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FPGAs

Field-Programmable Gate Arrays have been around for a long time
(Altera part of Intel, Xilinx part of AMD) with some niche application
areas, including chip simulation and low-latency options trading.

Potentially very efficient for low-precision fixed-point arithmetic, with
the flexibility to specify how many bits are used for each variable.

By exploiting Multilevel Monte Carlo, I think they could be really
useful in computational finance.
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Monte Carlo for Option Pricing
We approximate solutions of SDEs which in 1D have the form

dSt = a(St , t) dt + b(St , t) dWt

where dWt is the increment of a Brownian motion – Normally distributed
with variance dt.

This is usually approximated by the simple Euler-Maruyama method

Ŝtn+1 = Ŝtn + a(Ŝtn , tn) h + b(Ŝtn , tn) ∆Wn

with uniform timestep h, and increments ∆Wn with variance h.

In simple applications, we want to estimate the expected value E[P]
where P is a function of the final path value:

P̂ ≡ f (ŜT )
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Monte Carlo for Option Pricing

The Monte Carlo estimate for E[P̂] is an average of N independent
samples based on random inputs ω(n):

Y = N−1
N∑

n=1

P̂(ω(n)).

If samples have variance V and cost C , then ε RMS accuracy requires

N ≈ ε−2V

samples, at a total cost of approximately

ε−2V C
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Two-level Monte Carlo

If we want to estimate E[P̂1] but it is much cheaper to simulate P̂0 ≈ P̂1,
then since

E[P̂1] = E[P̂0] + E[P̂1−P̂0]

we can use the estimator

N−1
0

N0∑
n=1

P̂
(0,n)
0 + N−1

1

N1∑
n=1

(
P̂
(1,n)
1 − P̂

(1,n)
0

)

Optimising the number of samples N0,N1, the total cost for ε RMS
accuracy is

ε−2
(√

V0C0 +
√

V1C1

)2
where V0,C0 are variance and cost of P̂0,

and V1,C1 are variance and cost of P̂1−P̂0.
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Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] =
L∑

`=0

E[∆P̂`]

with ∆P̂` ≡ P̂`−P̂`−1, and P̂−1 ≡ 0, we can use the estimator

L∑
`=0

{
N−1
`

N∑̀
n=1

(
∆P̂

(`,n)
`

)}

with independent estimation for each level of correction. The total cost
generalises to

ε−2

(
L∑

`=0

√
V`C`

)2

where V`,C` are the variance and cost of ∆P̂`.
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Nested Multilevel Monte Carlo

For the FPGA, we nest the 2-level treatment inside the standard MLMC
to get

L∑
`=0

{
N−1
`

N∑̀
n=1

(
∆̃P̂`

(`,n,1)
)}

+
L∑

`=0

Ñ−1
`

Ñ∑̀
n=1

(
∆P̂

(`,n,2)
` − ∆̃P̂`

(`,n,2)
)

where ∆̃P̂` corresponds to a low-accuracy fixed-point calculation on an
FPGA. The total cost is then approximately

ε−2

(
L∑

`=0

√
V` C̃` +

√
Ṽ` C`

)2

where C̃` is the cost of evaluating ∆̃P̂`, and Ṽ` = V
[

∆P̂` − ∆̃P̂`

]
.
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Nested Multilevel Monte Carlo

On level `,√
V` C̃` +

√
Ṽ` C` =

√
V` C`

(√
C̃` /C` +

√
Ṽ` /V`

)
so our objective is to simultaneously achieve C̃` � C`, Ṽ` � V`, which

implies an optimisation, trading off accuracy, Ṽ`, with cost, C̃`.

What can we adjust?

accuracy in generating Normal random variables from uniform r.v.’s

number of bits for all variables in the calculation
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Approximate Normal random variables

Given uniform (0, 1) random variables U (which can be generated
efficiently on both CPUs and FPGAs) the usual way to convert them
to standard Normal r.v.’s is through the transform

Z = Q(U)

where Q ≡ Φ−1 is the inverse of the Normal CDF.

For the FPGA, we will use the leading d random bits of U (giving us Ũ)
for an approximate conversion,

Z̃ = Q̃(Ũ).

Mike Giles, Irina Nimerenco (Oxford) MLMC on FPGAs Oct 8, 2024 10 / 28



Approximate Normal random variables

Remembering we want to keep it cheap, there are 3 good options:

piecewise constant approximation on intervals of size 2−d

implement through LUT (Look-Up Table) based on d bits – not
clear what the “cost” of this is on a FPGA

piecewise linear approximation on dyadic intervals, [2−(n+1), 2−n]

used on FPGAs previously by Luk, Cheung et al, and probably the
basis of Intel’s vectorised implementation with higher polynomials

2-variable method

split d bits into two sets of 1 sign bit plus d/2−1 bits for a LUT
lookup, to obtain Z1,Z2 each of which is approximately Normal with
variance 1/2, then return Z1+Z2; initial LUT values given by best
d/2-bit piecewise constant approximation, but can be optimized to
improve accuracy of output Z1+Z2

Mike Giles, Irina Nimerenco (Oxford) MLMC on FPGAs Oct 8, 2024 11 / 28



Approximate Normal random variables
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Fixed point variables and arithmetic

A floating point variable has representation

(−1)s m 2e

where the sign bit s, integer exponent e, and the bits representing the
mantissa 1 ≤ m < 2 are concatenated in a 32-bit or 64-bit variable.

