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Objectives

In presenting the multilevel Monte Carlo method, | hope to emphasise:

@ the simplicity of the idea
its flexibility

°

@ that it's not prescriptive, more an approach

@ scope for improved performance through being creative
°

lots of people working on a variety of applications

| will focus on ideas rather than lots of numerical results.
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Control variate

Classic approach to variance reduction: approximate E[f] using

=5 {F7 =2 (& ~Ele]) }
n=1

where
@ control variate g has known expectation E[g]

@ g is well correlated with f, and optimal value for A can be estimated
by a few samples
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to simulate fy ~ f,

then since
E[f] = E[f] + E[f—f]

we can use the estimator

No Ny
N0—1 Z fo(n) + Np? Z (fl(")_ fo(n))
n=1 n=1

Two differences from standard control variate method:
o [E[fy] is not known, so has to be estimated
o =1
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Two-level Monte Carlo

If we define
o (p, Vp to be cost and variance of f
@ (7, V4 to be cost and variance of f;—fy

then the total cost is
NoCo + NG

and the variance (assuming independent estimators) is
No' Vo + N7t vy

so for a fixed variance the cost is minimised by choosing

L RVAZVAS!

No  /Vo/Go
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Trivial example

fi comes from double precision calculation

fo comes from single precision calculation
(often twice as fast on latest CPUs/GPUs)

use the same random number generator for both calculations

(]

estimating Vg and V7 will give an optimal allocation of computational
effort between single precision and double precision computations
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Multilevel Monte Carlo

Natural generalisation: given a sequence fy, f1,...,f|

L
E[fi] = E[fo] + Y E[fi—fi1]
/=1

we can use the estimator

No L Ny
WY+ ey (80 )
n= =1 n—=

with independent estimation for each level
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Multilevel Monte Carlo

If we define
o (p, Vp to be cost and variance of f
o (Cp, Vy to be cost and variance of f;—1f;_q
L L

then the total cost is Z Ny Cy and the variance is Z N[l V,.
£=0 ¢=0

Using a Lagrange multiplier 12 to minimise the cost for a fixed variance
5 L
— Nk Gk + 12NV ) =0
N, kz_;)( k Ck 4= p= Ny k)

gives
Ne=p V)G = NeCG=p/VeG
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Multilevel Monte Carlo

Setting the total variance equal to €2 gives
L
p=c2 (Z V'V, Cg>
(=0
and hence, the total cost is

L L 2
Z Ng Cg = 6_2 (Z vV VgCg)
=0 =0

in contrast to the standard cost which is approximately =2 V, C;.

The MLMC cost savings are therefore:
o Vi / Vo, if VViCy increases with level
o Co/Cy, if \/V,;C; decreases with level
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Parametric Integration

Stefan Heinrich introduced multilevel ideas in 1999 for parametric
integration, in which x is a finite-dimensional random variable, and want
to estimate E[f(x, A)] for a range of values of the parameter \.

In the simplest case, suppose A is a scalar, and the parameter range is
0<AL1.

If we have already estimated E[f(x,0)] and E[f(x, 1)] then

Blf(x )] = § (Elf(x,0) +Elf(x 1))
+E [f(x, %) — %(f(X,O) + f(x, 1))}
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Parametric Integration

This can be repeated on multiple levels (perhaps using higher order
interpolation if (x, \) is sufficiently smooth)

Y

This doesn't quite fit into the multilevel framework |'ve described, but the
complexity analysis is very similar.
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Multilevel Path Simulation

In 2006, | introduced the multilevel approach for infinite-dimensional
integration arising from SDEs driven by Brownian diffusion.

Level ¢ corresponds to approximation using 2¢ timesteps, giving
approximate payoff Pj.

Choice of finest level L depends on weak error (bias).

Multilevel decomposition gives

L
E[P,] = E[Po] + > E[P;—Py_4]
=1
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Multilevel Monte Carlo

Simplest estimator for E[P;— P,_ 1] for £>0is

12 (P(") n))

using same driving Brownian path for both levels

Variance is N[l Vy where Vy =V[P;—Py_1] gets smaller as ¢ increases
because Py, Py_; both approximate same P

To make RMS error less than ¢
~ 2
@ choose L so that (E[PL]—E[P]> < ie?
@ choose Ny o< /V;/C; so total variance is less than %52
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MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators ?g based on Ny Monte Carlo samples,
each costing Cy, and positive constants «;, 3,7, c1, ¢, c3 such that
a>1min(3,7) and

