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Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

the simplicity of the idea

its flexibility

that it’s not prescriptive, more an approach

scope for improved performance through being creative

lots of people working on a variety of applications

I will focus on ideas rather than lots of numerical results.
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Control variate

Classic approach to variance reduction: approximate E[f ] using

N−1
N∑

n=1

{
f (n) − λ

(
g (n) − E[g ]

)}

where

control variate g has known expectation E[g ]

g is well correlated with f , and optimal value for λ can be estimated
by a few samples
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to simulate f0 ≈ f1,
then since

E[f1] = E[f0] + E[f1−f0]

we can use the estimator

N−1
0

N0∑

n=1

f
(n)
0 + N−1

1

N1∑

n=1

(
f
(n)
1 − f

(n)
0

)

Two differences from standard control variate method:

E[f0] is not known, so has to be estimated

λ = 1

Mike Giles (Oxford) MLMC MCQMC 2014 4 / 39



Two-level Monte Carlo

If we define

C0,V0 to be cost and variance of f0

C1,V1 to be cost and variance of f1−f0

then the total cost is
N0 C0 + N1 C1

and the variance (assuming independent estimators) is

N−1
0 V0 + N−1

1 V1

so for a fixed variance the cost is minimised by choosing

N1

N0
=

√
V1/C1√
V0/C0
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Trivial example

f1 comes from double precision calculation

f0 comes from single precision calculation
(often twice as fast on latest CPUs/GPUs)

use the same random number generator for both calculations

estimating V0 and V1 will give an optimal allocation of computational
effort between single precision and double precision computations
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Multilevel Monte Carlo

Natural generalisation: given a sequence f0, f1, . . . , fL

E[fL] = E[f0] +

L∑

ℓ=1

E[fℓ−fℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

f
(n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
f
(n)
ℓ − f

(n)
ℓ−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of f0

Cℓ,Vℓ to be cost and variance of fℓ−fℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑

k=0

(
Nk Ck + µ2N−1

k
Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑

ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level
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Parametric Integration

Stefan Heinrich introduced multilevel ideas in 1999 for parametric
integration, in which x is a finite-dimensional random variable, and want
to estimate E[f (x , λ)] for a range of values of the parameter λ.

In the simplest case, suppose λ is a scalar, and the parameter range is
0 ≤ λ ≤ 1.

If we have already estimated E[f (x , 0)] and E[f (x , 1)] then

E[f (x , 12 )] = 1
2

(
E[f (x , 0)] + E[f (x , 1)]

)

+ E
[
f (x , 12)− 1

2(f (x , 0) + f (x , 1))
]
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Parametric Integration

This can be repeated on multiple levels (perhaps using higher order
interpolation if f (x , λ) is sufficiently smooth)

r r

r r r

r r r r r

r r r r r r r r r

r r r r r r r r r r r r r r r r r❄

ℓ

✲

λ

This doesn’t quite fit into the multilevel framework I’ve described, but the
complexity analysis is very similar.
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Multilevel Path Simulation

In 2006, I introduced the multilevel approach for infinite-dimensional
integration arising from SDEs driven by Brownian diffusion.

Level ℓ corresponds to approximation using 2ℓ timesteps, giving
approximate payoff P̂ℓ.

Choice of finest level L depends on weak error (bias).

Multilevel decomposition gives

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]
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Multilevel Monte Carlo

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂
(n)
ℓ −P̂

(n)
ℓ−1

)

using same driving Brownian path for both levels

Variance is N−1
ℓ Vℓ where Vℓ = V[P̂ℓ−P̂ℓ−1] gets smaller as ℓ increases

because P̂ℓ, P̂ℓ−1 both approximate same P

To make RMS error less than ε

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2
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MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ

Mike Giles (Oxford) MLMC MCQMC 2014 14 / 39



MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with an expected computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷℓ] and
√

E[Ŷ 2
ℓ ] being of the same order as ℓ → ∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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MLMC Theorem

MLMC Theorem allows a lot of freedom in constructing the multilevel
estimator. I sometimes use different approximations on the coarse and fine
levels:

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂ f

ℓ (ω
(n))−P̂c

ℓ−1(ω
(n))
)

The telescoping sum still works provided

E

[
P̂ f

ℓ

]
= E

[
P̂c

ℓ

]
.

