GPU Implementation of Finite Difference Solvers

Mike Giles

Mathematical Institute, Oxford University
Oxford-Man Institute of Quantitative Finance
Oxford e-Research Centre

Endre Laszl6, Istvan Reguly (Oxford)
Jeremy Appleyard, Julien Demouth (NVIDIA)

WHPCF’'14, New Orleans

November 16th, 2014

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 1/20

GPUs

In the last 6 years, GPUs have emerged as a major new technology in
computational finance, as well as other areas in HPC:

@ over 1000 GPUs at JP Morgan, and also used at a number of other
Tier 1 banks and financial institutions

@ use is driven by both energy efficiency and price/performance, with
main concern the level of programming effort required

@ Monte Carlo simulations are naturally parallel, so ideally suited to
GPU execution:

» averaging of path payoff values using binary tree reduction
» implementations exist also for Longstaff-Schwartz least squares
regression for American options — STAC-A2 testcase

> key requirement is parallel random number generation, and that is
addressed by libraries such as CURAND

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 2/20

Finite Difference calculations

Focus of this work is finite difference methods for approximating
Black-Scholes and other related multi-factor PDEs

@ explicit time-marching methods are naturally parallel — again a good
target for GPU acceleration

@ implicit time-marching methods usually require the solution of lots of
tridiagonal systems of equations — not so clear how to parallelise this

@ key observation is that cost of moving lots of data to/from the main
graphics memory can exceed cost of floating point computations
» 288 GB/s bandwidth
» 5.0 TFlops (single precision) / 1.7 TFlops (double precision)

= should try to avoid this data movement

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 3/20

1D Finite Difference calculations

In 1D, a simple explicit finite difference equation takes the form

n+1 _ _. ..n ..n LN
u "t =ajuil g+ bju +quly

while an implicit finite difference equation takes the form

n+1 n+1 n+1
aju;"; + b ut tquly = uJ
requiring the solution of a tridiagonal set of equations.

What performance can be achieved?

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 4/20

1D Finite Difference calculations

@ grid size: 256 points

@ number of options: 2048
@ number of timesteps: 50000 (explicit), 2500 (implicit)

@ K40 capable of 5 TFlops (single prec.), 1.7 TFlops (double prec.)

single prec. double prec.
msec | GFlops | msec | GFlops
explicitl | 224 700 | 258 610
explicit2 52 3029 | 107 1463
implicitl 19 1849 57 892

How is this performance achieved?

Mike Giles (Oxford University) PDEs on GPUs

November 16th, 2014

5/ 20

NVIDIA Kepler GPU

Oo00oOoooOooogod
O00oooOooogod
/DDDDDDDDDDDD
Oo00oOoooOooogod
O00oooOooogod
OoOooooooodOad
Oo00oOoooOooogod
SMX SMX SMX SMX OO0O0O000000oooo
O00oooOooogod
OoOooooooodOad
Oo00oOoooOooogod
O00oooOooogod
OoOooooooodOad

15MB L2 cache ooOooooooooood
O00oooOooogod
OOoOooooooodoad

SMX SMX SMX SMX 64kB L1 cache /
shared memory

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 6 /20

1D Finite Difference calculations

Approach for explicit time-marching:

@ each thread block (256 threads) does one or more options
@ 3 FMA (fused multiply-add) operations per grid point per timestep

@ doing an option calculation within one thread block means no need to
transfer data to/from graphics memory — can hold all data in SMX

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 7/20

1D Finite Difference calculations

@ explicitl holds data in shared memory
@ each thread handles one grid point

@ performance is limited by speed of shared memory access,
and cost of synchronisation

__shared__ REAL u[258];
utmp = ulil;

for (int n=0; n<N; n++) {
utmp = utmp + a*uli-1] + bxutmp + c*ul[i+1];
__syncthreads();
uli] = utmp;
syncthreads() ;

}

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 8/20

1D Finite Difference calculations

explicit?2 holds all data in registers

@ each thread handles 8 grid points, so each warp (32 threads which
act in unison) handles one option

