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Outline and objectives

key ideas

application to basket options

extensions to Greeks and Lévy processes

future application to VaR

I hope to emphasise:

the simplicity of the idea – easy to add to existing codes

scope for improved performance through being creative

lots of people working on a variety of applications
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Generic Problem

Suppose we have an option with payoff P on multiple underlying assets,
each of which satisfies an SDE with general drift and volatility terms:

dSt = a(St , t)dt + b(St , t)dWt

Will simulate these using the Milstein scheme:

Ŝn+1 = Ŝn + a h + b∆Wn +
1
2 b b

′

(
(∆Wn)

2 − h
)

which gives first order weak and strong convergence:

E[ P̂ − P ] = O(h)

(
E[ sup

[0,T ]
(Ŝt−St)

2]

)1/2

= O(h)
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Standard MC Approach

Mean Square Error is O(N−1 + h2)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this to O(ε−2), by combining simulations with different
numbers of timesteps
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Control variate

Classic approach to MC variance reduction: approximate E[f ] using

N−1
N∑

n=1

{
f (ω(n))− λ

(
g(ω(n))− E[g ]

)}

where

control variate g has known expectation E[g ]

g is well correlated with f , and optimal value for λ can be
estimated by a few samples

For the optimal value of λ, the variance is reduced by factor (1−ρ2),
where ρ is the correlation between f and g .
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to simulate f0 ≈ f1,
then since

E[f1] = E[f0] + E[f1−f0]

we can use the estimator

N−1
0

N0∑

n=1

f
(0,n)
0 + N−1

1

N1∑

n=1

(
f
(1,n)
1 − f

(1,n)
0

)

Two differences from standard control variate method:

E[f0] is not known, so has to be estimated

λ = 1

Benefit: if f1−f0 is small, won’t need many samples to accurately estimate
E[f1−f0], so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence f0, f1, . . . , fL

E[fL] = E[f0] +

L∑

ℓ=1

E[fℓ−fℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

f
(0,n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
f
(ℓ,n)
ℓ − f

(ℓ,n)
ℓ−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of f0

Cℓ,Vℓ to be cost and variance of fℓ−fℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑

k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑

ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level

Mike Giles (Oxford) Multilevel Monte Carlo 9 / 37



Multilevel Path Simulation

Motivated by computational finance applications, in 2006 I introduced
MLMC for SDEs (stochastic differential equations).

dSt = a(St , t) dt + b(St , t)dWt

Level ℓ corresponds to approximation using 2ℓ timesteps, giving
approximate payoff P̂ℓ.

Choice of finest level L depends on weak error (bias).

Multilevel decomposition gives

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]
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Multilevel Path Simulation

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂
(n)
ℓ −P̂

(n)
ℓ−1

)

using same driving Brownian path for both levels

Standard analysis gives MSE =
(
E[P̂L]−E[P ]

)2
+

L∑

ℓ=0

N−1
ℓ Vℓ

To make RMS error less than ε

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2
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Multilevel Path Simulation

For the Milstein discretisation and a European option with a Lipschitz
payoff function

E[ sup
t
(Ŝℓ−S)2] = O(h2ℓ ) =⇒ E[ (P̂ℓ−P)2] = O(h2ℓ )

=⇒ V[P̂ℓ−P̂ℓ−1] = O(h2ℓ )

and the optimal Nℓ is asymptotically proportional to h
3/2
ℓ .

To make the combined variance O(ε2) requires

Nℓ = O(ε−2h
3/2
ℓ )

and hence we obtain an O(ε2) MSE for an O(ε−2) computational cost.
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MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with an expected computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

MLMC Theorem allows a lot of freedom in constructing the multilevel
estimator. I sometimes use different approximations on the coarse and fine
levels:

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂ f
ℓ (ω

(n))−P̂c
ℓ−1(ω

(n))
)

The telescoping sum still works provided

E

[
P̂ f
ℓ

]
= E

[
P̂c
ℓ

]
.

Given this constraint, can be creative to reduce the variance

V

[
P̂ f
ℓ − P̂c

ℓ−1

]
.
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Basket options

Basket of 5 underlying assets, modelled by Geometric Brownian Motion

dSi = r Si dt + σi Si dWi

with correlation between 5 driving Brownian motions

Three different payoffs on arithmetic average of assets:

standard call:
P = exp(−rT ) max(S(T )−K , 0)

lookback:
P = exp(−rT ) (S(T )−min

t
St)

digital call:
P = exp(−rT ) 1S(T )>K
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Basket options

Standard call option:
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Basket options

Standard call option:
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Lookback options

Payoff depends on the minimum attained by the path S(t).

