
Stochastic Simulation: Lecture 10

Prof. Mike Giles

Oxford University Mathematical Institute

Stochastic chemical reactions

The SSA algorithm (and other equivalent methods) computes each
reaction one by one – exact but very costly

“Tau-leaping” is equivalent to the Euler-Maruyama method for
SDEs – the rates λk are frozen at the start of the timestep,
so for each timestep of size h just need a sample from a Poisson
distribution Poiss(λk h) to obtain the number of reactions in that
timestep.

i.e. for piecewise constant λ(s),

Y

(∫ (n+1) h

0
λ(s) ds

)
− Y

(∫ n h

0
λ(s) ds

)
∼ Poiss(λ h)

Stochastic chemical reactions

Anderson & Higham (2012) developed (and analysed) a very
elegant and efficient multilevel version of this algorithm – big
savings because finest level usually has 1000’s of timesteps.

Key challenge: how to couple coarse and fine path simulations?

Crucial observation: for t1, t2 ≥ 0

Poiss(t1) + Poiss(t2)
d
= Poiss(t1+t2)

Stochastic chemical reactions

Solution (for uniform timesteps with refinement factor of 2)

I simulate the Poisson variable on the coarse timestep as the
sum of two fine timestep Poisson variables

I couple the fine path and coarse path Poisson variables by
using common variable based on smaller of two rates

tn tn+1 tn+2

λcn h λcn h

λfn h λfn+1 h

If λfn < λcn, use Poiss(λcn h) ∼ Poiss(λfn h) + Poiss((λcn−λfn) h)
If λcn < λfn, use Poiss(λfn h) ∼ Poiss(λcn h) + Poiss((λfn−λcn) h)

Tau-leaping MLMC algorithm

Input: fine timestep h, final time T = N h, refinement factor M,
initial states X̂ f = X̂ c =X

for n = 1,N do
for each k do

compute λfk , and also λck if mod(n−1,M) = 0
R1,k := Poiss(min(λfk , λ

c
k)h)

R2,k := Poiss(|λfk−λck |h)

X̂ f := X̂ f + (R1,k + 1λfk>λ
c
k
R2,k) ζK

X̂ c := X̂ c + (R1,k + 1λck>λ
f
k
R2,k) ζK

end for
end for

Numerical analysis

Anderson & Higham also analysed the variance and proved that

E[‖X̂ f − X̂ c‖2] = O(h).

Since the cost is O(h−1) this is very similar to the Euler-Maruyama
method applied to SDEs, and the overall complexity is
O(ε−2| log ε|2) for ε RMS error (independent of the total number
of reactions performed).

Alternative couplings

The Anderson/Higham coupling is very elegant and effective,
but not the only possibility

The key thing is to

I make sure the telescoping sum is respected so you are
estimating the same E[P`] in both E[P`+1−P`] and
E[P`−P`−1]

I try to minimise the variance V[P`−P`−1]

Alternative couplings: I

Go back to original formulation of tau-leaping

X̂ (tn) = X̂ (0) +
∑
k

Rk(tn) ζk

where

Rk(t) = Yk

(∫ t

0
λk(X̂ (s))ds

)
and

X̂ (s) = X̂ (tm), for s ∈ [tm, tm+1),

and use the same underlying unit-rate Poisson process Yk for both
fine and coarse paths.

Alternative couplings: I

The implementation might be quite tricky – I don’t think anyone
has tried this.

Might require “Binomial bridge” conditional sampling:
given Y (t1) and Y (t2), then for any t1 < t < t2 we know that

Y (t)− Y (t1) ∼ B (Y (t2)−Y (t1), (t−t1)/(t2−t1))

where B(n, p) returns value k with probability

(
n
k

)
pk(1−p)k

Alternative couplings: II

For a scalar random variable X with a cumulative ditribution
function (CDF)

C (x) = P(X < x)

can generate samples X using X = C−1(U) where U is a uniform
random variable on (0, 1).

For the coupling, we need two Poisson variates Poiss(λ1 h) and
Poiss(λ2 h) for the same fine timestep. Hence, use the same U,
and invert slightly different Poisson CDF’s to obtain the random
variables.

