(
(r − 1

2σ
2)T + σ

√
T Φ−1(U)

)

MC Lecture 1 – p. 34

Applications

For the European call option,

f(S) = exp(−rT) (S−K)+

while for the European put option

f(S) = exp(−rT) (K−S)+

where K is the strike price.

For numerical experiments we will consider a European call
with r=0.05, σ = 0.2, T =1, S0=110, K=100.

The analytic value is known for comparison.

MC Lecture 1 – p. 35

Applications

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140
Discounted payoff

U

MC Lecture 1 – p. 36

Applications

MC calculation with up to 106 paths; true value = 17.663

0 2 4 6 8 10

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

N

E
rr

o
r

MC error

lower bound

upper bound

MC Lecture 1 – p. 37

Applications

The upper and lower bounds are given by

Mean± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies
within these bounds.

MC Lecture 1 – p. 38

Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1:1000000;

U = rand(1,max(N)); % uniform random variable

Y = norminv(U); % inverts Normal cum. fn.

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.ˆ2); % payoff and its square

val = sum1./N;

rms = sqrt(sum2./N - val.ˆ2);

MC Lecture 1 – p. 39

Applications

err = european_call(r,sig,T,S0,K,’value’) - val;

plot(N,err, ...

N,err-3*rms./sqrt(N), ...

N,err+3*rms./sqrt(N))

axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’)

legend(’MC error’,’lower bound’,’upper bound’)

MC Lecture 1 – p. 40

Applications

New application: basket option

European call for arithmetic average of M stocks which are
correlated so that

dSi = r Si dt+ σiSidWi

with the different dWi not independent.

As before, get

Si(T) = Si(0) exp
(
(r − 1

2σ
2
i)T + σiWi(T)

)

MC Lecture 1 – p. 41

Applications

If σiWi(T) have covariance matrix Σ, then use Cholesky

factorisation LLT = Σ to get

Si(T) = Si(0) exp


(r − 1

2σ
2
i)T +

∑

j

LijYj




where Yj are independent N(0, 1) random variables.

Each Yi can in turn be expressed as Φ−1(Ui) where the Ui

are uniformly, and independently, distributed on [0, 1].

MC Lecture 1 – p. 42

Applications

The payoff is

f = exp(−rT)

(
1

M

∑

i

Si −K

)+

and so the expectation can be written as the
M -dimensional integral

∫

IM
f(U) dU.

This is a good example for Monte Carlo simulation – cost
scales linearly with the number of stocks, whereas it would
be exponential for grid-based numerical integration.

MC Lecture 1 – p. 43

Final Words on Basics

Monte Carlo quadrature is straightforward and robust

Confidence bounds can be obtained as part of the
calculation

Can calculate the number of samples N needed for
chosen accuracy

Much more efficient than grid-based methods for high
dimensions

Accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)

MC Lecture 1 – p. 44

Variance Reduction

Monte Carlo starts as a very simple method; much of the
complexity in practice comes from trying to reduce the
variance, to reduce the number of samples that have to be
simulated to achieve a given accuracy.

antithetic variables

control variates

importance sampling

stratified sampling (see Glasserman)

Latin hypercube (see Glasserman)

quasi-Monte Carlo (module 6)

MC Lecture 1 – p. 45

Review of elementary results

If a, b are random variables, and λ, µ are constants, then

E[a+ µ] = E[a] + µ

V[a+ µ] = V[a]

E[λ a] = λ E[a]

V[λ a] = λ2V[a]

E[a+ b] = E[a] + E[b]

V[a+ b] = V[a] + 2Cov[a, b] +V[b]

where

V[a] ≡ E

[
(a− E[a])2

]
= E

[
a2
]
− (E[a])2

Cov[a, b] ≡ E

[
(a− E[a]) (b− E[b])

]

MC Lecture 1 – p. 46

Antithetic variables

The simple estimator from the last lecture has the form

N−1
∑

i

f(W (i))

where W (i) is the value of the random Weiner variable
W (T) at maturity.

W (T) has a symmetric probability distribution so
−W (T) is just as likely.

MC Lecture 1 – p. 47

Antithetic variables

Antithetic estimator replaces f(W (i)) by

f
(i)

= 1
2

(
f(W (i)) + f(−W (i))

)

Clearly still unbiased since

E[f] = 1
2

(
E[f(W)] + E[f(−W)]

)
= E[f(W)]

The variance is given by

V[f] = 1
4

(
V[f(W)] + 2Cov[f(W), f(−W)] +V[f(−W)]

)

= 1
2

(
V[f(W)] + Cov[f(W), f(−W)]

)

MC Lecture 1 – p. 48

Antithetic variables

The variance is always reduced, but the cost is almost
doubled, so net benefit only if Cov[f(W), f(−W)] < 0.

Two extremes:

A linear payoff, f = a+ bW , is integrated exactly since

f=a and Cov[f(W), f(−W)] = −V[f]

A symmetric payoff f(W) = f(−W) is the worst case
since Cov[f(W), f(−W)] = V[f]

General assessment – usually not very helpful, but can be
good in particular cases where the payoff is nearly linear

MC Lecture 1 – p. 49

Control Variates

Suppose we want to approximate E[f] using a simple

Monte Carlo average f .

If there is another payoff g for which we know E[g], can use

g − E[g] to reduce error in f − E[f].