) ‘E[ﬁg—P]‘ < g2t

-~ E[/P\O]’ (=0

i) E[Y,] = S
E[Pg—Pg_l], >0

i) VY] < o N 12750

iV) E[Cg] <c 275
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MLMC Theorem

then there exists a positive constant ¢4 such that for any e <1 there exist
L and N, for which the multilevel estimator

L
Y = Yo,
=0

~

~ 2
has a mean-square-error with bound E [(Y — E[P]) ] < é?

with an expected computational cost C with bound

cae?, B>,

C << ae?(loge)®, B=r,

cae 0B/ 0< B <A,
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MLMC Theorem

Two observations of optimality:

@ MC simulation needs O(c~2) samples to achieve RMS accuracy «.
When > ~, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

@ When 8 < +, another interesting case is when 8 = 2a, which
corresponds to E[Y;] and \/IE[?Z] being of the same order as ¢ — cc.

In this case, the total cost is O(¢~7/), which is the cost of a single
sample on the finest level — again optimal.
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MLMC Theorem

MLMC Theorem allows a lot of freedom in constructing the multilevel

estimator. | sometimes use different approximations on the coarse and fine
levels:

N,
Vo= NS (R Py ()
n=1
The telescoping sum still works provided
E|Pf] = E[P].
Given this constraint, can be creative to reduce the variance

v [ﬁ[ - /3;_1] .

Mike Giles (Oxford) MLMC MCQMC 2014 17 / 39



MLMC Theorem

Two examples:
@ zero-mean control variate estimator: if
Pa(eo™) & Py (™) + Z(wl)
where E[Z] = 0, then use

Pe (M) = Pq(w™),  Pf(wM) = Pyw™) - Z(w™)

@ antithetic estimator:

PEy(w™) = Pra(w™),  Pl(wM) =1 (l?’e(w(")) + ﬁe(w(")-)>

anti

where wgn)t, is an antithetic “twin” with the same distribution as w(".
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MLMC Challenges

@ not always obvious how to couple coarse and fine levels
i.e. what does Py(w(™)—P,_1(w(”) mean?

@ can the MLMC flexibility be exploited to improve the variance decay?

— particularly important for discontinuous “payoffs”, since a small
difference in the coarse and fine “paths” can produce an O(1)
difference in the “payoff”

@ numerical analysis — proving the rate at which V;, decays can be tough
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Brownian Diffusion SDEs

Brownian increments for coarse path obtained by summing increments for
fine path — very simple and natural

| prefer to use the first order Milstein discretisation — for simple put / call
options (and more generally Lipschitz functions of the final state) this

leads to R R
Py — Pi—1 = O(hy)

and hence V; = O(h?).

However, not so easy for lookback, digital and barrier options.

(And in multiple dimensions requires Lévy areas, but can be avoided by an
antithetic treatment, G & Szpruch, 2013)
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Digital options

In a digital option, the payoff is a discontinuous function of the final state.

Using the Milstein approximation, first order strong convergence means
that O(hy) of the simulations have coarse and fine paths on opposite sides
of a discontinuity.

Hence,
. O(1), with probability O(hy)
— P =

O(hg),  with probability O(1)

E[P;—Py_1] = O(hy), E[(Py—Ps_1)?] = O(hy),

and hence V; = O(h), not O(h?)
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Digital options

Three fixes:
@ Splitting: split each path simulation into M paths by trying M
different values for the Brownian increment for the last fine path
timestep

@ Conditional expectation: using the Euler discretisation instead of
Milstein for the final timestep, conditional on all but the final
Brownian increment, the final state has a Gaussian distribution, with
a known analytic conditional expectation in simple cases

@ Change of measure: when the expectation is not known, can use a
change of measure so the coarse path takes the same final state as
the fine path — difference in the “payoff’ now comes from the
Radon-Nikodym derivative
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Numerical Analysis

Euler Milstein
option numerics | analysis numerics | analysis
Lipschitz | O(h) O(h) O(h?) O(h?)
Asian O(h) O(h) O(h?) O(h?)
lookback | O(h) O(h) O(h?) o(h*79)
barrier O(h'/2) | o(h¥/?79) O(h3/?) | o(h3/%79)
digital O(h/2) | O(h?logh) | O(h3?) | o(h3/2=0)

Table: V; convergence observed numerically (for GBM) and proved
analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (2009) and Avikainen (2009).
Milstein analysis due to G, Debrabant & RoBler (2012).
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Lévy processes

