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Monte Carlo methods

In option pricing there are two main approaches:

Monte Carlo methods for estimating expected values of
financial payoff functions based on underlying assets.

E.g., we want to estimate E[f(S(T ))] where

S(T ) = S0 exp
(
(r− 1

2σ
2)T + σW (T )

)

and W (T ) is driving Brownian motion at terminal time T

Numerical approximation of the PDE which describes
the evolution of the expected value.

u(s, t) = E
[
f(S(T )) | S(t) = s

]

Usually less costly than MC when there are very few
underlying assets (M ≤ 3), but much more expensive
when there are many. MC Lecture 1 – p. 2

Geometric Brownian Motion

In this first lecture, we consider M underlying assets, each
modelled by Geometric Brownian Motion

dSi = r Si dt+ σi Si dWi

so Ito calculus gives us

Si(T ) = Si(0) exp
(
(r − 1

2σ
2
i )T + σiWi(T )

)

in which each Wi(T ) is Normally distributed with zero mean
and variance T .

We can use standard Random Number Generation
software (e.g. randn function in MATLAB) to generate
samples of each Wi(T ), but there is a problem . . .
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Correlated Brownian Motions

Different assets do not behave independently – on average,
they tend to move up and down together.

This is modelled by introducing correlation between the
driving Brownian motions so that

E [Wi(T ) Wj(T )] = Ωi,j T

where Ωi,j is the correlation coefficient, and hence

E
[
W (T ) W (T )T

]
= Ω T.

How do we generate samples of Wi(T )?
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Correlated Normal Random Variables

Suppose x is a vector of independent N(0, 1) variables, and
define a new vector y = Lx.

Each element of y is Normally distributed, E[y] = LE[x] = 0,
and

E[y yT ] = E[LxxT LT ] = LE[xxT ]LT = LLT .

since E[xxT ] = I because

elements of x are independent =⇒ E[xi xj ] = 0 for i 6= j

elements of x have unit variance =⇒ E[x2i ] = 1
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Correlated Normal Random Variables

To get E[y yT ] = Ω, we need to find L such that

LLT = Ω

L is not uniquely defined – simplest choice is to use a
Cholesky factorization in which L is lower-triangular,
with a positive diagonal.

In MATLAB, this is achieved using

L = chol(Omega,’lower’);
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Basket Call Option

In a basket call option, the discounted payoff function is

f = exp(−r T )

(
1

M

∑

i

Si(T )−K

)+

where K is the strike, r is the risk-free interest rate, and
(x)+ ≡ max(x, 0).

Monte Carlo estimation of E[f(S(T ))] is very simple – we
generate N independent samples of W (T ), compute S(T ),
and then average to get

fN ≡ N−1
N∑

n=1

f (n) ≈ E[f ]
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Monte Carlo Error and CLT

This MC estimate is unbiased, meaning that the average
error is zero

E[εN ] = 0

where εN is the error fN − E[f ].

In addition, the Central Limit Theorem proves that for large
N the error is asymptotically Normally distributed

εN (f) ∼ σ N−1/2Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = V[f ] ≡ E
[
(f − E[f ])2

]
.
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CLT

This means that

P
[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

≈ 1− 2 Φ(−s),

where Φ(s) is the Normal CDF (cumulative distribution
function).

Typically we use s = 3, corrsponding to a 3-standard
deviation confidence interval, with 1− 2 Φ(−s) ≈ 0.997.

Hence, with probability 99.7%, we have
∣∣∣N1/2σ−1εN

∣∣∣ < 3 =⇒ |εN | < 3σ N−1/2

This bounds the accuracy, but we need an estimate for σ.
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Empirical Variance

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(
f (n) − fN

)2
= f2 − (f)2

where

f = N−1
N∑

n=1

f (n), f2 = N−1
N∑

n=1

(
f (n)

)2

σ̃2 is a slightly biased estimator for σ2 – an unbiased
estimator is

σ̂2 =
N

N−1
σ̃2 =

N

N−1

(
f2 − (f)2

)
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Applications

Geometric Brownian motion for single asset:

S(T ) = S0 exp
(
(r − 1

2σ
2)T + σW (T )

)

For the European call option,

f(S) = exp(−rT ) (S−K)+

where K is the strike price.

For numerical experiments we will consider a European call
with r=0.05, σ = 0.2, T =1, S0=110, K=100.