Given this constraint, can be creative to reduce the variance

V

[
P̂ f

ℓ − P̂c

ℓ−1

]
.
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MLMC Theorem

Two examples:

zero-mean control variate estimator: if

P̂ℓ(ω
(n)) ≈ P̂ℓ−1(ω

(n)) + Z (ω(n))

where E[Z ] = 0, then use

P̂c

ℓ−1(ω
(n)) ≡ P̂ℓ−1(ω

(n)), P̂ f

ℓ (ω
(n)) ≡ P̂ℓ(ω

(n))− Z (ω(n))

antithetic estimator:

P̂c

ℓ−1(ω
(n)) ≡ P̂ℓ−1(ω

(n)), P̂ f

ℓ (ω
(n)) ≡ 1

2

(
P̂ℓ(ω

(n)) + P̂ℓ(ω
(n)
anti

)
)

where ω
(n)
anti

is an antithetic “twin” with the same distribution as ω(n).
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MLMC Challenges

not always obvious how to couple coarse and fine levels
i.e. what does P̂ℓ(ω

(n))−P̂ℓ−1(ω
(n)) mean?

can the MLMC flexibility be exploited to improve the variance decay?

— particularly important for discontinuous “payoffs”, since a small
difference in the coarse and fine “paths” can produce an O(1)
difference in the “payoff”

numerical analysis – proving the rate at which Vℓ decays can be tough
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Brownian Diffusion SDEs

Brownian increments for coarse path obtained by summing increments for
fine path – very simple and natural

I prefer to use the first order Milstein discretisation – for simple put / call
options (and more generally Lipschitz functions of the final state) this
leads to

P̂ℓ − P̂ℓ−1 = O(hℓ)

and hence Vℓ = O(h2ℓ ).

However, not so easy for lookback, digital and barrier options.

(And in multiple dimensions requires Lévy areas, but can be avoided by an
antithetic treatment, G & Szpruch, 2013)
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Digital options

In a digital option, the payoff is a discontinuous function of the final state.

Using the Milstein approximation, first order strong convergence means
that O(hℓ) of the simulations have coarse and fine paths on opposite sides
of a discontinuity.

Hence,

P̂ℓ − P̂ℓ−1 =

{
O(1), with probability O(hℓ)

O(hℓ), with probability O(1)

so
E[P̂ℓ−P̂ℓ−1] = O(hℓ), E[(P̂ℓ−P̂ℓ−1)

2] = O(hℓ),

and hence Vℓ = O(hℓ), not O(h2ℓ )
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Digital options

Three fixes:

Splitting: split each path simulation into M paths by trying M

different values for the Brownian increment for the last fine path
timestep

Conditional expectation: using the Euler discretisation instead of
Milstein for the final timestep, conditional on all but the final
Brownian increment, the final state has a Gaussian distribution, with
a known analytic conditional expectation in simple cases

Change of measure: when the expectation is not known, can use a
change of measure so the coarse path takes the same final state as
the fine path — difference in the “payoff” now comes from the
Radon-Nikodym derivative

Mike Giles (Oxford) MLMC MCQMC 2014 22 / 39



Numerical Analysis

Euler Milstein
option numerics analysis numerics analysis

Lipschitz O(h) O(h) O(h2) O(h2)
Asian O(h) O(h) O(h2) O(h2)
lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vℓ convergence observed numerically (for GBM) and proved
analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (2009) and Avikainen (2009).
Milstein analysis due to G, Debrabant & Rößler (2012).
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Lévy processes

Infinite activity rate general Lévy processes
(Dereich 2010; Marxen 2010; Dereich & Heidenreich 2011)

on level ℓ, simulate jumps bigger than δℓ (δℓ → 0 as ℓ → ∞)

either neglect smaller jumps or use a Gaussian approximation

multilevel problem: discrepancy in treatment of jumps which are
bigger than δℓ but smaller than δℓ−1
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Lévy processes

Exact simulation (Cheng Zhu, Filippo Zinzani, Yuan Xia)

with some popular exponential-Lévy models (variance-gamma, NIG)
possible to directly simulate Lévy increments over fine timesteps

sum them pairwise to get corresponding increments for coarse path

coarse and fine path simulations are both exact, so what’s the point
of multilevel simulation?