Infinite activity rate general Lévy processes
(Dereich 2010; Marxen 2010; Dereich & Heidenreich 2011)

@ on level ¢, simulate jumps bigger than d; (6 — 0 as £ — o)
@ either neglect smaller jumps or use a Gaussian approximation

@ multilevel problem: discrepancy in treatment of jumps which are
bigger than &, but smaller than d,_1
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Lévy processes

Exact simulation (Cheng Zhu, Filippo Zinzani, Yuan Xia)
@ with some popular exponential-Lévy models (variance-gamma, NIG)
possible to directly simulate Lévy increments over fine timesteps
@ sum them pairwise to get corresponding increments for coarse path
@ coarse and fine path simulations are both exact, so what's the point
of multilevel simulation?

Asian options

lookback options

barrier options

other path-dependent options

vV vy vy
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Heston stochastic volatility

Glasserman & Kim (2011) developed a series expansion for sampling from
the integrated variance:

T d o0 o0 o]
</ Vs ds vo=Vo,vt:vt>=an+Zyn+Zzn
0 n=1 n=1 n=1

where X, yn, Zn are independent random variables.

Multilevel possibility:
@ truncate series at K; (K; — 0o as £ — o0)

@ should help for European options as well as path-dependent options
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American options

Belomestny & Schoenmakers (2011) have developed a multilevel
implementation of upper bound dual pricing

@ based on nested simulation algorithm of Andersen and Broadie (2004)

@ requires sub-sampling at each timestep to estimate a conditional
expectation (the continuation value)

@ multilevel treatment uses a different number of sub-samples M, on
each level (My — oo as £ — o0)
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SPDEs

@ very natural straightforward application, with better savings than
SDEs due to higher dimensionality

@ big challenge is in numerical analysis — noteworthy contribution by
Charrier, Scheichl & Teckentrup (2010)
@ range of applications
» Graubner & Ritter (2008) — parabolic
» G, Reisinger (2009-11) — parabolic
» Barth, Lang, Mishra, Schwab, Sukys, Zollinger (2010/11)

— elliptic, parabolic, hyperbolic
» Cliffe, G, Scheichl, Teckentrup (2010/11) — elliptic
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Engineering Uncertainty Quantification

consider 3D elliptic PDE, with uncertain boundary data
use grid spacing proportional to 2~¢ on level ¢

cost is O(273), if using an efficient multigrid solver

e © ¢ ¢

2nd order accuracy means that
Py(w) — P(w) ~ c(w)27%

—  Pii(w) - Pyw) ~ 3c(w)27¥

hence, a=2, =4, v=3
cost is O(72) to obtain ¢ RMS accuracy
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Elliptic SPDE
Elliptic PDE with random coefficient k(x,w):

—V.(k(x,w)Vp(x,w)) =0,  xeD,

Model k as a lognormal random field, i.e. log k is a Gaussian field with
mean 0 and covariance function

R(x,y) = 0% exp ( — [x—yl/A)
Samples of log k are provided by a Karhunen-Loéve expansion:
log k(x,w) = Z VOn En(w) fr(x),

where &, are iid unit Normal random variables.
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Elliptic SPDE

In multilevel treatment:
o different spatial grid resolution on each level

o truncate KL-expansion at different cutoffs K;

Ko
|Og kg(X,W) = Z V 6)n gn(w) f,,(x),
n=0

@ (more efficient ways of generating log k; use technique known as
circulant embedding)
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Stochastic chemical reactions

In stochastic simulations, each reaction is a Poisson process with a rate
which depends on the current concentrations.

In the “tau-leaping” method (Euler-Maruyama method)
the reaction rates are frozen at the start of the timestep, so for each
reaction sample from a Poisson process

P(AAt)
to determine the number of reactions in that timestep.

(As A\ At — oo, the standard deviation becomes smaller relative to the
mean, and it approaches the deterministic limit.)

Mike Giles (Oxford) MLMC MCQMC 2014 32 /39



Stochastic chemical reactions

Anderson & Higham (2011) have developed a very efficient multilevel

version of this algorithm — big savings because finest level usually has
1000's of timesteps.

Key challenge: how to couple coarse and fine path simulations?