Alternative couplings: II

Input: fine timestep h, final time T = N h, initial states
X̂ f = X̂ c =X

for n = 1,N do
for each k do

compute λfk , and also λck if mod(n−1,M) = 0
generate uniform r.v. U
R f
k := C−1

Poiss(λfk h,U)
Rc
k := C−1

Poiss(λck h,U)

X̂ f := X̂ f + R f
k ζK

X̂ c := X̂ c + Rc
k ζK

end for
end for

MLMC

Previously, I have said that the usual MLMC estimator is

Y` = P̂`(ω)− P̂`−1(ω)

for the same ω ∈ Ω.

That works in many situations, but sometimes (as in this case)
it is not clear what it means to have the same ω for both P̂`
and P̂`−1.

What we really need is

I E[Y`] = E[P̂`]− E[P̂`−1]

I V[Y`]� 1

MLMC

So a more general definition is

Ŷ` = P̂`(µ)− P̂`−1(ν)

where the joint distribution (µ, ν) has the correct marginals for µ
and ν.

This links to the Wasserstein metric measuring the distance
between two probability measures µ, ν:

Wp(µ, ν) ≡ (inf E[d(X ,Y)p])1/p

where the inf is over all couplings such that X and Y have
marginals µ and ν respectively. In 1D, an optimal coupling is given
by

X =C−1
µ (U), Y =C−1

ν (U),

where U ∼ U(0, 1) is a unit interval uniform r.v.

Extra bits

Once the timestep is reduced down to a size for which there are
very few reactions per timestep, it makes sense to switch to SSA.

Anderson & Higham (2012) came up with a very nice way to
couple the finest tau-leaping level to an SSA treatment, so the
final algorithm is unbiased.

The key idea is the “coarse” path uses tau-leaping, and the
“fine” path uses the exact updating of the rates λ, and each
reaction k can be split it into two reactions:

I one with rate min(λf , λc)

I one with rate |λf −λc |
then use either Direct Method or Next Reaction Method for
coupled simulation.

This leads to an O(ε−2) complexity overall, with only a
(logN)2 dependence on the number of reactions per path.

Extra bits

Model reduction: some biochemical reaction networks are very
complex – can use a simpler approximate model (e.g. based on
some forward-backward reactions being in equilibrium) as an
additional “level”

Anderson & Higham (2012) also give an example of this.

Extra bits – adaptation

Adaptive time-stepping:

I Can be helpful to improve accuracy, especially when there is a
fast initial transient.

I MLMC treatment essentially the same as for SDEs.

Adaptive treatment of reactions:

I some handled by SSA, some by tau-leaping, perhaps even
some as Langevin SDEs

I This has been explored by Moraes et al (2016)

Extra bits – level 0 c.v.

Moraes et al (2016) also introduced an interesting control variate
for the very coarsest tau-leaping level.

Start from

X (t) = X (0) +
∑
k

Yk

(∫ t

0
λk(X (s))ds

)
ζk ,

replace Yk by identity, since E[Yk(s)]=s, to get

Z (t) = X (0) +
∑
k

(∫ t

0
λk(Z (s))ds

)
ζk , =⇒ Ż =

∑
k

λk ζk

and then we have the approximation

X̃ (t) = X (0) +
∑
k

Yk

(∫ t

0
λk(Z (s))ds

)
ζk .

Extra bits – level 0 c.v.

Defining

K =

∫ T

0
λk(Z (s))ds

then
E[X̃ (T)] = X (0) +

∑
k

K ζk

and for any polynomial f (X) can compute E[f (X̃ (T))].

X̃ (T) can then be simulated using the same Yk as the coarsest
level tau-leaping X̂ simulation.

Extra bits

Probably good opportunities for further research in this area

Maybe explore applications in stochastic event simulation for
Operational Research?

Also interesting challenges in writing generic high performance
software

Key references

D.F. Anderson, D.J. Higham. “Multi-level Monte Carlo for
continuous time Markov chains, with applications in biochemical
kinetics”. SIAM Multiscale Modelling and Simulation,
10(1):146-179, 2012.

D.F. Anderson, D.J. Higham, Y. Sun. “Complexity of multilevel
Monte Carlo tau-leaping”. SIAM Journal on Numerical Analysis,
52(6):3106-3127, 2014.

A. Moraes, R. Tempone, P. Vilanova. “A multilevel adaptive
reaction-splitting simulation method for stochastic reaction
networks”. SIAM Journal on Scientific Computing,
38(4):A2091-A2117, 2016.