If the numerical approximation uses the minimum of the values at the
discrete simulation times

Ŝmin ≡ min
j

Ŝj

then we have two problems:

O(
√
h) weak convergence

Ŝℓ,min − Ŝℓ−1,min = O(
√
hℓ) which leads to Vℓ = O(hℓ)
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Lookback options

To fix this, define a Brownian Bridge interpolation conditional on the
endpoints for each timestep, with constant drift and volatility.

For the fine path, standard result for the sampling from the distribution of
the minimum of a Brownian Bridge gives

Ŝmin = min
j

1
2

(
Ŝj + Ŝj−1 −

√
(Ŝj − Ŝj−1)2 − 2 h b2j logUj

)

where the Uj are independent U(0, 1) random variables.

This gives O(h) weak convergence, but if we do something similar for the
coarse path with a different set of U ′s the variance will still be poor.
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Lookback options

Instead, do the following:

sample from the mid-point of the Brownian Bridge interpolation for
the coarse timestep, using the Brownian path information from the
fine path – this mid-point value is within O(hℓ) of the fine path
simulation

sample from the minima of each half of the coarse timestep using the
same U ′s as fine path

take the minimum of the two minima, and then the minimum over all
coarse timesteps.

This leads to an O(hℓ) difference in the computed minima for the coarse
and fine paths, and is valid because the distribution for the coarse path
minimum has not been altered.
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Basket options

Lookback option:
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Basket options

Lookback option:
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Digital options

In a digital option, the payoff is a discontinuous function of the final state.

Using the Milstein approximation, first order strong convergence means
that O(hℓ) of the simulations have coarse and fine paths on opposite sides
of a discontinuity.

Hence,

P̂ℓ − P̂ℓ−1 =

{
O(1), with probability O(hℓ)

O(hℓ), with probability O(1)

so
E[P̂ℓ−P̂ℓ−1] = O(hℓ), E[(P̂ℓ−P̂ℓ−1)

2] = O(hℓ),

and hence Vℓ = O(hℓ), not O(h2ℓ )
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Digital options

Three fixes:

Conditional expectation: using the Euler discretisation instead of
Milstein for the final timestep, conditional on all but the final
Brownian increment, the final state has a Gaussian distribution, with
a known analytic conditional expectation in simple cases

Splitting: split each path simulation into M paths by trying M

different values for the Brownian increment for the last fine path
timestep

Change of measure: when the expectation is not known, can use a
change of measure so the coarse path takes the same final state as
the fine path — difference in the “payoff” now comes from the
Radon-Nikodym derivative

These all effectively smooth the payoff – end up with Vℓ = O(h
3/2
ℓ ).
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Basket options

Digital call option:
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Basket options

Digital call option:
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Numerical Analysis

Euler Milstein
option numerics analysis numerics analysis

Lipschitz O(h) O(h) O(h2) O(h2)
Asian O(h) O(h) O(h2) O(h2)
lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vℓ convergence observed numerically (for GBM) and proved
analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (2009) and Avikainen (2009).
Milstein analysis due to G, Debrabant & Rößler (2012).
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Greeks and jump diffusion

Greeks (Burgos, 2011)

MLMC combines well with pathwise sensitivity analysis for Greeks

main concern is reduced regularity of “payoff”

techniques are similar to handling digital options

Finite activity rate Merton-style jump diffusion (Xia, 2011)

if constant rate, no problem — use jump-adapted discretisation and
coarse and fine paths jump at the same time

if path-dependent rate, then it’s trickier
◮ use jump-adapted discretisation plus thinning (Glasserman & Merener)
◮ could lead to fine and coarse paths jumping at different times

=⇒ poor variance
◮ instead use a change of measure to force jumps to be at the same time
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Lévy processes

Infinite activity rate, general Lévy processes
(Dereich 2010; Marxen 2010; Dereich & Heidenreich 2011)

on level ℓ, simulate jumps bigger than δℓ (δℓ → 0 as ℓ → ∞)

either neglect smaller jumps or use a Gaussian approximation

multilevel problem: discrepancy in treatment of jumps which are
bigger than δℓ but smaller than δℓ−1

Exact simulation (Xia, 2014)

with some popular exponential-Lévy models (variance-gamma, NIG)
possible to directly simulate Lévy increments over fine timesteps

sum them pairwise to get corresponding increments for coarse path

very helpful for path-dependent options (Asian, lookback, barrier)
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New application: VaR

Value-at-risk calculation seems a great candidate for an MLMC treatment.