◮ Asian options
◮ lookback options
◮ barrier options
◮ other path-dependent options
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Heston stochastic volatility

Glasserman & Kim (2011) developed a series expansion for sampling from
the integrated variance:

(∫
T

0
Vs ds

∣∣∣∣ V0 = v0,Vt = vt

)
d
=

∞∑

n=1

xn +

∞∑

n=1

yn +

∞∑

n=1

zn

where xn, yn, zn are independent random variables.

Multilevel possibility:

truncate series at Kℓ (Kℓ → ∞ as ℓ → ∞)

should help for European options as well as path-dependent options
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American options

Belomestny & Schoenmakers (2011) have developed a multilevel
implementation of upper bound dual pricing

based on nested simulation algorithm of Andersen and Broadie (2004)

requires sub-sampling at each timestep to estimate a conditional
expectation (the continuation value)

multilevel treatment uses a different number of sub-samples Mℓ on
each level (Mℓ → ∞ as ℓ → ∞)
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SPDEs

very natural straightforward application, with better savings than
SDEs due to higher dimensionality

big challenge is in numerical analysis – noteworthy contribution by
Charrier, Scheichl & Teckentrup (2010)

range of applications
◮ Graubner & Ritter (2008) – parabolic
◮ G, Reisinger (2009-11) – parabolic
◮ Barth, Lang, Mishra, Schwab, Sukys, Zollinger (2010/11)

– elliptic, parabolic, hyperbolic
◮ Cliffe, G, Scheichl, Teckentrup (2010/11) – elliptic
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Engineering Uncertainty Quantification

consider 3D elliptic PDE, with uncertain boundary data

use grid spacing proportional to 2−ℓ on level ℓ

cost is O(2−3ℓ), if using an efficient multigrid solver

2nd order accuracy means that

P̂ℓ(ω)− P̂(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy
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Elliptic SPDE

Elliptic PDE with random coefficient k(x, ω):

−∇. (k(x, ω)∇p(x, ω)) = 0, x ∈ D,

Model k as a lognormal random field, i.e. log k is a Gaussian field with
mean 0 and covariance function

R(x, y) = σ2 exp
(
− ‖x−y‖1/λ

)

Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =
∞∑

n=0

√
θn ξn(ω) fn(x),

where ξn are iid unit Normal random variables.
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Elliptic SPDE

In multilevel treatment:

different spatial grid resolution on each level

truncate KL-expansion at different cutoffs Kℓ

log kℓ(x, ω) =

Kℓ∑

n=0

√
θn ξn(ω) fn(x),

(more efficient ways of generating log kℓ use technique known as
circulant embedding)
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Stochastic chemical reactions

In stochastic simulations, each reaction is a Poisson process with a rate
which depends on the current concentrations.

In the “tau-leaping” method (Euler-Maruyama method)
the reaction rates are frozen at the start of the timestep, so for each
reaction sample from a Poisson process

P(λ∆t)

to determine the number of reactions in that timestep.

(As λ∆t → ∞, the standard deviation becomes smaller relative to the
mean, and it approaches the deterministic limit.)
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Stochastic chemical reactions

Anderson & Higham (2011) have developed a very efficient multilevel
version of this algorithm – big savings because finest level usually has
1000’s of timesteps.

Key challenge: how to couple coarse and fine path simulations?

Crucial observation: P(t1) + P(t2)
d
= P(t1+t2)

Only requirement: t1, t2 ≥ 0
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Stochastic chemical reactions

Solution:

simulate the Poisson variable on the coarse timestep as the sum of
two fine timestep Poisson variables

couple the fine path and coarse path Poisson variables by using
common variable based on smaller of two rates

tn tn+1

λc
n ∆t/2 λc

n ∆t/2

λf
n ∆t/2 λf

n+1/2 ∆t/2

If λf
n < λc

n, use P(λc
n∆t/2) ∼ P(λf

n∆t/2) + P((λc
n−λf

n)∆t/2)
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MLQMC

To further improve the multilevel complexity, can use randomised QMC in
place of MC.