@ no block synchronisation required

@ data exchange with neighbouring threads uses shuffle instructions
(special hardware feature for data exchange within a warp)

tid—1 thread tid tid+1

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 9/20

1D Finite Difference calculations

for (int n=0; n<N; n++) {
um = __shfl _up(ul[7], 1);
up = __shfl_down(u[0], 1);

for (int i=0; i<7; i++) {

u0 = ulil;
uli] = uli] + alil*um + b[il*u0 + cl[il*uli+1];
um = u0;

}

ul7] = ul7] + al7]l*um + b[7]*ul7] + c[7]*up;
}

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 10 / 20

1D Finite Difference calculations

Bigger challenge is how to solve tridiagonal systems for implicit solvers.

@ want to keep computation within an SMX and avoid data transfer
to/from graphics memory

@ prepared to do more floating point operations if necessary to avoid
the data transfer

@ need lots of parallelism to achieve good performance

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 11 /20

Solving Tridiagonal Systems

On a CPU, the tridiagonal equations
ajui—1+bjui+cu1=d, i=0,1,...,N-1

would usually be solved using the Thomas algorithm — essentially just
standard Gaussian elimination exploiting all of the zeros.

@ inherently sequential algorithm, with a forward sweep and then a
backward sweep
@ would require each thread to handle separate option

@ threads don't have enough registers to store the required data
— would require data transfer to/from graphics memory to hold /
recover data from forward sweep

@ not a good choice — want an alternative with reduced data transfer,
even if it requires more floating point ops.

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 12 /20

Solving Tridiagonal Systems
PCR (parallel cyclic reduction) is a highly parallel algorithm.
Starting with

ajuj—1 + uj + ¢ uj+1 = dj, i=0,1,...,N-1,

where u;=0 for j<0,j> N, can subtract multiples of rows /11, and
re-normalise, to get

af-u;_2+u;+c,fui+2:d,f, i=0,1,...,N-—1,
Repeating with rows /+2 gives
af-’u,-_4+u,-+c,{'u,-+4:d,f’ i=0,1,...,N-1,

and after log, N repetitions end up with solution because vy = 0.

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 13 /20

1D Finite Difference calculations

implicit1 uses a hybrid Thomas / PCR algorithm:
o follows data layout of explicit2 with each thread handling 8 grid
points — means data exchanges can be performed by shuffles

@ each thread uses Thomas algorithm to obtain middle values as a
linear function of two (not yet known) “end” values

Ujpj =Auj+Byypjuy+Cuyjuyr, 0<,<7

@ the reduced tridiagonal system of size 2 x 32 for the “end” values
is solved using PCR

@ total number of floating point operations is approximately double
what would be needed on a CPU using the Thomas algorithm
(but CPU division is more expensive, so similar Flop count overall?)

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 14 / 20

3D Finite Difference calculations
What about a 3D extension on a 2563 grid?
@ memory requirements imply one kernel with multiple thread
blocks to handle a single option

@ kernel will need to be called for each timestep, to ensure that
the entire grid is updated before the next timestep starts

@ 13-point stencil for explicit time-marching

ar/©/
@ implementation uses a separate thread for each grid point in
2D x-y plane, then marches in z-direction

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 15 /20

3D Finite Difference calculations

@ grid size: 2563 points

@ number of timesteps: 500 (explicit), 100 (implicit)
@ K40 capable of 5.0 TFlops (single prec.), 1.7 TFlops (double prec.)

and 288 GB/s

single prec. double prec.
msec | GFlops | GB/s | msec | GFlops | GB/s
explicitl 747 597 100 | 1200 367 127
explicit2 600 760 132 | 923 487 144
implicitl | 447 406 146 | 889 243 144