The analytic value is known for comparison.
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Applications

MC calculation with up to 106 paths; true value = 17.663
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Applications

The upper and lower bounds are given by

Mean± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies
within these bounds.
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Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1:1000000;

Y = randn(1,max(N)); % Normal random variables

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.ˆ2); % payoff and its square

val = sum1./N;

sd = sqrt(sum2./N - val.ˆ2);
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Applications

err = european_call(r,sig,T,S0,K,’value’) - val;

plot(N,err, ...

N,err-3*sd./sqrt(N), ...

N,err+3*sd./sqrt(N))

axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’)

legend(’MC error’,’lower bound’,’upper bound’)
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Applications

CLT: 100 independent tests, each with 100 samples
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Applications

CLT: 104 independent tests, each with 100 samples
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Applications

CLT: 104 independent tests, each with 104 samples
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Basket call option

5 underlying assets starting at S0 = 100, with call option
on arithmetic mean with strike K = 100

Geometric Brownian Motion model, r = 0.05, T = 1

volatility σ = 0.2 and correlation matrix

Ω =




1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1

0.1 0.1 1 0.1 0.1

0.1 0.1 0.1 1 0.1

0.1 0.1 0.1 0.1 1
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Applications

r=0.05; sigma=0.2; rho=0.1; T=1; K=100; S0=100;

N = 10ˆ5; % number of MC samples

Omega = eye(5) + rho*(ones(5)-eye(5));

L = chol(Omega,’lower’); % Cholesky factorisation

W = sqrt(T)*L*randn(5,N);

S = S0.*exp((r-0.5*sigmaˆ2)*T + sigma*W);

S = 0.2*sum(S,1); % average asset value

F = exp(-r*T)*max(S-K,0); % call option

val = sum(F)/N % mean and its std. dev.

sd = sqrt( (sum(F.ˆ2)/N - val.ˆ2)/(N-1) )
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Variance Reduction

Monte Carlo is a very simple method; it gets complicated
when we try to reduce the variance, and hence the number
of samples required.

There are several approaches:

antithetic variables

control variates

importance sampling

stratified sampling

Latin hypercube

quasi-Monte Carlo

We will discuss control variates.
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Review of elementary results
If a, b are random variables, and λ, µ are constants, then

E[a+ µ] = E[a] + µ

V[a+ µ] = V[a]

E[λ a] = λ E[a]

V[λ a] = λ2V[a]

E[a+ b] = E[a] + E[b]

V[a+ b] = V[a] + 2Cov[a, b] +V[b]

where

V[a] ≡ E
[
(a− E[a])2

]
= E

[
a2
]
− (E[a])2

Cov[a, b] ≡ E
[
(a− E[a]) (b− E[b])

]
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Review of elementary results

If a, b are independent random variables then

E[f(a) g(b)] = E[f(a)] E[g(b)]

Hence, Cov[a, b] = 0 and therefore V[a+ b] = V[a] +V[b]

Extending this to a set of N iid (independent identically
distributed) r.v.’s xn, we have

V

[
N∑

n=1

xn

]
=

N∑

n=1

V[xn] = N V[x]

and so

V

[
N−1

N∑

n=1

xn

]
= N−1V[x]
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Control Variates

Suppose we want to approximate E[f ] using a simple
Monte Carlo average f .

If there is another payoff g for which we know E[g], can use
g − E[g] to reduce error in f − E[f ].

How? By defining a new estimator

f̂ = f − λ (g−E[g])

Again unbiased since E[f̂ ] = E[f ] = E[f ]
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Control Variates

For a single sample,

V[f − λ (g−E[g])] = V[f ]− 2λCov[f, g] + λ2V[g]

For an average of N samples,

V[f − λ (g−E[g])] = N−1
(
V[f ]− 2λCov[f, g] + λ2V[g]

)

To minimise this, the optimum value for λ is

λ =
Cov[f, g]
V[g]
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Control Variates

The resulting variance is

N−1 V[f ]
(
1− (Cov[f, g])2

V[f ]V[g]

)
= N−1 V[f ]

(
1− ρ2

)

where ρ is the correlation between f and g.

