OP2: An Active Library Framework for Solving Unstructured Mesh-based Applications on Multi-Core and Many-Core Architectures

Mike Giles, Gihan Mudalige, István Reguly
Carlo Bertolli, Paul Kelly

Oxford e-Research Centre / Imperial College

InPar 2012: Innovative Parallel Computing

May 13, 2012
Outline

- structured and unstructured grids
- software challenge
- user perspective (i.e. application developer)
 - API
 - build process
- implementation issues
 - hierarchical parallelism on GPUs
 - data dependency
 - code generation
 - auto-tuning
Structured and unstructured grids

Structured grids:
- logical \((i, j)\) indexing in 2D, \((i, j, k)\) in 3D, with implicit connectivity
- easy to parallelize, including on GPUs with L1/L2 caches

Unstructured grids:
- a collection of nodes, edges, etc., with explicit connectivity – e.g. mapping tables define connections from edges to nodes
- much harder to parallelize (not in concept so much as in practice) but a lot of existing literature on the subject
Software Challenge

- Application developers want the benefits of the latest hardware but are very worried about the development effort required.
- Want to exploit GPUs using CUDA, and CPUs using OpenMP/AVX.
- However, hardware is likely to change rapidly in the next few years, and developers can’t afford to keep changing their codes.

Solution?

- high-level abstraction to separate the user’s specification of the application from the details of the parallel implementation.
- Aim to achieve application level longevity together with near-optimal performance through re-targetting the back-end implementation.
open source project

based on OPlus (Oxford Parallel Library for Unstructured Solvers) developed over 10 years ago for industrial CFD code on distributed-memory clusters

supports application codes written in C++ or FORTRAN

looks like a conventional library, but uses code transformation to generate CUDA for NVIDIA GPUs and OpenMP/AVX for CPUs/MIC

keeps OPlus abstraction, but slightly modifies API
OP2 Abstraction

- sets (e.g. nodes, edges, faces)
- datasets (e.g. flow variables)
- mappings (e.g. from edges to nodes)
- parallel loops
 - operate over all members of one set
 - datasets have at most one level of indirection
 - user specifies how data is used
 (e.g. read-only, write-only, increment)

Restrictions:
- set elements can be processed in any order, doesn’t affect result to machine precision
 - explicit time-marching, or multigrid with an explicit smoother is OK
 - Gauss-Seidel or ILU preconditioning is not
- static sets and mappings (no dynamic grid adaptation)
OP2 API

void op_init(int argc, char **argv)

op_set op_decl_set(int size, char *name)

op_map op_decl_map(op_set from, op_set to,
 int dim, int *imap, char *name)

op_dat op_decl_dat(op_set set, int dim,
 char *type, T *dat, char *name)

void op_decl_const(int dim, char *type, T *dat)

void op_exit()
Example of parallel loop syntax for a sparse matrix-vector product:

```c
op_par_loop(res,"res", edges,
    op_arg_dat(A,-1,OP_ID,1,"float",OP_READ),
    op_arg_dat(u, 0,col,1,"float",OP_READ),
    op_arg_dat(du,0,row,1,"float",OP_INC));
```

This is equivalent to the C code:

```c
for (e=0; e<nedges; e++)
    du[row[e]] += A[e] * u[col[e]];
```

where each “edge” corresponds to a non-zero element in the matrix A, and row, col give the corresponding row and column indices.
User build processes

Using the same source code, the user can build different executables for different target platforms:

- **sequential single-thread CPU execution**
 - no code generation – just uses a header file
 - purely for program development and debugging
- **CUDA (and OpenCL in the future) for single GPU**
- **OpenMP (and AVX in the future) for multicore CPU systems**
- **MPI plus any of the above for clusters**
CUDA build process

Preprocessor parses user code and generates new code:

```
jac.cpp
```

```
op2.m preprocessor
```

```
jac_op.cpp  jac_kernels.cu  res_kernel.cu
            update_kernel.cu
```

```
op_lib.cu
```

```
make / nvcc / g++
```

Mike Giles (OeRC)
Implementation Approach

The question now is how to deliver good performance on multiple GPUs

- **MPI distributed-memory parallelism (1-100)**
 - one MPI process for each GPU, with standard partitioning so that each partition fits within global memory of GPU
 - only halos need to be transferred from one GPU to another

- **block parallelism (100-2000)**
 - on each GPU, data is broken into mini-partitions, worked on separately and in parallel by different Streaming Multiprocessors within the GPU
 - each mini-partition is sized so that all of the indirect data can be held in shared memory and re-used as needed

- **thread parallelism (64-256)**
 - each mini-partition is worked on by a block of threads in parallel
Data dependencies

Key technical issue is data dependency when incrementing indirectly-referenced arrays.

e.g. potential problem when two edges update same node
Data dependencies

MPI level: “owner” of nodal data does edge computation
- drawback is redundant computation when the two nodes have different “owners”
Data dependencies

Thread level: “color” edges so no two edges of the same color update the same node

- compute increments in parallel, then apply them color by color with synchronisation between
- similar strategy also used at thread block level to avoid race condition
Other implementation issues

- array-of-structs storage preferred to struct-of-arrays
 - better cache hits for indirect addressing
 - transfers between graphics memory and GPU still largely “coalesced”

- auto-tuning very useful to optimize size of partitions and number of threads
Airfoil test code

- 2D Euler equations, cell-centred finite volume method with scalar dissipation
- two test cases:
 - 1.5M edges, 0.75M cells
 - 15M edges, 7.5M cells
- 5 parallel loops:
 - save_soln (direct over cells)
 - adt_calc (indirect over cells)
 - res_calc (indirect over edges)
 - bres_calc (indirect over boundary edges)
 - update (direct over cells with RMS reduction)
Airfoil test code