How? By defining a new estimator

f̂ = f − λ (g−E[g])

Again unbiased since E[f̂] = E[f] = E[f]

MC Lecture 1 – p. 50

Control Variates

For a single sample,

V[f − λ (g−E[g])] = V[f]− 2λCov[f, g] + λ2V[g]

For an average of N samples,

V[f − λ (g−E[g])] = N−1
(
V[f]− 2λCov[f, g] + λ2V[g]

)

To minimise this, the optimum value for λ is

λ =
Cov[f, g]

V[g]

MC Lecture 1 – p. 51

Control Variates

The resulting variance is

N−1
V[f]

(
1− (Cov[f, g])2

V[f]V[g]

)
= N−1

V[f]
(
1− ρ2

)

where ρ is the correlation between f and g.

The challenge is to choose a good g which is well
correlated with f – the covariance, and hence the optimal λ,
can be estimated from the data.

MC Lecture 1 – p. 52

Control Variates

Possible choices:

for European call option (ignoring its known value)
could use g = S since

E[S(T)] = exp(rT) S(0)

for a general European payoff f(S) could use a
combination of put and call options

The idea can also be taken further using multiple control
variates.

General assessment – can be very effective, depending on
the application

MC Lecture 1 – p. 53

Importance Sampling

Importance sampling involves a change of probability
measure. Instead of taking X from a distribution with
p.d.f. p1(X), we instead take it from a different distribution
with p.d.f. p2(X).

E1[f(X)] =

∫
f(X) p1(X) dX

=

∫
f(X)

p1(X)

p2(X)
p2(X) dX

= E2[f(X) R(X)]

where R(X) = p1(X)/p2(X) is the Radon-Nikodym
derivative.

MC Lecture 1 – p. 54

Importance Sampling

We want the new variance V2[f(X) R(X)] to be smaller
than the old variance V1[f(X)].

How do we achieve this? Ideal is to make f(X)R(X)
constant, so its variance is zero.

More practically, make R(X) small where f(X) is large, and
make R(X) large where f(X) is small.

Small R(X) ⇐⇒ large p2(X) relative to p1(X), so more
random samples in region where f(X) is large.

Particularly important for rare event simulation where f(X)
is zero almost everywhere.

MC Lecture 1 – p. 55

Importance Sampling

Really simple example of the problem with rare events:
suppose random variable X takes value 1 with probability
δ ≪ 1 and is otherwise 0.

E[X] = δ

V[X] = E[X2]− (E[X])2 = δ − δ2

Hence, √
V[X]

E[X]
=

√
1−δ

δ
≈
√

1

δ

If we want the relative error to be less than ε, the number of
samples required is O(ε−2δ−1).

MC Lecture 1 – p. 56

Importance Sampling

Digital put option:

P = exp(−rT) H(K − S(T)) = exp(−rT) H(logK − logS(T))

where

X = logS(T) = log S(0) + (r− 1
2σ

2)T + σW (T)

is Normally distributed with p.d.f.

φ1(X) =
1√

2πσ2T
exp

(
−(x−µ)2

2σ2T

)

with µ = log S(0) + (r− 1
2σ

2)T .

MC Lecture 1 – p. 57

Importance Sampling

A digital put option with very low strike (e.g. K = 0.4 S(0))
is sometimes used as a hedge for credit derivatives.

If the stock price falls that much, there is a strong possibility
of credit default.

Problem: this is a rare event. The probability that S(T) < K
can be very low, maybe less than 1%, leading to a very high
r.m.s. error relative to the true price.

Solution: importance sampling, adjusting either mean or
volatility

MC Lecture 1 – p. 58

Importance Sampling

Approach 1: change the mean from µ1 to µ2 < µ1 by using

X = µ2 + σW (T)

The Radon-Nikodym derivative is

R(X) = exp

(
−(X−µ1)

2

2σ2T

)
/ exp

(
−(X−µ2)

2

2σ2T

)

= exp

(
(X− 1

2(µ1+µ2))(µ1−µ2)

σ2T

)

> 1 for X > 1
2(µ1+µ2)

< 1 for X < 1
2(µ1+µ2)

Choosing µ2=logK means half of samples are below logK
with very small R(X) =⇒ large variance reduction

MC Lecture 1 – p. 59

Importance Sampling

Approach 2: change the volatility from σ1 to σ2 > σ1 by using

X = µ+ σ2W (T)

The Radon-Nikodym derivative is

R(X) = σ−1
1 exp

(
−(X−µ)2

2σ21T

)
/σ−1

2 exp

(
−(X−µ)2

2σ22T

)

=
σ2
σ1

exp

(
−(X−µ)2(σ22−σ21)

2σ21σ
2
2T

)

> 1 for small X

≪ 1 for large X

This is good for applications where both tails are important
– not as good in this application.

MC Lecture 1 – p. 60

Final Words on Variance Reduction

antithetic variables – generic and easy to implement but
limited effectiveness

control variates – easy to implement and can be very
effective but requires careful choice of control variate in
each case

importance sampling – very useful for applications with
rare events, but needs to be fine-tuned for each
application

Overall, a tradeoff between simplicity and generality on one
hand, and efficiency and programming effort on the other.

MC Lecture 1 – p. 61

	Overview
	Geometric Brownian Motion
	Geometric Brownian Motion
	Monte Carlo objectives
	Monte Carlo vs.~finite differences
	Monte Carlo vs.~finite differences
	Monte Carlo vs.~finite differences
	Monte Carlo vs.~finite differences
	Random Number Generation
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Correlated Normal Random Variables
	Correlated Normal Random Variables
	Final RNG advice
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Final Words on Basics
	Variance Reduction
	Review of elementary results
	Antithetic variables
	Antithetic variables
	Antithetic variables
	Control Variates
	Control Variates
	Control Variates
	Control Variates
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Final Words on Variance Reduction