Performance as reported by nvprof, the NVIDIA Visual Profiler

Mike Giles (Oxford University) PDEs on GPUs

November 16th, 2014

16 / 20

3D Finite Difference calculations

explicitl relies on L1/L2 caches for data reuse — compiler does an

excellent job of optimising loop invariant operations

ul [indg-KOFF-JOFF]
ul[indg-KOFF-I0FF]
u1 [indg-KOFF]
ul[indg-JOFF-I0FF]
ul [indg-JOFF]
ul [indg-I0FF]

ul[indg]

u1 [indg+IOFF]
ul[indg+JOFF]
ul[indg+JOFF+I0FF]
ul[indg+KOFF]
ul[indg+KOFF+I0FF]

u2[indg] = t23 *
+ t13 *
+ (c1_3%83*S3 - c2_3%8S3 - t13 - t23) *
+ t12 *
+ (c1_2%S2%S2 - c2_2%S2 - t12 - t23) *
+ (c1_1%S1%S1 - c2_1%S1 - t12 - t13) *
+ (1.0f - c3 - 2.0f*%(c1_1%S1%S1 + c1_2*S2%S2 + c1_3*S3%S3

- £12 - t13 - t23)) *
+ (c1_1%S1%S1 + c2_1*S1 - t12 - t13) *
+ (c1_2%S2%S2 + c2_2%S2 - t12 - t23) *
+ t12 *
+ (c1_3%83*S3 + c2_3*S3 - t13 - t23) *
+ t13 *
+ t23 *

Mike Giles (Oxford University) PDEs on GPUs

ul [indg+KOFF+JOFF] ;

November 16th, 2014 17 /20

3D Finite Difference calculations

explicit?2 uses extra registers to hold values which will be needed again

*

u = t23 ul_om
+ t13 * ul_mo
+ (c1_3%83%8S3 - c2_3%S3 - t13 - t23) * ul_m;

= ul[indg-JOFF-IOFF];
ul_om = ul[indg-JOFF];

= u1[indg-IOFF];
ul_pp = ull[indg+IOFF+JOFF];

u=u + ti2 * ul_mm
+ (c1_2%S2%82 - c2_2%82 - t12 - t23) * ul_om
+ (c1_1%S1%S1 - c2_1%81 - t12 - t13) * ul_mo
+ (1.0f - c3 - 2.0f*(c1_1xS1*S1 + c1_2%S2%S2 + c1_3xS3*S3

- t12 - 13 - £23)) * ul_oo

+ (c1_1%S1xS1 + c2_1%S1 - t12 - t13) * ul_po
+ (c1_2%82%S2 + c2_2%S2 - t12 - t23) * ul_op
+ t12 * ul_pp;

indg += KOFF;

ul_m = ul_oo;

ul_oo = ull[indgl;

ul_po = ul[indg+IO0FF];

ul_op = ul[indg+JOFF];

u=u + (c1_3%S3%S3 + c2_3%S3 - t13 - t23) * ul_oo
+ t13 ul_po
+ 123 ul_op;

* %

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 18 / 20

3D Finite Difference calculations

The implicit ADI discretisation requires the solution of tridiagonal
equations along each coordinate direction.
The implicitl code has the following structure:

@ kernel similar to explicit kernel to produce r.h.s.

@ separate kernel for tridiagonal solution in each coordinate direction

@ very important to ensure each warp loads a contiguous vector of data
(coalesced read) as much as possible

@ requires some careful transposition of data using shared memory

Distinctly non-trivial, so check out the paper and the code on my webpage!

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014 19 /20

Conclusions

GPUs can deliver excellent performance for financial finite difference
calculations, as well as for Monte Carlo

some parts of the implementation are straightforward, but others
require a good understanding of the hardware and parallel algorithms

to achieve the best performance

@ some of this work will be built into NVIDIA CUSPARSE library

@ additional results show K40 GPU is 7—8x (1D) and 3—5.5x (3D)

faster than two 8-core Xeon E5-2690 CPUs

For further info, see software and other details at
http://people.maths.ox.ac.uk/gilesm/codes/BS_1D/
http://people.maths.ox.ac.uk/gilesm/codes/BS_3D/
http://people.maths.ox.ac.uk/gilesm/cuda_slides.html

Mike Giles (Oxford University) PDEs on GPUs November 16th, 2014

20 / 20