Library is instrumented to give lots of diagnostic info:

new execution plan #1 for kernel res_calc
number of blocks = 11240
number of block colors = 4
maximum block size = 128
average thread colors = 4.00
shared memory required = 3.72 KB
average data reuse = 3.20
data transfer (used) = 87.13 MB
data transfer (total) = 143.06 MB

- factor 2-4 data reuse in indirect access, but up to 40% of cache lines not used on average
Airfoil test code

Single precision performance for 1000 iterations on an NVIDIA C2070 using initial parameter values:

- mini-partition size (PS): 256 elements
- blocksize (BS): 256 threads

<table>
<thead>
<tr>
<th>count</th>
<th>time</th>
<th>GB/s</th>
<th>GB/s</th>
<th>kernel name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.23</td>
<td>107.8</td>
<td></td>
<td>save_soln</td>
</tr>
<tr>
<td>2000</td>
<td>1.26</td>
<td>61.0</td>
<td>63.1</td>
<td>adt_calc</td>
</tr>
<tr>
<td>2000</td>
<td>5.10</td>
<td>32.5</td>
<td>53.4</td>
<td>res_calc</td>
</tr>
<tr>
<td>2000</td>
<td>0.11</td>
<td>4.8</td>
<td>18.4</td>
<td>bres_calc</td>
</tr>
<tr>
<td>2000</td>
<td>1.07</td>
<td>110.6</td>
<td></td>
<td>update</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second B/W column includes whole cache line
Airfoil test code

Single precision performance for 1000 iterations on an NVIDIA C2070 using auto-tuned values:

<table>
<thead>
<tr>
<th>count</th>
<th>time</th>
<th>GB/s</th>
<th>GB/s</th>
<th>kernel name</th>
<th>PS</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.22</td>
<td>101.8</td>
<td></td>
<td>save_soln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.09</td>
<td>74.1</td>
<td>75.4</td>
<td>adt_calc</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>4.95</td>
<td>36.9</td>
<td>60.6</td>
<td>res_calc</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>0.10</td>
<td>5.3</td>
<td>20.0</td>
<td>bres_calc</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>1.03</td>
<td>94.7</td>
<td></td>
<td>update</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a 5 % improvement relative to baseline calculation. Switching from AoS to SoA storage would increase res_calc data transfer by approximately 120%.
Airfoil test code

Double precision performance for 1000 iterations on an NVIDIA C2070 using auto-tuned values:

<table>
<thead>
<tr>
<th>count</th>
<th>time</th>
<th>GB/s</th>
<th>GB/s</th>
<th>kernel name</th>
<th>PS</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.44</td>
<td>104.9</td>
<td></td>
<td>save_soln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.62</td>
<td>52.9</td>
<td>53.8</td>
<td>adt_calc</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>10.35</td>
<td>30.5</td>
<td>50.8</td>
<td>res_calc</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>0.08</td>
<td>11.2</td>
<td>27.9</td>
<td>bres_calc</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>1.87</td>
<td>104.5</td>
<td></td>
<td>update</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL | 15.36 | | | | | |

This is a 7.5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would again increase res_calc data transfer by approximately 120%.
Airfoil test code

Single precision performance on two Intel “Westmere” 6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 16

<table>
<thead>
<tr>
<th>count</th>
<th>time</th>
<th>GB/s</th>
<th>GB/s</th>
<th>kernel name</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.68</td>
<td>13.7</td>
<td></td>
<td>save_soln</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>11.15</td>
<td>7.3</td>
<td>7.5</td>
<td>adt_calc</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>16.57</td>
<td>10.3</td>
<td>11.2</td>
<td>res_calc</td>
<td>1024</td>
</tr>
<tr>
<td>2000</td>
<td>0.16</td>
<td>3.2</td>
<td>11.9</td>
<td>bres_calc</td>
<td>64</td>
</tr>
<tr>
<td>2000</td>
<td>4.67</td>
<td>20.9</td>
<td></td>
<td>update</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>34.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimal gain relative to baseline calculation with 12 threads and mini-partition sizes of 1024.
Airfoil test code

Double precision performance on two Intel “Westmere” 6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 12

<table>
<thead>
<tr>
<th>count</th>
<th>time</th>
<th>GB/s</th>
<th>GB/s</th>
<th>kernel name</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2.51</td>
<td>18.3</td>
<td></td>
<td>save_soln</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>11.68</td>
<td>11.8</td>
<td>11.9</td>
<td>adt_calc</td>
<td>1024</td>
</tr>
<tr>
<td>2000</td>
<td>20.99</td>
<td>12.8</td>
<td>13.5</td>
<td>res_calc</td>
<td>1024</td>
</tr>
<tr>
<td>2000</td>
<td>0.17</td>
<td>5.0</td>
<td>12.4</td>
<td>bres_calc</td>
<td>512</td>
</tr>
<tr>
<td>2000</td>
<td>9.29</td>
<td>21.1</td>
<td></td>
<td>update</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>44.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimal gain relative to baseline calculation with 12 threads and mini-partition sizes of 1024.
Conclusions

- have created a high-level framework for parallel execution of unstructured grid algorithms on GPUs and other many-core architectures
- looks encouraging for providing ease-of-use, high performance and longevity through new back-ends
- auto-tuning is useful for code optimisation, and a new flexible auto-tuning system has been developed
- C2070 GPU speedup versus two 6-core Westmere CPUs is roughly $5 \times$ in single precision, $3 \times$ in double precision
- currently working on MPI layer in OP2 for computing on GPU clusters
- key challenge then is to build user community