The challenge is to choose a good g which is well
correlated with f – the covariance, and hence the optimal λ,
can be estimated from the data.
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Control Variates

For a basket option with M underlying assets, we know that
for each asset

E[exp(−r T )Si(T )] = Si(0)

so we could use

g = exp(−r T )
1

M

M∑

m=1

Si(T )

with

E[g] = 1

M

M∑

m=1

Si(0)

Numerical test will do the simpler scalar case with M=1.
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Application

MATLAB code, part 1 – estimating optimal λ:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1000;

Y = randn(1,N); % Normal random variable

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

C = exp(-r*T)*S;

Fave = sum(F)/N;

Cave = sum(C)/N;

lam = sum((F-Fave).*(C-Cave)) / sum((C-Cave).ˆ2);
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Application

MATLAB code, part 2 – control variate estimation:

N = 1e5;

Y = randn(1,N); % Normal random variable

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

C = exp(-r*T)*S;

F2 = F - lam*(C-S0);

Fave = sum(F)/N;

F2ave = sum(F2)/N;

sd = sqrt( sum((F -Fave ).ˆ2)/(N*(N-1)) );

sd2 = sqrt( sum((F2-F2ave).ˆ2)/(N*(N-1)) );
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Application

Results:

>> cv

estimated price (without CV) = 17.624089 +/- 0.178710
estimated price (with CV) = 17.651112 +/- 0.045128
exact price = 17.662954
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Final words

Monte Carlo estimation is very simple, and efficient
when there are multiple underlying assets

Need to generate correlated Normal random variables

Central Limit Theorem (CLT) is very important in giving
a confidence interval for the computed value

The use of a control variate with known expected value
can greatly reduce the number of MC samples required
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Greeks

In Monte Carlo applications we don’t just want to know the
expected discounted value of some payoff

V = E[f(S(T ))]

For hedging and risk analysis, we also want to know a
whole range of “Greeks” corresponding to first and second
derivatives of V with respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.
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Finite difference sensitivities

If V (θ) = E[f(S(T ))] for an input parameter θ is sufficiently

differentiable, then the sensitivity
∂V

∂θ
can be approximated

by one-sided finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ)

∆θ
+ O(∆θ)

or by central finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ−∆θ)

2∆θ
+ O((∆θ)2)

(This approach is referred to as getting Greeks by
“bumping” the input parameters.)
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Finite difference sensitivities

The clear advantage of this approach is that it is very
simple to implement (hence the most popular in practice?)

However, the disadvantages are:

expensive (2 extra sets of calculations for central
differences)

significant bias error if ∆θ too large

machine roundoff errors if ∆θ too small

large variance if f(S(T )) discontinuous and ∆θ small
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Finite difference sensitivities

Let X(i)(θ+∆θ) and X(i)(θ−∆θ) be the values of f(S(T ))
obtained for different MC samples, so the central difference

estimate for
∂V

∂θ
is given by

Ŷ =
1

2∆θ

(
N−1

N∑

i=1

X(i)(θ+∆θ)−N−1
N∑

i=1

X(i)(θ−∆θ)

)

=
1

2N∆θ

N∑

i=1

(
X(i)(θ+∆θ)−X(i)(θ−∆θ)

)
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Finite difference sensitivities

If independent samples are taken for both X(i)(θ+∆θ) and
X(i)(θ−∆θ) then

V[Ŷ ] ≈
(

1

2N∆θ

)2∑

j

(
V[X(θ+∆θ)] +V[X(θ−∆θ)]

)

≈
(

1

2N∆θ

)2

2N V[f ]

=
V[f ]

2N(∆θ)2

which is very large for ∆θ ≪ 1.
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Finite difference sensitivities

It is much better for X(i)(θ+∆θ) and X(i)(θ−∆θ) to use the
same set of random inputs.

If X(i)(θ) is differentiable with respect to θ, then

X(i)(θ+∆θ)−X(i)(θ−∆θ) ≈ 2∆θ
∂X(i)

∂θ

and hence

V[Ŷ ] ≈ N−1 V
[
∂X

∂θ

]
,

which behaves well for ∆θ ≪ 1, so one should choose a
small value for ∆θ to minimise the bias due to the finite
differencing.
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Finite difference sensitivities

However, there are problems if ∆θ is chosen to be
extremely small.

In finite precision arithmetic, computing X(θ) has an error
which is approximately random with r.m.s. magnitude δ

single precision δ ≈ 10−6|X|
double precision δ ≈ 10−14|X|

Hence, should choose bump ∆θ so that

|X(θ+∆θ)−X(θ−∆θ)| ≫ δ

Most banks probably use double precision to be safe.
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Finite difference sensitivities

Next, we analyse the variance of the finite difference
estimator when the payoff is discontinuous.

The problem is that a small bump in the asset S can
produce a big bump in the payoff – not differentiable

✲

✻

①

①

K S

P
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Finite difference sensitivities

What is the probability that S(θ ±∆θ) will be on different
sides of the discontinuity?

Separation of S(θ ±∆θ) is O(∆θ)

P( |S(θ)−K| < c∆θ) = O(∆θ)

Hence, O(∆θ) probability of straddling the strike.

