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SDE path simulation

For the generic stochastic differential equation

dS(t) = a(S) dt+ b(S) dW (t)

an Euler approximation with timestep h is

Ŝn+1 = Ŝn + a(Ŝn)h+ b(Ŝn)Zn

√
h,

where Z is a N(0, 1) random variable. To estimate the value
of a European option

V = E[f(S(T ))],

we take the average of N paths with M timesteps:

V̂ = N−1
∑

i

f(Ŝ
(i)
M
).
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Greeks

As in Module 2, in addition to estimating the expected value

V = E[f(S(T )],

we also want to know a whole range of “Greeks”
corresponding to first and second derivatives of V with
respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.

These are needed for hedging and for risk analysis.
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Finite difference sensitivities

If V (θ) = E[f(S(T ))] for a particular value of an input

parameter θ, then the sensitivity
∂V

∂θ
can be approximated

by one-sided finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ)

∆θ
+ O(∆θ)

or by central finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ−∆θ)

2∆θ
+ O((∆θ)2)

Nothing changes here from Module 2 because of the path
simulation.
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Finite difference sensitivities

As before, the clear advantage of this approach is that it is
very simple to implement (hence the most popular in
practice?)

However, the disadvantages are:

expensive (2 extra sets of calculations for central
differences)

significant bias error if ∆θ too large

large variance if f(S(T )) discontinuous and ∆θ small

Also, very important to use the same random numbers for
the “bumped” path simulations to minimise the variance.
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Likelihood ratio method

As a recap from Module 2, if we define p(S) to the
probability density function for the final state S(T ), then

V = E[f(S(T ))] =

∫
f(S) p(S) dS,

=⇒ ∂V

∂θ
=

∫
f
∂p

∂θ
dS =

∫
f
∂(log p)

∂θ
p dS = E

[
f
∂(log p)

∂θ

]

The quantity
∂(log p)

∂θ
is sometimes called the “score

function”.
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Likelihood ratio method

Extending LRM to a SDE path simulation with M timesteps,

with the payoff a function purely of the discrete states Ŝn,
we have the M -dimensional integral

V = E[f(Ŝ)] =

∫
f(Ŝ) p(Ŝ) dŜ,

where dŜ ≡ dŜ1 dŜ2 dŜ3 . . . dŜM

and p(Ŝ) is the product of the p.d.f.s for each timestep

p(Ŝ) =
∏

n

pn(Ŝn+1|Ŝn)

log p(Ŝ) =
∑

n

log pn(Ŝn+1|Ŝn)
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Likelihood ratio method

For the Euler approximation of GBM,

log pn = − log Ŝn− log σ− 1
2 log(2πh)− 1

2

(
Ŝn+1 − Ŝn(1+r h)

)2

σ2 Ŝ2
n h

=⇒ ∂(log pn)

∂σ
= − 1

σ
+

(
Ŝn+1 − Ŝn(1+r h)

)2

σ3 Ŝ2
n h

=
Z2
n − 1

σ

where Zn is the unit Normal defined by

Ŝn+1 − Ŝn(1+r h) = σ Ŝn

√
hZn
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Likelihood ratio method

Hence, the approximation of Vega is

∂

∂σ
E[f(ŜM )] = E

[(
∑

n

Z2
n−1

σ

)
f(ŜM )

]

Note that again this gives zero for f(S) ≡ 1.

Note also that V[Z2
n − 1] = 2 and therefore

V

[(
∑

n

Z2
n−1

σ

)
f(ŜM )

]
= O(M) = O(T/h)

This O(h−1) blow-up is the great drawback of the LRM.
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Pathwise sensitivities

Under certain conditions (e.g.f(S), a(S, t), b(S, t) all
continuous and piecewise differentiable)

∂

∂θ
E[f(S(T ))] = E

[
∂f(S(T ))

∂θ

]
= E

[
∂f

∂S

∂S(T )

∂θ

]
.

with
∂S(T )

∂θ
computed by differentiating the path evolution.

