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Monte Carlo simulation

In many applications want to estimate E[P (ω)] where ω ∈ Ω
is an infinite-dimensional random variable.

computational finance:
ω represents Wt the driving Brownian motion in
an SDE (stochastic differential equation)
P is the financial payoff function

simulation of oil reservoirs & nuclear waste repositories:
ω represents k(x), the diffusivity in an elliptic SPDE

− ∇ ·
(
k(x)∇p

)
= 0

P might be the flux of oil or contaminants across
some boundary
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Monte Carlo simulation

In MC simulation we estimate the expectation using

Ŷ = N−1
N∑

n=1

P̂ (ω(n))

where ω(n) are N independent samples

Note there are two sources of error here:

sampling error due to the finite number of samples

bias because P̂ (ω) is an approximation to P (ω) due to
discretisation error (finite timesteps, finite grid size)
finite dimensional approximation to ω
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Monte Carlo simulation

The mean square error is

E

[(
Ŷ − E[P ]

)2
]

= E

[(
Ŷ −E[Ŷ ] + E[Ŷ ]−E[P ]

)2
]

= E

[
(Ŷ −E[Ŷ ])2

]
+

(
E[Ŷ ]−E[P ]

)2

= V[Ŷ ] +
(

E[Ŷ ]−E[P ]
)2

= N−1
V[P̂ ] +

(
E[P̂ ]−E[P ]

)2

first term is due to sampling error

second term is due to bias
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Monte Carlo simulation

To achieve RMS accuracy of ε requires:

N = O(ε−2)

bias = O(ε)

In a d-dimensional SPDE application with grid spacing h,
if the bias is O(hα) then need h=O(ε1/α), and total cost is
O(ε−(2+d/α)), assuming efficient multigrid solution

(very challenging because of very rough coefficients
– Graham & Scheichl)

To get acceptable accuracy in 3D applications may need
10,000 simulations on a 1283 grid =⇒ very expensive
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Multilevel Monte Carlo

The multilevel objective is to greatly reduce this cost:

α = 1 α = 2

dim MC MLMC MC MLMC
1 ε−3 ε−2 ε−2.5 ε−2

2 ε−4 ε−2(log ε)2 ε−3 ε−2(log ε)2

3 ε−5 ε−3 ε−3.5 ε−2.5

How? Use multigrid philosophy:

fine grid accuracy at coarse grid cost

geometric sequence of grids

but no iteration in Monte Carlo simulation?
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Multilevel Monte Carlo

Consider Monte Carlo simulations with different levels of
refinement, l = 0, 1, . . . , L, with level L being the finest.

If P̂l is the approximation of P on level l, then

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

Idea is to independently estimate each of the terms on the
r.h.s., in a way which minimises the overall variance for a
fixed computational cost.

Finest level is still the same, but will use very few samples
at that level.
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Multilevel Monte Carlo

Simplest estimator for E[P̂l−P̂l−1] for l>0 is

Ŷl = N−1
l

Nl∑

n=1

(
P̂

(n)
l −P̂

(n)
l−1

)

using same stochastic sample ω(n) for both levels

Variance is N−1
l Vl where Vl = V[P̂l−P̂l−1]

Key point: Vl gets progressively smaller as l increases
because P̂l, P̂l−1 both accurately approximate P for same ω
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Multilevel Monte Carlo

If Cl is cost of one sample on level l, the variance of the

combined estimator is
L∑

l=0

N−1
l Vl and its computational

cost is
L∑

l=0

Nl Cl so the variance is minimised for fixed cost

by choosing Nl ∝
√

Vl/Cl , and then the cost on level l is

proportional to Nl Cl ∝
√

Vl Cl

To make RMS error ε

choose constant of proportionality so variance is 1
2 ε2

choose L so that
(
E[P̂l]−E[P ]

)2
< 1

2 ε2
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MLMC Theorem

If there exist independent estimators Ŷl based on Nl Monte
Carlo samples, each costing Cl, and positive constants
α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂l−P ]

∣∣∣ ≤ c1 2−α l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l−P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l 2−β l

iv) Cl ≤ c3 2γ l
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MLMC Theorem

then there exists a positive constant c4 such that for any
ε<1 there exist L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational cost C with bound

C ≤






c4 ε−2, β > γ,

c4 ε−2(log ε)2, β = γ,

c4 ε−2−(γ−β)/α, 0 < β < γ.
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Papers

My first paper (Operations Research, 2006 – 2008)
applied idea to SDE path simulation, and proved slightly
less general form of the theorem

Second paper (MCQMC 2006) improved multilevel
variance convergence using better discretisation

Third paper with D. Higham & X. Mao (Finance and
Stochastics, 2009) performed numerical analysis of
discretisation in first paper

New paper with K. Debrabant and A. Rößler analyses
discretisation in second paper

Multilevel method is a generalisation of two-level control
variate method of Kebaier (2005), and related to multilevel
parametric integration by Heinrich (2001).
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Elliptic SPDE

We consider the elliptic PDE

−∇. (k(x, ω)∇p(x, ω)) = f(x, ω), x ∈ D,

with random coefficient k(x, ω) and random data f(x, ω).

We model k as a lognormal random field , i.e. log k is a
Gaussian field with mean 0 and covariance function

R(x, y) = σ2 exp (−‖x − y‖/λ)
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Elliptic SPDE

A typical realisation for D = [0, 1]2, λ = 0.001, σ2 = 1.
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Elliptic SPDE

Discretisation:

cell-centred Finite Volume discretisation on a uniform
grid Th – for rough coefficients we need to make h very
small

sampling of the random coefficient currently based on
truncated Karhunen-Lòeve expansion, evaluated at cell
centres – but the method of sampling is not essential to
the algorithm

each level of refinement has twice as many grid points
in each direction
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1D Results

V[P̂l−P̂l−1] ∼ h2
l , E[P̂l−P̂l−1] ∼ h2

l
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1D Results
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2D Results

V[P̂l−P̂l−1] ∼ h2
l , E[P̂l−P̂l−1] ∼ h2

l
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2D Results
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Conclusions

standard Monte Carlo is prohibitively expensive for 2D
and 3D elliptic SPDE applications

multilevel Monte Carlo greatly reduces the cost, making
this feasible for engineering applications

we believe it is a viable competitor to polynomial chaos
approach, particularly for applications with minimal
spatial correlation

numerical analysis is very hard, but we’re making some
headway with finite element analysis, at least to gain
insight into its effectiveness

future work will look at combining the multilevel
approach with quasi-Monte Carlo sampling – has been
very effective for SDE applications in finance
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