G & Waterhouse (2008-9) used rank-1 lattice rules for scalar SDE
applications

far fewer samples required on coarsest levels

almost no difference on finest levels

overall, big savings when using Milstein discretisation (so most work
on coarsest levels)

in best case (GBM with European option) complexity was
approximately O(ε−1.5)

Mike Giles (Oxford) MLMC MCQMC 2014 35 / 39



MLQMC

Numerical algorithm:

1 start with L=0

2 get an initial estimate for VL using 32 random offsets and NL = 1

3 while

L∑

ℓ=0

Vℓ > ε2/2, try to maximise variance reduction per unit cost

by doubling Nℓ on the level with largest Vℓ / (Cℓ Nℓ)

4 if L<2 or the bias estimate is greater than ε/
√
2, set L := L+1 and

go back to step 2
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Conclusions

multilevel idea is very simple; key is how to apply it in new situations

lots of freedom to construct more efficient estimators:
◮ change of measure
◮ zero-mean control variate
◮ antithetic treatment
◮ sub-division

being used for an increasingly wide range of applications; biggest
computational savings when coarsest (helpful) approximation is
much cheaper than finest

currently, getting at least 100× savings for SPDEs and stochastic
chemical reaction simulations

Webpage for my research/papers:
people.maths.ox.ac.uk/gilesm/mlmc.html
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MLMC Community

Webpage: people.maths.ox.ac.uk/gilesm/mlmc community.html

Abo Academi (Avikainen) – numerical analysis
Basel (Harbrecht) – elliptic SPDEs, sparse grid links
Bath (Kyprianou, Scheichl, Shardlow) – elliptic SPDEs, MCMC, Lévy-driven SDEs
Chalmers (Lang) – SPDEs
Christian-Albrechts University (Gnewuch) – multilevel QMC
Duisburg (Belomestny) – Bermudan and American options
Edinburgh (Davie, Szpruch) – SDEs, numerical analysis
ETH Zürich (Jenny, Jentzen, Schwab) – numerical analysis, SPDEs
Frankfurt (Gerstner, Kloeden) – numerical analysis, sparse grid links
Fraunhofer ITWM (Iliev) – SPDEs in engineering
Hong Kong (Chen) – Brownian meanders, nested simulation in finance
IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Ritter) – finance, SDEs, complexity analysis, parametric integration
KAUST (Tempone) – adaptive time-stepping
Kiel (Gnewuch) – randomized multilevel QMC
Mannheim (Neuenkirch) – numerical analysis, fractional Brownian motion
Marburg (Dereich) – Lévy-driven SDEs
Munich (Hutzenthaler) – numerical analysis
Oxford (Giles, Hambly, Reisinger) – SDEs, jump-diffusion, SPDEs, numerical analysis
Passau (Müller-Gronbach) – infinite-dimensional integration, complexity analysis
Purdue (Gittelson) – SDPEs
Stanford (Glynn) – numerical analysis
Strathclyde (Higham, Mao) – numerical analysis, exit times, stochastic chemical modelling
Stuttgart (Barth) – SPDEs
Texas A&M (Efendiev) – SPDEs in engineering
UCLA (Caflisch) – Coulomb collisions in physics
UNSW (Dick, Kuo, Sloan) – multilevel QMC
WIAS (Schoenmakers) – Bermudan and American options
Wisconsin (Anderson) – numerical analysis, stochastic chemical modelling
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MCQMC 2014

Three keynote talks (out of a total of eight):

Steffen Dereich (WWU)

◮ Multilevel Monte Carlo for Lévy-driven SDEs
◮ looking at methods and analysis for MLMC for path-dependent

functionals of Lévy-driven SDEs

Peter Glynn (Stanford)

◮ Creating unbiased Monte Carlo schemes from biased ones: theory and

applications
◮ modifies MLMC to randomise the selection of level for each sample

Raúl Tempone (KAUST)

◮ Adaptive strategies for Multilevel Monte Carlo
◮ discusses adaptive timestepping for MLMC simulations

Also 4 MLMC sessions (3 invited, and 1 contributed on Thurs afternoon)
with a total of 29 presentations covering a wide range of topics
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