VaR:

outer simulation of multiple risk factors Z over a risk horizon [0,H]

evaluation of loss in portfolio value at H compared to present time

various measures of risk:

◮ VaRα = inf {x : P[L>x ] < α}
◮ CVaRα = α−1

E [ L 1(L>VaRα)] = E [ L | L>VaRα]

◮ other risk measures based on distribution of L
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New application: VaR

The portfolio usually contains many options:

many are simple vanilla options with values, conditional on Z ,
given by closed-form Black-Scholes formulas

some are exotic options with values given by nested simulation,
conditional on Z .

i.e. for given Z need to
◮ simulate multiple Brownian paths W
◮ compute underlying assets S
◮ average the payoff to approximate risk-neutral conditional expectation
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New application: VaR

In applying MLMC ideas, there are several ways in which we can get
less accurate simulations at greatly reduced cost:

approximate option values using quadratic delta-gamma
approximation

sub-sample portfolio (i.e. pick a random sub-sample of the options
in the portfolio instead of evaluating all options)

vary number of Brownian paths used for conditional expectation

vary number of timesteps used for SDE simulation
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New application: VaR

Blatant sales pitch!

Starting new project with Sascha Desmettre, Ralf Korn and
Klaus Ritter at TU Kaiserslautern

Very keen to engage with finance industry – looking for banks,
pension/insurance companies who can help to define the challenges

Wouldn’t say no to some research funding too!
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Conclusions

multilevel idea is very simple

challenge can be how to apply it in new situations

discontinuous payoffs cause some difficulties, but there is a lot of
experience now in coping with this

there are also “tricks” which can be used in situations with poor
strong convergence

being used for an increasingly wide range of applications;
biggest computational savings when coarsest (helpful)
approximation is much cheaper than finest

in computational finance, VaR may prove to be the application with
the greatest MLMC benefits
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MLMC Community
Webpage: people.maths.ox.ac.uk/gilesm/mlmc community.html
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Bath (Kyprianou, Scheichl, Shardlow, Yates) – elliptic SPDEs, MCMC, Lévy-driven SDEs, stochastic chemical modelling
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Duisburg (Belomestny) – Bermudan and American options
Edinburgh (Davie, Szpruch) – SDEs, numerical analysis
EPFL (Abdulle) – stiff SDEs and SPDEs
ETH Zürich (Jenny, Jentzen, Schwab) – SPDEs, multilevel QMC
Frankfurt (Gerstner, Kloeden) – numerical analysis, fractional Brownian motion
Fraunhofer ITWM (Iliev) – SPDEs in engineering
Hong Kong (Chen) – Brownian meanders, nested simulation in finance
IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Ritter) – finance, SDEs, parametric integration, complexity analysis
KAUST (Tempone, von Schwerin) – adaptive time-stepping, stochastic chemical modelling
Kiel (Gnewuch) – randomized multilevel QMC
LPMA (Frikha, Lemaire, Pagès) – numerical analysis, multilevel extrapolation, finance applications
Mannheim (Neuenkirch) – numerical analysis, fractional Brownian motion
MIT (Peraire) – uncertainty quantification, SPDEs
Munich (Hutzenthaler) – numerical analysis
Oxford (Baker, Giles, Hambly, Reisinger) – SDEs, SPDEs, numerical analysis, finance applications, stochastic chemical modelling
Passau (Müller-Gronbach) – infinite-dimensional integration, complexity analysis
Stanford (Glynn) – numerical analysis, randomized multilevel
Strathclyde (Higham, Mao) – numerical analysis, exit times, stochastic chemical modelling
Stuttgart (Barth) – SPDEs
Texas A&M (Efendiev) – SPDEs in engineering
UCLA (Caflisch) – Coulomb collisions in physics
UNSW (Dick, Kuo, Sloan) – multilevel QMC
UTS (Baldeaux) – multilevel QMC
Warwick (Stuart, Teckentrup) – MCMC for SPDEs
WIAS (Friz, Schoenmakers) – rough paths, fractional Brownian motion, Bermudan options
Wisconsin (Anderson) – numerical analysis, stochastic chemical modelling

WWU (Dereich) – Lévy-driven SDEs
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