
Monte Carlo Methods for Uncertainty Quantification: Practical 1

1. (a) Download from the course webpage the Matlab routines ncf.m,

ncfinv.m and check what they do.

(b) Generate 106 uniform random variables using rand, then convert
them into 106 unit Normal variables using ncfinv. Check that
they have the expected mean and variance.

(c) Given a covariance matrix

Σ =

 4 1 1
1 4 1
1 1 4


perform a Cholesky factorisation using Matlab function
chol(S,’lower’) to obtain a lower-triangular matrix L such that

Σ = LLT

Use this matrix L to convert 3 × 106 independent unit Normals
(generated using Matlab function randn) into 106 vectors of
Normals with the desired covariance. Check that they have the
expected mean and covariance.

(d) Repeat the previous item using the PCA factorisation of Σ (using
Matlab function eig).

2. Let U be uniformly distributed on [0, 1]. You are to use Monte Carlo
simulation to estimate the value of

f = E[f(U)] =

∫ 1

0

f(U) dU

where
f(x) = x cos πx.

(a) Calculate analytically the exact value for f and

σ2 = E[(f(U) − f)2] =

∫ 1

0

(f(U) − f)2 dU

(b) Using the Matlab rand function, write a Matlab program which
computes

Ym = N−1

N∑
n=1

f(U (m,n))

for 1000 different sets of 1000 independent random variables
U (m,n).

1



(c) Sort the Ym into ascending order, and then plot
Cm = (m− 1/2)/1000 versus Ym – this is the numerical
cumulative distribution function.

Superimpose on the same plot the cumulative distribution
function you would expect from the Central Limit Theorem (using
my ncf or ncfinv functions) and comment on your results.

You may like to experiment by trying larger or smaller sets of
points to improve your understanding of the asymptotic behaviour
described by the CLT.

(d) Modify your code to use a single set of 106 random numbers, and
plot

YN = N−1

N∑
n=1

f(U (n))

versus N for N = 103 − 106. This should demonstrate the
convergence to the true value predicted by the Strong Law of
Large Numbers.

Following the Matlab code in lecture 1, for each N , also compute
an unbiased estimate for the variance σ2 and hence add to the
plot upper and lower confidence bounds based on 3 standard
deviations of the variation in the mean.

Add a line corresponding to the true value. Does this lie inside the
bounds?

3. For the case of Geometric Brownian Motion and a European call
option, with parameters, r=0.05, σ=0.2, T =1, S0 =100, K=100,
investigate the following forms of variance reduction:

(a) First, try antithetic variables using 1
2

(f(Y ) + f(−Y )) where Y is
the N(0, 1) Normal random variable defined as Φ−1(U), and U is
the uniform (0, 1) random variable.

What is the estimated correlation between f(Y ) and f(−Y )? How
much variance reduction does this give?

(b) Second, try using exp(−rT )ST as a control variate, given that its
expected value is S0.

Again, how much variance reduction does this give?

2



4. Consider the case of a basket option based on 5 underlying assets, with
r=0.05, T =1, and all 5 starting at S0 =100, and with the covariance
matrix being

Σ = σ2


1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 1


where σ=0.2. Consider a call option based on an equally-weighted
average of the 5 assets, with strike K=100.

Investigate the variance reduction given by

(a) Latin Hypercube, using 1000 strata in each direction.

(You may find it helpful to use the Matlab randperm function.)

(b) Sobol quasi-random points, using 32 sets of scrambled points, and
increasing the number of points within each set in powers of 2.

(As an alternative to Sobol points, you may like to try the lattice
points generated by Dirk Nuyens’ MATLAB codes on the webpage
http://people.cs.kuleuven.be/∼dirk.nuyens/qmc-generators/

)

In each case, check to see whether it makes a difference whether you
use Cholesky or PCA factorisation.

3