Crucial observation: P(t1) + P(t2) 2 P(t1+1t)

Only requirement:  t;,t, > 0
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Stochastic chemical reactions

Solution:

@ simulate the Poisson variable on the coarse timestep as the sum of

two fine timestep Poisson variables

@ couple the fine path and coarse path Poisson variables by using

common variable based on smaller of two rates

| ASAt/2 | ASAt/2 |
| 1 1
th th
N At)2 | N1 At)2 |
[ I 1
If A < XS, use P(ASAL/2) ~ P(ALAL/2) + P((AS—\)At/2)
MCQMC 2014
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MLQMC

To further improve the multilevel complexity, can use randomised QMC in
place of MC.

G & Waterhouse (2008-9) used rank-1 lattice rules for scalar SDE
applications

o far fewer samples required on coarsest levels
@ almost no difference on finest levels

@ overall, big savings when using Milstein discretisation (so most work
on coarsest levels)

@ in best case (GBM with European option) complexity was
approximately O(e71®)
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MLQMC

Numerical algorithm:
Q start with L=0

© get an initial estimate for V| using 32 random offsets and N, =1
L

© while Z Vy > 52/2, try to maximise variance reduction per unit cost
£=0
by doubling Ny on the level with largest V; / (C; Np)

@ if L<2 or the bias estimate is greater than s/\/§ set L:=L+1 and
go back to step 2
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Conclusions

@ multilevel idea is very simple; key is how to apply it in new situations

@ lots of freedom to construct more efficient estimators:

» change of measure

» zero-mean control variate
> antithetic treatment

» sub-division

@ being used for an increasingly wide range of applications; biggest
computational savings when coarsest (helpful) approximation is
much cheaper than finest

@ currently, getting at least 100x savings for SPDEs and stochastic
chemical reaction simulations

Webpage for my research/papers:
people.maths.ox.ac.uk/gilesm/mlmc.html

Mike Giles (Oxford) MLMC MCQMC 2014 37 /39



MLMC Community

Webpage: people.maths.ox.ac.uk/gilesm/mlmc_community.html

Abo Academi (Avikainen) — numerical analysis

Basel (Harbrecht) — elliptic SPDEs, sparse grid links

Bath (Kyprianou, Scheichl, Shardlow) — elliptic SPDEs, MCMC, Lévy-driven SDEs
Chalmers (Lang) — SPDEs

Christian-Albrechts University (Gnewuch) — multilevel QMC

Duisburg (Belomestny) — Bermudan and American options

Edinburgh (Davie, Szpruch) — SDEs, numerical analysis

ETH Zirich (Jenny, Jentzen, Schwab) — numerical analysis, SPDEs

Frankfurt (Gerstner, Kloeden) — numerical analysis, sparse grid links

Fraunhofer ITWM (lliev) — SPDEs in engineering

Hong Kong (Chen) — Brownian meanders, nested simulation in finance

IIT Chicago (Hickernell) — SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Ritter) — finance, SDEs, complexity analysis, parametric integration
KAUST (Tempone) — adaptive time-stepping

Kiel (Gnewuch) — randomized multilevel QMC

Mannheim (Neuenkirch) — numerical analysis, fractional Brownian motion

Marburg (Dereich) — Lévy-driven SDEs

Munich (Hutzenthaler) — numerical analysis

Oxford (Giles, Hambly, Reisinger) — SDEs, jump-diffusion, SPDEs, numerical analysis
Passau (Miiller-Gronbach) — infinite-dimensional integration, complexity analysis
Purdue (Gittelson) — SDPEs

Stanford (Glynn) — numerical analysis

Strathclyde (Higham, Mao) — numerical analysis, exit times, stochastic chemical modelling
Stuttgart (Barth) — SPDEs

Texas A&M (Efendiev) — SPDEs in engineering

UCLA (Caflisch) — Coulomb collisions in physics

UNSW (Dick, Kuo, Sloan) — multilevel QMC

WIAS (Schoenmakers) — Bermudan and American options

Wisconsin (Anderson) — numerical analysis, stochastic chemical modelling
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MCQMC 2014

Three keynote talks (out of a total of eight):

o Steffen Dereich (WWU)

» Multilevel Monte Carlo for Lévy-driven SDEs
» looking at methods and analysis for MLMC for path-dependent
functionals of Lévy-driven SDEs

@ Peter Glynn (Stanford)

» Creating unbiased Monte Carlo schemes from biased ones: theory and
applications
» modifies MLMC to randomise the selection of level for each sample

@ Radl Tempone (KAUST)

» Adaptive strategies for Multilevel Monte Carlo
» discusses adaptive timestepping for MLMC simulations

Also 4 MLMC sessions (3 invited, and 1 contributed on Thurs afternoon)
with a total of 29 presentations covering a wide range of topics
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