Pros:

less expensive (1 cheap calculation for each sensitivity)

no bias

Cons:

can’t handle discontinuous payoffs
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Pathwise sensitivities

In Module 2, when we could directly sample S(T ) this led
to the estimator

1

N

N∑

i=1

∂f

∂S
(S(i))

∂S(i)

∂θ

which is the derivative of the usual price estimator

1

N

N∑

i=1

f(S(i))

Gives incorrect estimates when f(S) is discontinuous.

e.g. for digital put
∂f

∂S
= 0 so estimated value of Greek is

zero – clearly wrong.
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Pathwise sensitivities

Returning to the generic stochastic differential equation

dS = a(S) dt+ b(S) dW

an Euler approximation with timestep h gives

Ŝn+1 = Fn(Ŝn) ≡ Ŝn + a(Ŝn)h+ b(Ŝn)Zn

√
h.

Defining ∆n =
∂Ŝn

∂S0
, then ∆n+1 = Dn∆n, where

Dn ≡ ∂Fn

∂Ŝn

= I +
∂a

∂S
h+

∂b

∂S
Zn

√
h.
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Pathwise sensitivities

The payoff sensitivity to the initial state (Deltas) is then

∂f(ŜN )

∂S0
=

∂f(ŜN )

∂ŜN

∆N

If S(0) is a vector of dimension m, then each timestep

∆n+1 = Dn∆n,

involves a m×m matrix multiplication, with O(m3) CPU cost
– costly, but still cheaper than finite differences which are

also O(m3) but with a larger coefficient.

Cost may be less in practice because Dn may have a lot of
zero entries.
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Pathwise sensitivities

To calculate the sensitivity to other parameters (such as
volatility =⇒ vegas) consider a generic parameter θ.

Defining Θn = ∂Ŝn/∂θ, then

Θn+1 =
∂Fn

∂Ŝn

Θn +
∂Fn

∂θ
≡ DnΘn +Bn,

and hence

∂f

∂θ
=

∂f(ŜN )

∂ŜN

ΘN
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Vega example

Suppose we have a down-and-out barrier option based on
a single GBM asset, and we want to compute vega.

Euler approximation with timestep h:

Ŝn+1 = Fn(Ŝn) ≡ Ŝn + r Ŝn h+ σ Ŝn Zn

√
h

Differentiating this gives:

∂Ŝn+1

∂σ
=

∂Ŝn

∂σ

(
1 + r + σZn

√
h
)
+ Ŝn Zn

√
h

with initial condition
∂Ŝ0

∂σ
= 0.
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Vega example

Using the treatment discussed in Module 4, where

pn = pn(Ŝn, Ŝn+1, σ) is conditional probability of being across

the barrier in nth timestep, the discounted payoff is

exp(−rT ) (ŜN−K)+ PN

where

Pn =

n−1∏

m=0

(1− pm),

is probability of not crossing the barrier in first n timesteps,
and P0 = 0.
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Vega example

Since

Pn+1 = Pn (1− pn)

then

∂Pn+1

∂σ
=

∂Pn

∂σ
(1−pn)−Pn

(
∂pn

∂Ŝn

∂Ŝn

∂σ
+

∂pn

∂Ŝn+1

∂Ŝn+1

∂σ
+

∂pn
∂σ

)

with initial condition
∂P0

∂σ
= 0.

The payoff sensitivity is then

exp(−rT )

(
1
ŜN>K

∂ŜN

∂σ
PN + (ŜN−K)+

∂PN

∂σ

)
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Automatic Differentiation

Generating the pathwise sensitivity code is tedious, but
straightforward, and can be automated:

source-source code generation: takes an old code for
payoff evaluation and produces a new code which also
computes sensitivities

operator overloading: defines new object (value +
sensitivity), and re-defines operations appropriately
e.g. (

a

ȧ

)
∗
(

b

ḃ

)
≡
(

a b

ȧ b+ a ḃ

)

For more information, see
www.autodiff.org/

people.maths.ox.ac.uk/gilesm/libor/
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Discontinuous payoffs

Pathwise sensitivity needs the payoff to be continuous.