Fixed-point numbers are similar except that the exponent e is fixed.
If there are d bits, not including the optional sign bit, then a variable is
represented as

(−1)s n 2e−d

where 0 ≤ n < 2d . The fixed exponent e determines the range, and is
chosen to be big enough for the requirements of the application.
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Fixed point variables and arithmetic

When adding two numbers,
c = a + b

the “cost” is roughly proportional to 1
2(da + db), and when the output

is rounded the rounding error is bounded by 2ec−dc−1.

When multiplying two numbers,

c = a× b

the “cost” is roughly proportional to da db ≤ 1
2(d2

a + d2
b ), and the

rounding error is again bounded by 2ec−dc−1.
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Error analysis

If an output P is based on a sequence of calculations of intermediate
variables xi , each with a rounding error δxi , then to leading order
the error in the output is given by

δP =
∑
i

x i δxi , x i ≡
∂P

∂xi

For a single path calculation, x i can be evaluated efficiently for all
variables using adjoint sensitivity analysis (like back-propagation in
machine learning).
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Error analysis

The errors δxi and sensitivities x i will vary from path to path, due to
the input random numbers.

Being conservative, with possible dependency in the errors, we have√
V[δP] ≤

∑
i

√
V[x i δxi ] ≤

∑
i

√
E[x2i ] 2ei−di−1

On the other hand, if we model the errors as statistically independent,
and the rounding error is well modelled as uniformly distributed over
[−2ei−di−1, 2ei−di−1], then we get

V[δP] =
∑
i

V[x i δxi ] ≤
∑
i

E[x2i ] 4ei−di/12
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Geometric Brownian Motion
We test the error modelling using a very simple example:

Input: timestep h, timesteps N, constants con1 = rh, con2 = σ
√
h,

initial states S` =S`−1 =S0, strike K

for n = 0,N − 1 do
if n even then
Sold
`−1 := S`−1

end if
generate Normal r.v. Z ∼ N(0, 1)
mul1 := con2 × Z
sum1 := con1 + mul1
mul2 := S` × sum1

S` := S` + mul2
mul2 := Sold

`−1 × sum1

S`−1 := S`−1 + mul2
end for

∆P` := max(S`−K , 0)−max(S`−1−K , 0)
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Geometric Brownian Motion
Errors when using same number of bits d for all variables.
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Geometric Brownian Motion
Errors when using same number of bits d for all variables.
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Optimisation
On the basis of these results, we use the error model

Ṽ =
∑
i

E[x2i ] 4ei−di/12

Using the same number of bits for both S` and S`−1, and all instances
of Z , sum1, mul1, mul2, this gives us a sum over 7 terms:

Ṽ =
7∑

k=1

Vk 4−dk

Counting up the additions and multiplications involving each variable, we
get a corresponding quadratic cost model:

C̃ =
1

2

7∑
k=1

akdk + mkd
2
k

Note this is ignoring the error and cost due to the approximate Normal
random numbers.
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Optimisation

The goal now is to minimise√
C̃` /C` +

√
Ṽ` /V`

where V` is known and we arbitrarily set C` to be 104 per timestep on the
CPU.

Setting the partial derivative w.r.t. dn to zero gives the equation

∂Ṽ`

∂dk
+ λ

∂C̃`

∂dk
= 0

where λ =

√
V` Ṽ`/C C̃` gives the optimal tradeoff between cost and

variance.

The optimisation can be carried out by doing a golden section minimisation
on λ, using a Newton iteration to find the optimal dk for each λ.
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Geometric Brownian Motion
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Geometric Brownian Motion
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Geometric Brownian Motion

Optimal bit-widths for different variables
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Geometric Brownian Motion

Optimal “cost” on each level
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Conclusions

We have taken the optimisation as far as we can without doing
the FPGA implementation.

Taking the overall cost to be

ε−2

(
L∑

`=0

√
V` C̃` +

√
Ṽ` C`

)2

the reduction factor for the GBM testcase is approximately

15 with uniform bit-widths on each level

24 with optimised bit-widths for each variable on each level

This ignores the cost of generating the random numbers, but we think
the proposed 2-variable approach will be very efficient.
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Future work

FPGA implementation, probably using AMD’s Vitis Unified Software
framework for C/C++ programming

assessment of the computational cost of the different ways of
converting uniform r.v.’s to Normals

assessment, and possible improvement, of the cost model for
fixed-point arithmetic

implementation of the CPU part of the algorithm, and validation
of the MLMC telescoping summation

determination of overall cost savings

comparison to use of reduced precision floating point arithmetic
on CPUs (AVX512-FP16 on Intel “Sapphire Rapids” Xeon)
and GPUs (bfloat16, fp16 on NVIDIA and AMD GPUs)

extension to other SDEs
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