This leads to a variance which is O(N−1∆θ−1).
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Finite difference sensitivities

So, small ∆θ gives a large variance, while a large ∆θ gives
a large finite difference discretisation error.

To determine the optimum choice we use this result:

E
[(

Ŷ − E[Y ]
)2]

= V[Ŷ ] +
(
E[Ŷ ]−E[Y ]

)2

Mean Square Error = variance + (bias)2

In our case, we have

V[Ŷ ] + (bias)2 ∼ a

N ∆θ
+ b∆θ4.

which can be minimised by choosing ∆θ appropriately.

MC Lecture 2 – p. 11

Pathwise sensitivities

We start with

V ≡ E [f(S(T ))] =

∫
f(S(T )) pW (W ) dW

where pW (W ) is the probability density function for W (T ),
and differentiate this to get

∂V

∂θ
=

∫
∂f

∂S

∂S(T )

∂θ
pW dW = E

[
∂f

∂S

∂S(T )

∂θ

]

with ∂S(T )/∂θ being evaluated at fixed W .
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Pathwise sensitivities

This leads to the estimator

1

N

N∑

i=1

∂f

∂S
(S(i))

∂S(i)

∂θ

which is the derivative of the usual price estimator

1

N

N∑

i=1

f(S(i))

Gives incorrect estimates when f(S) is discontinuous.

e.g. for digital put
∂f

∂S
= 0 so estimated value of Greek is

zero – clearly wrong.
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Pathwise sensitivities

To handle payoffs which do not have the necessary
continuity/smoothness one can modify the payoff

For digital options it is common to use a piecewise linear
approximation to limit the magnitude of ∆ near maturity
– avoids large transaction costs

Bank selling the option will price it conservatively
(i.e. over-estimate the price)

✲

✻

S
K

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄
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SDE Path Simulation

So far, we have considered European options with assets
satisfying Geometric Brownian Motion SDEs

Now we consider the more general case in which the
solution to the SDE needs to be approximated because

the option is path-dependent, and/or

the SDE is not integrable
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Euler-Maruyama method

The simplest approximation for the scalar SDE

dS = a(S, t) dt+ b(S, t) dW

is the forward Euler scheme, which is known as the
Euler-Maruyama approximation when applied to SDEs:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Here h is the timestep, Ŝn is the approximation to S(nh) and
the ∆Wn are i.i.d. N(0, h) Brownian increments.

For ODEs, the O(h) accuracy of forward Euler method is
considered poor, but for SDEs it is very hard to do better.
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Weak convergence

In finance applications, mostly concerned with weak
errors, the error in the expected payoff. For a European
payoff f(S(T )) this is

E[f(S(T ))]− E[f(ŜT/h)]

and it is of order α if

E[f(S(T ))]− E[f(ŜT/h)] = O(hα)

For a path-dependent option, the weak error is

E[f(S)]− E[f̂(Ŝ)]

where f(S) is a function of the entire path S(t), and f̂(Ŝ) is
a corresponding approximation. MC Lecture 2 – p. 17

Weak convergence

Key theoretical result (Bally and Talay, 1995):

If p(S) is the p.d.f. for S(T ) and p̂(S) is the p.d.f. for ŜT/h

computed using the Euler-Maruyama approximation,
then if a(S, t) and b(S, t) are Lipschitz w.r.t. S, t

‖p(S)− p̂(S)‖1 = O(h)

and hence for bounded payoffs

E[f(S(T ))]− E[f(ŜT/h)] = O(h)

This holds even for digital options with discontinuous
payoffs f(S). Earlier theory covered only European options
such as put and call options with Lipschitz payoffs.
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Weak convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1

European call: S0 = 100,K = 110.

Plot shows weak error versus analytic expectation when
using 108 paths, and also Monte Carlo error (3 standard
deviations)
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Weak convergence

Comparison to exact solution:
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Weak convergence

Previous plot showed difference between exact expectation
and numerical approximation.

What if the exact solution is unknown? Compare
approximations with timesteps h and 2h.

If
E[f(S(T ))]− E[f(Ŝh

T/h)] ≈ a h

then
E[f(S(T ))]− E[f(Ŝ2h

T/2h)] ≈ 2 a h

and so
E[f(Ŝh

T/h)]− E[f(Ŝ2h
T/2h)] ≈ a h
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Weak convergence

To minimise the number of paths that need to be simulated,
best to use same driving Brownian path when doing 2h
and h approximations – i.e. take Brownian increments for h
simulation and sum in pairs to get Brownian increments for
2h simulation.