What can you do when it is not?

for digital options, can use a crude piecewise linear
approximation

alternatively, use conditional expectations which
effectively smooth the payoff

the barrier option is a good example of this, using
the probability of crossing conditional on the path
values at discrete times

Glasserman discusses a similar approach for digital
options, stopping the path simulation one timestep
early then taking a conditional expectation
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Discontinuous payoffs

Glasserman’s approach has problems in multiple
dimensions (hard to evaluate expected value analytically)
so I developed an approach I call “vibrato Monte Carlo”.

It is a hybrid method. Conditional on the path value ŜN−1

one timestep before the end, the value value ŜN has a
Normal distribution, if using an Euler discretisation.

Hence, can use LRM for the final timetsep to get the

sensitivity to changes in ŜN−1, and combine this with

pathwise to get sensitivity of ŜN−1 to the input parameters.

M.B. Giles, ’Vibrato Monte Carlo sensitivities’, pp. 369-392
in Monte Carlo and Quasi Monte Carlo Methods 2008,
Springer, 2009.
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Adjoint approach

The adjoint (or reverse mode AD) approach computes the
same values as the standard (forward) pathwise approach,
but much more efficiently for the sensitivity of a single
output to multiple inputs.

The approach has a long history in applied math and
engineering:

optimal control theory (find control which achieves
target and minimizes cost)

design optimization (find shape which maximizes
performance)
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Adjoint approach

Returning to the generic stochastic o.d.e.

dS = a(S) dt+ b(S) dW,

with Euler approximation

Ŝn+1 = Fn(Ŝn) ≡ Ŝn + a(Ŝn)h+ b(Ŝn)Zn

√
h

if ∆n =
∂Ŝn

∂S0
, then ∆n+1 = Dn∆n, Dn ≡ ∂Fn(Ŝn)

∂Ŝn

,

and hence

∂f(ŜN )

∂S0
=
∂f(ŜN )

∂ŜN

∆N =
∂f

∂S
DN−1DN−2 . . . D0∆0
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Adjoint approach

If S is m-dimensional, then Dn is an m×m matrix,
and the computational cost per timestep is O(m3).

Alternatively,

∂f(ŜN )

∂S0
=

∂f

∂S
DN−1DN−2 · · ·D0∆0 = V T

0 ∆0,

where adjoint Vn =

(
∂f(ŜN )

∂Ŝn

)T

is calculated from

Vn = DT
nVn+1, VN =

(
∂f

∂ŜN

)T

,

at a computational cost which is O(m2) per timestep.
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Adjoint approach

Note the flow of data within the path calculation:

S0 S1 . . . SN−1 SN
✲ ✲ ✲ ✲ ✩

❄

∂f/∂S

✪✛

D0 D1 DN−1

❄ ❄ ❄

✛ ✛ ✛ ✛V0 V1 . . . VN−1 VN

– memory requirements are not significant because data
only needs to be stored for the current path.
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Adjoint approach

To calculate the sensitivity to other parameters, consider a

generic parameter θ. Defining Θn = ∂Ŝn/∂θ, then

Θn+1 =
∂Fn

∂S
Θn +

∂Fn

∂θ
≡ DnΘn +Bn,

and hence

∂f

∂θ
=

∂f

∂ŜN

ΘN

=
∂f

∂ŜN

{
BN−1 +DN−1BN−2 + . . .

+DN−1DN−2 . . . D1B0

}

=

N−1∑

n=0

V T
n+1Bn.
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Adjoint approach

Different θ’s have different B’s, but same V ’s

=⇒ Computational cost ≃ m2 + m× # parameters,

compared to the standard forward approach for which

Computational cost ≃ m2 × # parameters.

However, the adjoint approach only gives the sensitivity of
one output, whereas the forward approach can give the
sensitivities of multiple outputs for little additional cost.
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LIBOR Market Model

Finite differences versus forward pathwise sensitivities:
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LIBOR Market Model

Forward versus adjoint pathwise sensitivities:
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Conclusions

Greeks are vital for hedging and risk analysis

Finite difference approximation is simplest to
implement, but far from ideal

Likelihood ratio method for discontinuous payoffs

In all other cases, pathwise sensitivities are best

Payoff smoothing may handle the problem of
discontinuous payoffs

Adjoint pathwise approach gives an unlimited number of
sensitivities for a cost comparable to the initial valuation
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