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Multilevel approach

Given a scalar SDE driven by a Brownian diffusion

dS(t) = a(S, t) dt + b(S, t) dW (t),

to estimate E[P ] where the path-dependent payoff P can be
approximated by P̂l using 2l uniform timesteps, we use

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

E[P̂l−P̂l−1] is estimated using Nl simulations with same
W (t) for both P̂l and P̂l−1,

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)

Multilevel Monte Carlo – p. 2/25



Multilevel approach

Using independent samples for each level, the variance of
the combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡

{
V[P̂l−P̂l−1], l > 0

V[P̂0], l = 0

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.
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MLMC Theorem

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = 2−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo
samples, with computational complexity (cost) Cl, and positive

constants α≥ 1
2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂l − P ]

∣∣∣ ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl ≤ c3 Nl h
−1
l
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤






c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Previous Work

First paper (Operations Research, 2006 – 2008) applied
idea to SDE path simulation using Euler-Maruyama
discretisation

Second paper (MCQMC 2006 – 2007) used Milstein
discretisation for scalar SDEs – improved strong
convergence gives improved multilevel variance
convergence

Multilevel method is a generalisation of two-level
control variate method of Kebaier (2005), and
similar to ideas of Speight (2009) and also related to
multilevel parametric integration by Heinrich (2001)
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Numerical Analysis

If P is a Lipschitz function of S(T ), the value of the
underlying at maturity, the strong convergence property

(
E

[
(ŜN − S(T ))2

])1/2
= O(hγ)

implies that V[P̂l−P ] = O(h2γ
l ) and hence

Vl ≡ V[P̂l−P̂l−1] = O(h2γ
l ).

Therefore β=1 for Euler-Maruyama discretisation,
and β=2 for the Milstein discretisation.

However, in general, good strong convergence is neither
necessary nor sufficient for good convergence for Vl.
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Numerics and Analysis

Euler Milstein
option numerics analysis numerics analysis
Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vl convergence observed numerically (for GBM) and
proved analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (Finance & Stochastics,
2009) and Avikainen (Finance & Stochastics, 2009). Milstein
analysis due to G, Debrabant & Rößler
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Other work

Yuan Xia, G – jump-diffusion models

Sylvestre Burgos, G – Greeks

Hoel, von Schwerin, Szepessy, Tempone – adaptive
discretisations

Dereich, Heidenreich – Lévy processes

Hickernell, Müller-Gronbach, Niu, Ritter – complexity
analysis

Müller-Gronbach, Ritter – parabolic SPDEs

G, Reisinger – parabolic SPDEs

Teckentrup, Scheichl, Cliffe, G – elliptic SPDEs

Barth, Schwab, Zollinger – elliptic SPDEs
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Multi-dimensional SDEs

The Milstein scheme for multi-dimensional SDEs is

Ŝi,n+1 = Ŝi,n + ai h +
∑

j

bij ∆Wj,n

+ 1
2

∑

j,k,l

∂bij

∂Sl
blk

(
∆Wj,n ∆Wk,n − Ωjk h − Ajk,n

)

where Lévy areas are defined as

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk − (Wk(t)−Wk(tn)) dWj

O(h) strong convergence, but hard to simulate Ajk

O(h1/2) strong convergence in general if Ajk omitted
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Discretisation error analysis

Suppose we ignore the Lévy area terms – what is the
resulting difference between coarse and fine path
approximations?

Let the coarse path approximation be

Ŝc
n+1 = R(Ŝc

n)

and the fine path approximation be

Ŝ
f
n+1 = R(Ŝf

n) + gn

so to leading order the difference D̂n ≡ Ŝ
f
n − Ŝc

n satisfies

D̂n+1 =
∂R

∂S
D̂n + gn
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Discretisation error analysis

Using a Brownian Bridge construction in which

Wn+1/2 = 1
2 (Wn + Wn+1 + Z)

where Z ∼ N(0, hc), find that, to leading order,

gi,n =
1

2

∑

j,k,l

∂bij

∂Sl
blk

(
∆Wj,nZk,n − ∆Wk,nZj,n

)

Note: g ≡ 0 for scalar applications, and for vector
applications satisfying the commutativity conditions

∑

l

bij

∂Sl
blk =

∑

l

bik

∂Sl
blj , ∀i, j, k
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Discretisation error analysis

∆W and Z are O(
√

h) and independent

=⇒ gn = O(h) but E[gn] = 0 (to leading order)

=⇒ D̂n = O(
√

h) but E[D̂n] = 0 (to leading order)

Haven’t achieved anything yet – really just shown O(
√

h)
strong convergence when Lévy area is neglected.