This is like using the same driving Brownian paths for finite
difference Greeks. The variance is lower because the h and
2h paths are close to each other (strong convergence).
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Weak convergence

Comparison to 2h approximation:
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Barrier option

Some path-dependent options give only O(
√
h) weak

convergence if the numerical payoff is not constructed
carefully.

A down-and-out call option has discounted payoff

exp(−rT ) (ST −K)+1mint S(t)>B

i.e. it is like a standard call option except that it pays nothing
if the minimum value drops below the barrier B.

The natural numerical discretisation of this is

f = exp(−rT ) (ŜM −K)+1
minn Ŝn>B
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Barrier option

Numerical demonstration: Geometric Brownian Motion

dSt = r St dt+ σ St dWt

r = 0.05, σ = 0.5, T = 1

Down-and-out call: S0 = 100,K = 110, B = 90.

Plots shows weak error versus analytic expectation using
106 paths, and difference from 2h approximation using
105 paths.

(We don’t need as many paths as before because the weak
errors are much larger in this case.)
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Barrier option

Comparison to exact solution:
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Barrier option

Comparison to 2h approximation:
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Lookback option

A floating-strike lookback call option has discounted payoff

exp(−rT )

(
ST −min

[0,T ]
St

)

The natural numerical discretisation of this is

f = exp(−rT )
(
ŜM −min

n
Ŝn

)
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Lookback option

Comparison to exact solution
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Lookback option

Comparison to 2h approximation
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Brownian Bridge

To recover O(h) weak convergence we need some theory.

Consider simple Brownian motion

dS = a dt+ b dW

with constant a, b.

If we know the values Sn, Sn+1 at times tn, tn+1 = tn+h,
the Brownian Bridge construction considers the conditional
behaviour of S(t) within the timestep tn<t<tn+1.
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Brownian Bridge

Two key results:

The probability of the minimum dropping below B is:

P( min
tn<t<tn+1

S(t)<B | Sn, Sn+1 > B)

= exp

(
− 2 (Sn+1−B) (Sn−B)

b2h

)

A sample of the conditional minimum is given by

Smin = 1
2

(
Sn+1 + Sn −

√
(Sn+1−Sn)2 − 2 b2h logUn

)

where Un is a uniform [0, 1] random variable.
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Barrier option

Returning now to the barrier option, how do we define the
numerical payoff f̂(Ŝ)?

First, calculate Ŝn as usual using Euler-Maruyama method.

Second, two alternatives:

use (approximate) probability of crossing the barrier

directly sample (approximately) the minimum in each
timestep
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Barrier option

Alternative 1: treating the drift and volatility as being
approximately constant within each timestep, the probability
of having crossed the barrier within timestep n is

Pn = exp

(
− 2 (Ŝn+1−B)+ (Ŝn−B)+

b2(Ŝn, tn) h

)

Probability at end of not having crossed barrier is∏

n

(1− Pn) and so the payoff is

f̂(Ŝ) = exp(−rT ) (ŜM −K)+
∏

n

(1− Pn).

I prefer this approach because it is differentiable – good for
Greeks MC Lecture 2 – p. 34

Barrier option

Alternative 2: again treating the drift and volatility as being
approximately constant within each timestep, define the
minimum within timestep n as

M̂n = 1
2

(
Ŝn+1 + Ŝn −

√
(Ŝn+1−Ŝn)2 − 2 b2(Ŝn, tn)h logUn

)

where the Un are i.i.d. uniform [0, 1] random variables.

The payoff is then

f̂(Ŝ) = exp(−rT ) (ŜM −K)+ 1
minn M̂n>B

With this approach one can stop the path calculation as
soon as one M̂n drops below B.
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Weak convergence

Barrier: comparison to solution
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Weak convergence

Barrier: h versus 2h solution
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Lookback option

This is treated in a similar way to Alternative 2 for the
barrier option.

We construct a minimum M̂n within each timestep and then
the payoff is

f̂(Ŝ) = exp(−rT )
(
ŜM −min

n
M̂n

)

This is differentiable, so good for Greeks – unlike
Alternative 2 for the barrier option.
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Weak convergence

Lookback: comparison to true solution
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Weak convergence

Lookback: h versus 2h solution
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Final Words

The Greeks are very important

“Bumping” is the standard approach, but Pathwise
Sensitivity analysis is more efficient and more accurate,
provided the payoff does not have a discontinuity

The Euler-Maruyama method is used for
path-dependent payoffs and general SDEs

It gives O(h) weak convergence – the error (bias) in the
expected value

Care must be taken with some path-dependent options
to achieve this order of convergence.
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