(Best that can be achieved knowing just the discrete ∆W

– Clark & Cameron, 1980)

Now comes the new idea – use antithetic variates in
Brownian Bridge construction.

i.e. construct a second fine path using −Zn instead of Zn
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Antithetic treatment

Since gn is linear in Zn, this implies that, to leading order,

D̂
(2)
n = −D̂

(1)
n

Higher order terms in asymptotic error analysis give

D̂
(1)
n + D̂

(2)
n = O(h)

If the payoff function f(ST ) is twice differentiable then

1
2

(
f(Ŝf(1))+f(Ŝf(2))

)
− f(Ŝc) ≈ 1

2

(
D̂

(1)
n + D̂

(2)
n

)
f ′(Ŝc)

+ 1
4

(
(D̂

(1)
n )2 + (D̂

(2)
n )2

)
f ′′(Ŝc)

= O(h)
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Antithetic treatment

Hence, for the multilevel estimator on level l we use

Ŷl = N−1
l

Nl∑

n=1

1
2

(
P̂

(n1)
l +P̂

(n2)
l

)
− P̂

(n)
l−1

and
V[Ŷl] = N−1

l Vl

with
Vl = O(h2).

This assumed the payoff function was twice differentiable.
For a put or call option, more careful analysis near the
strike gives Vl = O(h3/2) – still enough to ensure the overall
cost is O(ε−2).
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Numerical test

Heston stochastic volatility model:

dS = r S dt +
√

v S dW1, 0 < t < T,

dv = κ(θ−v) + ξ
√

v dW2, 0 < t < T,

with T =1, S(0)=100, r=0.05, κ=1, θ=0.04, ξ=0.25
and correlation ρ = −0.5.

“Integrating factor” used for volatility discretisation to
improve accuracy with large timesteps — Mark Broadie

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with strike K =100.
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Numerical test
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Numerical test

0 2 4 6 8
10

2

10
4

10
6

10
8

level l

N
l

 

 

10
−2

10
−1

10
2

10
3

10
4

10
5

accuracy ε

ε2  C
os

t

 

 
Std MC
MLMC

ε=0.005
ε=0.01
ε=0.02
ε=0.05
ε=0.1

Multilevel Monte Carlo – p. 18/25



Discontinuous payoffs

Antithetic treatment doesn’t help with discontinuous payoffs:

O(
√

h) paths near enough to strike for fine and coarse
paths to be on opposite sides

these have O(1) difference in payoffs, so

V[P̂l−P̂l−1] ≈ E[(P̂l−P̂l−1)
2] = O(

√
h)

For scalar SDEs, use conditional expectation one timestep
before maturity:

effectively smooths payoff over O(
√

h)

very helpful when Ŝf − Ŝc = O(h)

minimal benefit when Ŝf − Ŝc = O(
√

h)
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Discontinuous payoffs
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For paths in smoothed region, if Ŝf − Ŝc = O(h) then

f ′(S) = O(h−1/2) =⇒ P̂l−P̂l−1 = O(h1/2)

and hence V[P̂l−P̂l−1] = O(h3/2)
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Discontinuous payoffs

For multi-dimensional SDEs, approximate the Lévy areas
by sub-sampling W (t) within each timestep

Question: how many sub-samples to use?

too few and there’s no significant benefit

too many and the computational cost is excessive

what is optimal?

If each timestep is divided into M sub-intervals, error in
each Lévy area approximation is O(hM−1/2)

Hence, strong convergence error and Ŝf−Ŝc are both
O(h1/2M−1/2), assuming M ≪ h−1
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Discontinuous payoffs

Using antithetic treatment, for paths in smoothed region

1
2

(
f(Ŝf(1))+f(Ŝf(2))

)
− f(Ŝc) ≈ 1

2

(
D̂

(1)
n + D̂

(2)
n

)
f ′(Ŝc)

+ 1
4

(
(D̂

(1)
n )2 + (D̂

(2)
n )2

)
f ′′(Ŝc)

= O(h1/2 + M−1)

If M−1 ≫ h1/2, then doubling M doubles the cost per path,
but reduces the variance by factor 4 — good!

Optimum is when M = O(h−1/2)

Multilevel variance is O(h3/2) and cost is O(h−1/2) per path;
complexity analysis shows overall cost is O(ε−2(log ε)2).
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Numerical test

Heston model for digital call P = exp(−rT ) K 1S(T )>K
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Numerical test
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Conclusions

multilevel method being adapted to increasingly more
challenging applications

for multi-dimensional SDEs with Lipschitz payoffs,
neglecting the Lévy area terms in the Milstein scheme
can still give good decay of the multilevel variance if
antithetic variates are used

for discontinuous payoffs, the Lévy areas need to be
approximated but still get good decay of the variance

Papers are available from:
www.maths.ox.ac.uk/∼gilesm/finance.html
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